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1. Introduction

Intersection types and the expansion mechanism. Intersection types were developed in the late
1970s to type\-terms that are untypable with simple types; they do thistoyiding a kind of finitary
type polymorphism where the usages (types) of terms amlisither than obtained by quantification.
They have been useful in reasoning about the semantics afthéculus, and have been investigated for
use in static program analysiExpansionwas introduced at the end of the 1970s as a crucial procedure
for calculatingprincipal typingsfor A-terms in type systems with intersection types, allowingpsut

for compositional type inference. Coppo, Dezani, and Varjigintroduced the operation axpansion
ontypings(pairs of a type environment and a result type) for calcntpthe possible typings of a term
when using intersection types. As a simple example, thestsean intersection type systesthwhere
the \-term M = (Az.xz(A\y.yz)) can be assigned the typidg = ({z — a}, (((a—b)—b)—c)—c), which
happens to be its principal typing 1 The termM can also be assigned the typifrg = (s{z+> a; N
as}, ((((a1—=b1)—=b1) M ((a2—be)—bs))—c)—c), and an expansion operation can yiélgfrom ®;.

Expansion variables. Because the early definitions of expansion were complic&edriableswere
introduced in order to make the calculations easier to mézhaand reason about. For example, in
System E [5], the typingP; presented above is replaced ®y = ({z+ ea}, ((e((a—b)—b))—c)—c),
which differs from®; by the insertion of the E-variableat two places (in both components of tihe),
and®, can be obtained fronk; by substituting for theexpansion tern = (a := a1,b := b1)M(a :=
az,b := be). Carlier and Wells [6] have surveyed the history of expamsiod also E-variables.

Designing a space of meanings for expansion variables. In many kinds of semantics, a tyfie

is interpreted by a second order functidrj, that takes two parameters, the typend also a valuation

v that assigns to type variables the same kind of meaningsitbatssigned to types. To extend this idea
to types with E-variables, we need to devise some space siqpp@sneanings for E-variables. Given that
atypeeT can be turned by expansion into a new tyaé7") r1.52(7"), whereS; andS, are arbitrary sub-
stitutions (which can themselves introduce expansioms) tlaat this can introduce an unbound number
of new variables (both E-variables and regular type vaeshlthe situation is complicated. Because it is
unclear how to devise a space of meanings for expansions-saddbles, we instead restrict ourselves
to E-variables and develop a space of meanings for typessthiegrarchical in the sense that we can split
it w.r.t. a certain concept of degree. Although this ideaoperfect, it seems to go quite far in giving an
intuition for E-variables, namely that each E-variablewdag in a typing associated with)aterm, acts

as a capsule that isolates parts of aerm. As future work, we wish to come up with a higher order
function that interprets types involving expansion terrgssbts of\-terms. We believe this function
would help regarding the substitution mechanism introdumgexpansion in terms of-expressions.

Our semantic approach. The semantic approach we use in the current document is iaataiity
semantics in the sense that it is derived from Kreisel's firedlirealisability and its variants, where “a
formula “x realizesA” can be defined in a completely straightforward way: the tgpthe variablex

is determined by the logical form of” [26], = being the code of a function. Our semantics is strongly
related to the semantic argument used in reducibility nushas used and developed by Tait [27] and
many others after him [24, 23, 13, 12, 14, 15]. Atomic typeg.(eype variables) are interpreted as
saturatedsets ofA-terms, meaning that they are closed undeaxxpansion (the inverse gkreduction).
Arrow types are interpreted by function spaces (see therstizagrovided by Scott in the open problems
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published in the proceedings of the Lecture Notes in Com@deence symposium held in 1975 [4]) and
intersection types are interpreted by set intersectionsh & realisability semantics allows one to prove
soundnessv.r.t. a type systeny, i.e., the meaning of a typ€ contains all closed\-terms that can be
assigned’ in S. This has been shown useful for characterising the behaoidyped\-terms [24]. One
also wants to show the converse of soundness which is cadiegbleteness.e., every closed-term in
the meaning of” can be assigned in S.

Completeness results. Hindley [17, 18, 19] was one of the first to investigate sucmpleteness
results for a simple type system and he showed that all thestgpthat system have the completeness
property. He then generalised his completeness proof totarsection type system [16]. Using his com-
pleteness theorem based on saturated setgdefms w.r.t.3n-equivalence, Hindley showed that simple
types were “realised’by all and only the\-terms which are typable by these types. Note that Hindley’s
completeness theorems were established with the setgerfns saturated bgn-equivalence. In the
present document, our completeness result depends onheondaker requirement gf-equivalence,
and we have managed to make simpler proofs that avoid neegiaduction, confluence, or SN (al-
though we do establish both confluence and SN for Badind 57).

Similar approaches to type interpretation. Recent works on realisability related to ours include
that by Labib-Sami [25], Farkh and Nour [11], and Coquand #&hough none of this work deals with
intersection types or E-variables. Similar work on reddiky dealing with intersection types includes
that by Kamareddine and Nour [21], which gives a sound andptete realisability semantics w.r.t. an
intersection type system. This system does not deal withariabies and is therefore different from the
three hierarchical systems presented in this documentniie difference is the hierarchies which did
not exist in Kamareddine and Nour’s document [21].

Towards a semantics of expansion. Initially, we aimed to give a realisability semantics for a
system of expansions proposed by Carlier and Wells [6]. dieioto simplify our study, we considered
the system with expansion variables but without the expansgwriting rules (without the expansion
mechanism). In essence, this meant that the type syntaxwasTy ::=a | w | T1=>To | Ty N Ts | €T
whereq is a type variable ranging over a countably infinite typealale seflyVar ande is an expansion
variable ranging over a countably infinite expansion vaeiaetExpVar, and that the typing rules were
as follows:

s (@oryrn RCEr
M - <FH’J {.CC!—>T1} H T2> M1 : <F1 - T1—>T2> M2 . <F2 F T1>
Az.M : (T Ty ~Ty) (abs) MM, - Ty N T - 1) (app)
M:(DyFTy) M: (Do b Ty) M:(TFT)
MO N FnnT) ) M er) &PP)

To provide a realisability semantics for this system, wedeeeto define the interpretation of a type
to be a set of terms having this type. For our semantics to foenrative on expansion variables, we
needed to distinguish between the interpretatior¥’adind e7’. However, in the typing rulée-app)

We say that a\-term M “realises” a typel” if M is in T"s interpretation. Hindley’s semantics is not a realisapemantics
but it bears some resemblance with modified realisabilitye ©f Hindley’s semantics is called “the simple semanticsl &
based on the concept of model of the untypedalculus [20]. Our type interpretation is also similar tméley’s[16].
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presented above, the terM is unchanged and this poses difficulties. For this reasonmaeified
slightly the above type system by indexing the terms ofXfealculus giving us the following syntax of
terms: M =z | (MN) | (A\x'.M) (whereM andN need to satisfy a certain condition befdrel V)

is allowed to be a term) and by slightly changing our typesaled in particular rulée-app):

M:(T'FU)
M (T ety PP

In this new(e-app) rule, M is M where all the indices are increased by 1. Obviously theseesd
needed a revision regardiigreduction and the typing rules in order to preserve therdela properties
of the type system and the realisability semantics. Foywsdefined the good terms and the good types
and showed that these notions go hand in hand (e.g., goosl ¢tgmeonly be assigned to good terms).

We developed a realisability semantics where each use of\ariible in a type corresponds to an
index at which evaluation occurs in theterms that are assigned the type. This was an elegantoluti
that captured the intuition behind E-variables. Howewverpiider for this new type system to behave
well, it was necessary to consid&f-terms only (removing a subterm froM also removes important
information about\/ as in the reductiof\z.y) M — 3 y where)M is thrown away). It was also necessary
to drop the universal type completely. This led us to the introduction of thé“-calculus and to our
first type systent-; for which we developed a sound realisability semantics fenEables.

However, although the first type systeém is crucial to understand the intuition behind out indexed
calculus, the realisability semantics we proposed was omipdete w.r.tl-; (subject reduction does not
hold either). For this reason, we modified our systeprby considering a smaller set of types (where
intersections and expansions cannot occur directly toigte of an arrow), and by adding subtyping
rules. This new type systef, has subject reduction. Our semantics turned out to be sourtdhw.

As for completeness, we needed to limit the list of expansiamables to a single element list. This
completeness issue for, comes from the fact that the natural numbers as indexes dallowt one to
differentiate between the typesT” andes T if e; # eo. Again, we were forced to revise our type system.
We decided to restrict ouk-terms by indexing them by lists of natural numbers (wherehezatural
number represents a difference expansion variable). Wategdhe type system, in consequence to
obtain the type systein; based among other things on the following n@wapp) rule:

M:(T'FU)

MTi: (el + eU) (e-apP)

wherei is the natural number associated with the expansion variadhd whered/+# is M where all
the lists of natural numbers are augmented witfThis new rule(e-app) allows us to distinguish the
interpretations of the types T andesT whene; # ey. Furthermore, oud-terms are constructed in
such a way thaf<-reductions do not limit the information on the reduced ®ias in the\I-calculus,
S-reduction is not always allowed, and in addition we impagehier restriction on applications and
abstractions). In order to obtain completeness in presefittes w-rule, we also consider indexed by
lists. This means that the new calculus becomes rather Haawpis seems unavoidable. It is needed
to obtain a complete realisability semantics where anranyit(possibly infinite) number of expansion
variables is allowed and wheteis present. The use of lists complicates matters and heeeglsrto
be understood in the context of the first semantics wheredsdire natural numbers rather than lists of
natural numbers. In addition to the above, we consider thagation notions (in line with the literature)
illustrating that these notions behave well in our comptetdisability semantics.
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Road map. Sec. 2.1 gives the syntax of the indexed calculi considemettiis document: the\/-
calculus, which is the\I-calculus with each variable annotated by a natural numékéedcadegreeor
index and thex“~-calculus which is the full\-calculus (where K-redexes are allowed) indexed with
finite sequences of natural numbers. We show the confluenge @&f and weak head-reduction on
our indexedA-calculi. Sec. 2.2 introduces the syntax and terminologytypes used in both indexed
calculi. Sec. 2.3 introduces our three intersection typsesys with E-variables; for i € {1,2,3},
where in the first one, the syntax of types is not restrictedl @ence subject reduction fails) but in the
other two it is restricted but then the systems are extendétdansubtyping relation. In Sec. 2.4.1 and
Sec. 2.4.2 we study the properties of our three type systeohsding subject reduction and expansion
with respect to our various reduction relatioris n, h). Sec. 3.1 introduces our realisability semantics
and show its soundness w.r.t. each of the three considgredsystems (and for each reduction relation).
Sec. 3.2 discusses the challenges of showing completehigsrealisability semantics designed for the
first two systems. We show that completeness does not hottiddirst system and that it also does not
hold for the second system if more than one expansion variahlsed, but does hold for a restriction of
this system to one single E-variable. This is already an iapt step in the study of the semantics of
intersection type systems with expansion variables sirgiagde expansion variable can be used many
times and can occur nested. Sec. 3.3 establishes the cemgdstof a given realisability semantics
w.r.t. 3 by introducing a special interpretation. We conclude in.Seand proofs are presented in the
expanded version of this article [22].

2. The ™ and \*¥ calculi and associated type systems

2.1. The syntax of the indexed\-calculi

Definition 2.1. (Indices)

We introduce two kinds of indices: natural numbers for owtfgemantics and sequences of natural
numbers for our second semantics. gt = tuple(N). We let!, J, range over indices. The metavari-
ablesI andJ will range overN when considering tha/™-calculus and ovefy when considering the
\r-calculus (both these calculus are defined below). Lét, R range ovetly. We sometimes write
(n1,...,npm) as(ny,...,ny) Oras(n;)1<i<m Or as(n;),. We denoten the empty sequence of natural
numbers ¢ stands for()). Let:: add an element to a sequenge:: (n,...,ny) = (4,n1,...,0m).

We sometimes writd;Q L, asl, :: L. We define the relatiok and> on Ly as follows: L; < L, (or

Ly = L) iff there existsLs € Ly such thatl, = L; :: Ls.

Lemma 2.1. <is a partial order oiCy.

Letz,y, z range oveWNar, a countable infinite set of term variables (or just varigple

We define below two indexed calculi: thdN-calculus (whose set of terms Jst; as well asM,
for notational reasons) and thé~-calculus (whose set of terms.gl3). As obvious, indices inI™ are
simple but only allow thd -part of the calculus.

We let M, N, P, @, R range over any oM, M, and M3 (we make explicit when a term is taken
from either one of these sets). We usdor syntactic equality. We assume the usual definition of sub
terms and the usual convention for parentheses and thessmmi(see Barendregt [2] and Krivine [24]).
We also consider in this part an extension of the funcfiothat gathers the indexegterm variables
occurring free in terms (redefined below).
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The joinability M ¢ N of termsM and N ensures that in any term in whigid and NV occur, each
variable has a unique index (note that it is more accuratediude this as part of the simultaneous
inductions in Def. 2.3 and 2.5 defininlyt;, M5, and M3, but for clarity, we define it separately here).

Definition 2.2. (Joinability ©)
Leti € {1,2,3}.

e Let M, N be terms ofA/N (resp.\“) and letfv(M) andfv(N) be the corresponding free vari-
ables. We say that/ andN are joinable and writd/ o N iff for all = € Var, if 21 € fv(M) and
z’2 € fv(N) (whereLy, Ly € N (resp.€ Ly)) thenL; = L.

e If M C M, suchthatvM,N € M. M o N, we writeo)M.
e If M C M; andM € M, such thay N € M. M o N, we write M < M.

Now we give the syntax okI, an indexed version of th&I-calculus where indices (which range
over N) help categorise thgood termswhere the degree of a function is never larger than that of its
argument. This amounts to having the fall-calculus at each index and creating nefvterms through
a mixing recipe. Note that one could also defii@' by dividing Var into an countably infinite number
of sets and by defining a bijective function that associatesigue index with each of these sets. We did
not choose to do so because we believe explicitly writingmowlexes to be clearer.

Definition 2.3. (The set of termsM; (also called M5))
The set of terms\, My (Where M, = M.), the set of free variables (M) of M € M, and the
degreedeg(M) of a term), are defined by simultaneous induction:

o If z € Var andn € Nthenz" € My, fv(2™) = {z"}, anddeg(z") = n.

e If M, N € My suchthatM o N (see Def. 2.2) thed/ N € Mo, fv(MN) = fv(M) Ufv(N) and
deg(M N) = min(deg(M),deg(N)) (wheremin returns the smallest of its arguments).

o If M € Mgandz" € fv(M)then\a™. M € My, fv(Az"™. M) = fv(M)\{z"}, anddeg(Az".M;) =
deg(Ml).

Let iz € IVary ::= 2™ andlVar; = IVary. For eachn € N, let M4 = {M € My | deg(M) = n}. Note
that a subterm o/ € M, is also inM;. Closed terms are defined as usual:cleted (/) be true iff
M is closed, i.e., iffv(M) = @.

Here is now the syntax of good terms in th&-calculus.

Definition 2.4. (The set of good term§Vl C M)
1. The set of good ternidl C M, is defined by:

e If x € Var andn € N thenz” € M.
o If M, N € M, M o N, anddeg(M) < deg(N) thenM N € M.
o If M € Mandz" € fv(M) then\z".M € M.

Note that a subterm o¥/ € M is also inM.
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2. For eacln € N, we letM" = M N M3

Lemma2.2. 1. (M € Mandz" € fv(M)) iff Az".M € M.
2. (]\417 My € M, My ¢ My anddeg(Ml) < deg(Mg)) iff MiMy e M.

Now, we give the syntax oA“~. Note that inMs, an applicationM N is only allowed when
deg(M) = deg(N). This restriction did not exist il I (in M>'s definition). Furthermore, we only
allow abstractions of the form:”. M in \*¥ whenL = deg(M) (a similar restriction holds inI™ since
it is a variant of the\I-calculus). The elegance aff" is the ability to give the syntax of good terms,
which is not obvious in\“v,

Definition 2.5. (The set of termsM3)
The set of terms\13, the set of free variables (1) and degreeleg(M) of M € Mj are defined by
simultaneous induction:

e If x € VarandL € Ly thenz? € M3, fv(xl) = {2F}, anddeg(z) = L.

o If M/N € Ms, deg(M) < deg(N), andM o N (see Def. 2.2) thed/N € M3, fv(MN) =
fv(M) Ufv(N) anddeg(MN) = deg(M).

o If z € Var, M € M3, and > deg(M) then\z?. M € Mg, fv(\zt. M) = fv(M) \ {z'} and
deg(Azl. M) = deg(M).

Let iz € IVars := z”. Note that each subterm 8f € Ms5 is also inM5. Closed terms are defined as
usual: letclosed(M) be true iff M is closed, i.e., iffv(M) = @.

In our systems, expansions change the degree of a term. fdteeree define functions to increase
and decrease indexes in terms (see Def. 2.6 and Def. 2.7¢ tNat both the increasing and the de-
creasing functions are well behaved operations with rédpeddl that matters (free variables, reduction,
joinability, substitution, etc.).

Definition 2.6. 1. Foreach € N, let M5" = {M € M, | deg(M) > n} andM;" = M5" 1,

2. We definet (¢ My — My)and~ (€ M5° — My) as follows:

(;’L'n)+ = $n+1 (]\41]\42)Jr = ]\41+]\42Jr ()\IL'"]\4)+ = )\IL'nJrl.]\4Jr
(m")_ = gn~1 (MlMg)_ =M, "My~ ()\.CC”M)_ = gL M-

3. LetM C My. If VM € M. deg(M) > 0, we writedeg(M) > 0. Also:
(M)t ={M* | Mc M} If deg(M) >0, (M)~ ={M~ | M € M}

4. We defineM —" by induction ondeg(M) > n > 0. If n = 0thenM "™ = M and ifn > 0 then
M—(n+l) — (an)f.

Definition 2.7. Leti € NandM € Msj.
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1. Foreachl € Ly, let:
ML ={M € My | deg(M) = L} MY = {M e M3 | deg(M) = L}

2. We defineM/ * as follows:

(xF)tt = gl (M, M)t = MM Azl M) = \gt L Mt
3. If deg(M) =i :: L, we defineM ~* as follows:

(zt5)=i = g (M M)~ = M{ My Azt L MYt = Al M
4. LetM C Ms. Let(M)* = {M*" | M € M}.

Note that(M; N Mo) ™t = (M1)™ N (Mo) ™.

Definition 2.8. (Substitution, alpha conversion, compatibity, reduction)
e Let M, Ny,..., N, be terms of\I" (resp.\*Y) and 1y, ..., I, € N (resp.Ly). The simultaneous

substitutionM[gc{’1 = Ny,...,zln := N,] of N; for all free occurrences of:f in M, where

n

i €{1,...,n}, is defined as a partial substitution satisfying these c¢mmd:
— oM whereM = {M}U{N; | i€ {1,...,n}}.
- Vie{l,...,n}. deg(N;) = ;2.
We sometimes writd/[z1' := Ny, ...zl := N,]asM|[(x} := N;)1<i<n] (or simply M[(z} :=
e In A\IN (resp.\“1), we take terms modula-conversiongiven by: \z! .M = \y!.(M[z! := y!])
wherevI’. y!" & fv(M) (wherel, I’ € N (resp.Ly)).
e Leti € {1,2,3}. We say that a relation aM; is compatibleiff for all M, N, P € M;:

— (iabs): If M rel N andA\z!. M, \z!.N € M, then(\z!.M) rel (A\z!.N).
— (iappy): If M rel N andMP, NP € M; thenMP rel NP.
— (iapp2): If M rel N,andPM, PN € M, thenPM rel PN.

e Leti € {1,2,3}. The reduction relatior+z on M; is defined as the least compatible relation
closed under the rulg\z’.M)N —5 M[z! := N]if deg(N) = I.

e Leti € {1,2,3}. The reduction relation, on M, is defined as the least compatible relation
closed under the rulexz! . Ma! —, M if 27 & fv(M).

o Leti € {1,2,3}. The weak head reductior;, on M; is defined as the least relation closed by
rule (iapp2) presented above and also by the following rulgz!.M)N —;, M[z! := N] if
deg(N) = 1I.

2We can prove the following lemma: i = {M} U {N; | j € {1,...,n}} then we have {M andVj ¢
{1,...,n}. deg(N;) = L;) iff M[z]* := N1,...,zl := N, ] € M; wherei € {1,2,3}.
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o Let —gp=—rg U —>.

e For a reduction relatior+,, we denote by-* the reflexive (w.r.t.M;) and transitive closure of
—,. We denote by~, the equivalence relation induced by, (Symmetric closure).

The next theorem states that reductions do not introducefre@wariables and preserve the degree
of aterm.

Theorem 2.1. Leti € {1,2,3}, M € M;, andr € {3, Bn, h}.
1. If M —7 N thenfv(NN) = fv(M) anddeg(M) = deg(IV).
2. Ifi =3andM — N thenfv(N) C fv(M) anddeg(M) = deg(N).

3. Ifi#3andM —} N thenfv(M) = fv(N), deg(M) = deg(NN), andM € M iff N € M.

Proof:
1. By induction onM —} N. 2. Caser = 3, by induction on}/ —5 N. Caser = fn, by thes andn
cases. Case = h, by theg case. 3. By induction o/ —5 N. O

Normal forms are defined as usual.

Definition 2.9. (Normal forms)
Leti € {1,2,3} andr € {3, On, h}.

o M € M, isinr-normal form if there is nav € M, such thatd/ —, N.
e M € M;isr-normalising if there is aiv € M, such thatM —* N and N is in r-normal.
Finally, the indexed lambda calculi are confluent wga:t. 5n- andh-reductions:

Theorem 2.2. (Confluence)
Leti € {1,2,3}, M, My, My € M;, andr € {3, n, h}.

1. If M —* My andM —* M, then there isV/’ € M, such thatV; —* M’ and My —* M.

2. M, ~, M, iff there is atermM € M, such thatM; —* M andMy —* M.

Proof:
We establish the confluence using the parallel reductiomadet Full details can be found in the ex-
panded version of this article [22]. O

2.2. The types of the indexed calculi

Let us start by defining type variables and expansion vagtabl

Definition 2.10. (Type variables and expansion variables)
We assume that, b range over a countably infinite set of type variablg¥ar, and thate ranges over a
countably infinite set of expansion variablespVar = {eg, e, ... }.
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With each expansion variable we associate a unique naturaber which is the subscript of the
expansion variable. Instead of explicitly naming the eletaén ExpVar, we could also have considered
a bijective function from expansion variables to naturainbers in order to associate a unique natural
number with each expansion variable. We have decided nob odor clarity reason. Our solution
avoids defining an extra function.

For AIY, we study two type systems (none of which has dheype). In the first, there are no
restrictions on where intersection types and expansioiahlas occur (see séfy,; defined below). In
the second, intersections and expansions cannot occwtldite the right of an arrow (see séty,
defined below).

Definition 2.11. (Types, good types and degree of a type for™)
e The type setTy, is defined as follows:

T,UV,W € Ty, = a|Ui=Uy | Uy NUy | eU
The type set3y, andITy, are defined as follows (note th&y, C ITy, C ITy,):

T e Ty, n= a|U-T
U,V,W € |Ty2 U1|_|U2|6U|T

e \We define a functioreg (€ ITy; — N) by (hencedeg is also defined ofiTy,):

deg(a) = 0 deg(U-T) = min(deg(U),deg(T))
deg(eU) =  deg(U)+1 deg(UNV) = min(deg(U),deg(V))

e We define the se&lTy which is the set of goodiTy, types as follow (this also defines the set of
goodITy, types:GITy N ITy,):

a € TyVar = a € GITy
U € GITy A e € ExpVar = eU € GITy
UTeGITy A deg(U)>deg(T) = U-TeGITy
UVeGTy A deg(U)=deg(V) = UNVeGlTy
WhenU € GITy, we sometimes say théat is good.
Letn < m. Let&;,.,,)U or €,U whereL = (iy, ..., i) denotee;, ...e;, U. Also, leté;q,.,,) ;U

denotee,, jy - .. euy, 5 U. We consider the application of an expansion variable tgpa U) to have
higher precedence thanwhich itself has higher precedence thanin all our type systems, we quotient
types by takingT to be commutative (i.el/; N Uy = Uy M Uy), associative (i.ell/; M (U M Us) =
(U1 MUy) M Us) and idempotent (i.ely MU = U), by assuming the distributivity of expansion variables
overri(i.e.,e(Uy MUsy) = eU; MelUs). We denotd/,, M ... MU, by N, U (Whenn < m).

The next lemma states when arrow, intersection and apiplicsabf expansion variables to types are
good.

Lemma2.3. 1. OnlTy, (hence onTy,), we have the following:
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(@) U, T € GITy anddeg(U) > deg(T)) iff U-T € GITy.
(b) U,V € GITy anddeg(U) = deg(V)) iff UMV € GITy.
(c) U € GITyiff eU € GITy.

2. OnlTy,, we have in addition the following:

(@) IfT € Ty, thendeg(T') = 0.

(b) If deg(U) = nthenU is of the formiZ, €j(1.,y ; Vi such thatn > 1and3i € {1,...,m}.V; €
Tys,.

(c) If U € GITy anddeg(U) = n thenU is of the formr, €.,y ;7: such thatn > 1 and
Vie{l,...,m}. T; € Ty, NGITy.

(d) U, T € GITy iff U-T € GITy (in ITy, andITys).

For \“v, we study a type system (with the universal type In this type system, in order to get
subject reduction and hence completeness, intersectimh®xpansions cannot occur directly to the
right of an arrow (seéTy; below). Note that the type sel$y; and Ty, defined below are far more
restricted than the type sets considered forthe-calculus and that we do not have the luxury of giving
a separate syntax for good types. Note also that the defigitidb degrees and types are simultaneous
(unlike for 1Ty, andTy, where types were defined without any reference to degrees).

Definition 2.12. (Types and degrees of types fox“")
o We define the two sets of typdy; andITy; such thaflTy; C ITy;, and a functiordeg (€ 1Ty; —
Ly) by simultaneous induction as follows:

If a € TyVar thena € Ty; anddeg(a) = ©.
If U € ITy; andT € Tys thenU—T € Ty; anddeg(U-T) = ©.
If L € Ly thenw® € ITy; anddeg(w’) = L.

If U1,U, € ITy3 and deg(Ul) = deg(Ug) thenU; MUy € |Ty3 and deg(U1 M UQ) =
deg(U;) = deg(Us).
— U € ITy; ande; € ExpVar thene;U € ITy; anddeg(e;U) = i :: deg(U).

Note thatdeg uses the subscript of expansion variables in order to keay wf the expansion
variables contributing to the degree of a type.

e We letT range ovefTy,, andU, V, W range ovelTy,. We quotient types further by having” as
aneutral (i.e.w” MU = U). We also assume that for al> 0 andL € Ly, e;w” = wL,

All our type systems use the following definition (of coursihin the corresponding calculus, with
the corresponding indices and types):

Definition 2.13. (Environments and typings)
e Letk € {1,2,3}. We define the three sets of type environmehntBnv,, TyEnv,, andTyEnv, as
follows: I', A € TyEnv,, = Vary — ITy,.. When writing environments, we sometimes write y
instead ofz — y. We sometimes writéz!! — Uy,... ol U,} asz? : Uy, ...,z : U, oras

n
I;

(x;" : U;)n. We sometimes writ¢) for the empty environment. If dj(dom(I';),dom(I'y)), we

(2

write 'y, 'y for 'y U Ts.
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e We say thaf'; andT', are joinable and writd&; o T's iff (V' € dom(T;). 22 € dom(I'y) =
L = D).

e We say thal is OK and writeok(I') iff Yo/ € dom(T"). deg(T'(z!)) = I.

e Letl'y =Ty wIf andTy = T, W I such thatdj(dom(T'}),dom(T'})), dom(T"}) = dom(T%),
andvz! € dom(I"}). deg(T}(z!)) = deg(T'y(x')). We denotel'; M I'y the type environment
{ol =T, (2T, (2!) | 27 € dom(I')) JuT¥UrY. Note thatdom (T'1MI's) = dom(T';)Udom(T3)
and that, on environments), is commutative, associative and idempotent.

e In AN (i.e., onTyEnv, and TyEnv,), we define the set of good type environments as follows:
GTyEnv = {I' | V2! € dom(T). T'(z!) € GITy}. If T = (2" : U;)m then letdeg(T) =
min(ni,...,n,,deg(Uh),...,deg(Uy)). Letel = {z"tlisel(2™) | 2® € dom(I')}. So
e(F1 M FQ) =el'y Mels.

e In )2 (i.e., onTyEnvy), if M € My andfv(M) = {z1*,... zL»} then letenv?, be the type
environment(zi : w”),. For alle; € ExpVar, lete,I’ = {a/*F 1 ¢e;I(z") | z¥ € dom(I)}.
Note thate(I'y MTy) = ey Mely. If T = (22 : U;), ands = {L | Vi € {1,...,n}. L <
L; N L < deg(U;)} thendeg(I") = L such thatl € sandvVL' € s. L' < L.

As we did for terms, we decrease the indexes of types andozmaints.

Definition 2.14. (Degree decreasing inI")
e If deg(U) > 0 then we inductively define the tydé— as follows:

(U1|_|U2)7 =U;-nNUy~ (6U)7 =U
If deg(U) > n then we inductively define the tygé—" as follows:
U70 -U Uf(n+1) —_ (Ufn)f

o If deg(I') > Othenletl' ™ = {z" 1 T(2")~ | 2" € dom(T)}.
If deg(I") > n then we inductively define the tyde " as follows:

r-o=r Ff(nJrl) —_ (an)fl

Definition 2.15. (Degree decreasing in“")
1. If deg(U) = LthenU ! is inductively defined as follows:

U2 =U (Ul M U2)7i::L’ _ Ul—i::L/ M UQ—i::L' (eiU)fi::L’ _ U*L’

We write U~ instead oft/ —(®).

2. IfT = (z¥ : U;),, anddeg(T") > L then by definitionvi € {1,...,m}. L = L :: I, A L <
deg(U;), and we defingd % = (2% : U 1),,. We writeI'~* instead off"~ (.

7
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Figure 1 Typing rules / Subtyping rules for; andto
Leti € {1,2}. Inky, U andT range ovelTy,. In 9, U ranges ovelTy, andT ranges only ovely,.

TeGITy deg(T)=n T € GITy M: T, (2":U)HT)

n . n . (ax) 0. 0. (ax) n . (Hl)

2"z T) T) 2’ {((a )2 T) Az M (T U-T)
M12<F1 l_lU—>T> M2<F2|_1U> F1<>F2 M<F}_ZU>
: (=€) e o (eXP)
M1M2 : <F1 I Fg }_i T> M <€F }_i €U>

M:<F1 |_1U1> M<F2|_1U2> (|_|> M<F}_2U> FFQUEF/}_QU/ )

M : (T NTy b Uy NUs) ' M (I U) =

The following relationC is defined ol Ty,, TyEnv,, andTyping,:

U EWy WUy C U3 Uz € GITy deg(U;) = deg(Usz)

gev e T, C 0, (tr) UnUs C Uy (M)
UyEWV UQEV2() U;CU ThCETh (=) Ui E U, (Cow)
UpynU; CTVinV, Ui=T1 C Uy-Ts eUy Cely =P

Ui CUz y" ¢ dom(l) = ULCU, T'hETY )
L,(y":U) ET, (y" : Up) ¢ T F Uy Clhat Uy Y

2.3. The type systems; and -, for \I" and -5 for \“v

In this section we introduce our three type systemfr : € {1, 2, 3}, our intersection type systems with
expansion variables. The systém uses thdTy, types and th&yEnv, type environments, and is for
AN, The systent, uses thd Ty, types and th@yEnv, type environments, and is foiZY. The system

I3 uses thd Ty, types and thdyEnv, type environments, and is foi“~. In -, types are not restricted
and subject reduction (SR) fails. ky, the syntax of types is restricted (sBg,'s definition), and in
order to guarantee SR for this type system (and hence coenplet later on), we introduce a subtyping
relation which allows intersection type elimination (whidoes not hold in the first type system).Hg,

the syntax of types is restricted further ($&g,’s definition) so that completeness holds with an arbitrary
number of expansion variables.

Definition 2.16. (The type systems)

Leti € {1,2,3}. The type syster; uses the sdily, of Def. 2.11 (fori € {1,2}) and 2.12 (fori = 3).
The typing rules of-; andr, are given on the left of Fig.%L In -, U andT range oveil Ty,, andI’
range ovefTyEnv,. In 4, U range ovetTy,, T range oveiTy,, andI’ range oveiTyEnv,. The typing
rules oft-3 are given on the left of Fig. 2. In both figures, the last clansé&es use of a subtyping relation
C which is defined oriTy, in Fig. 1 and onlTy; in Fig. 2. These subtyping relations are extended to
type environments and typings (defined below).

3The type systertt; is the smallest relation closed by the rules presented olethef Fig. 1 (and similarly foi-s).
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Figure 2 Typing rules / Subtyping rules forfs
U ranges ovelTy; andT Tys.

w
29 (29 : T) k3 T) () M : (env, I3 wdes(M)) )
M:(F,(xL:U)}—gT>( | M: (ks T) ngdom(r)( ,
— —
Ael M (T b3 U-T) ! el M (T 3 wl=T) !
M1 : <F1 Fg U*>T> M2 : <F2 Fg U> Fl <>F2 (_) ) M : <F }_3 U> (eXp)
MM, : (T1 NTy b5 T) £ M3 (e;T F3 e;U)

M:(TFsU)) M: (ks Us) o M:(TFsU) THsUCT b3 U’ ©
M : (k3 Uy 1 Us) ! M: (I s U) =

The following relationC is defined o Ty;, TyEnvs, andTypings.

U, C0, U, LC U, deg(U;) = deg(Us)

g ") U, C Uy (tr) Utnt o, (e
UCVi UV deg(Up) = deg(Us) () U, CU, TiCT 0
Ul M U2 E ‘/1 M ‘/2 U1*>T1 E U2*>T2
Ui CE Uy = Ui EUz y" ¢ dom(T) (o) UCU, THCIY4 )
€U1 E €U2 =P F,yL : U1 E F,yL : Ug = Fl }_3 U1 E Fg }_3 U2 =0

We define the three typing sefgping;, Typing,, andTypings as follows:® € Typing, :=T'F; U,
wherel’ € TyEnv; andU € ITy,.

Let Sorts = U3_, {Typing;, TyEnv;, ITy;} and let¥ range ovet)scsorss.
We say thal” is F;-legal if there existV/, U such thatM : (I" t; U).

Letj € {1,2}. LetGTyping={I'; U |I" € GTyEnv AU € GITy}. If & € GTyping then we say
that® is good. Leideg(I" ; U) = min(deg(T"), deg(U)).

If s={L| L =<deg(I')AL < deg(U)}thendeg(I' -3 U) = Lsuchthatl € sandvL' € s. L' < L.

To illustrate how our indexed type system works, we give angXe:

Example 2.1. Let L; = (3) < Ly = (3,2) =< L = (3,2,1) < Ly = (3,2,1,0) and leta,b,c,d €
TyVar. ConsiderM, M', U as follows:

M = \xl2 Ay (yPr (xP2 aubs Aol (uls (vF1ol1)))) € M3
M’ = Az? Myt (vt (22 ud ot (ud (vio?)))) € Mo
U = e3(ez(e1((egb—c)—=(ep(a M (a—b))—c))—d)—=(((ead—a) Mb)—a)) € 1Ty, N 1Ty,
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One can check that/ : (() 3 U) and M’ : (() 2 U). We simply give some steps in the derivation
of M : {() 3 U) (note that the derivation af/’ : (() ko U) only differs from the derivation of
M : {() k3 U) by replacing everywheries by -, and any list(ny, ..., ng) by k for anyk > 0):

o v22 : (v2 :al(a—b) 3 b)
o 009 (40 eq(aM (a—b)) F3 eh)

.’lL@

1 (u@ : egb—c 3 egb—c)

o u@ (WD) (u? : egb—c, v : eg(a M (a—b)) k3 ¢)

o MO 42wy (4@ : egb—c b3 eg(am (a—b))—c)

o M@ O 42wy : () k3 (egb—c)—(eo(a M (a—b))—c))

o Au \p(10) (D) (10410 - () k5 e ((egb—c)—=(eo(a M (a—b))—c)))

o 29 (22 : ex((eob=c)(o(a T (a=B))=))~d s o1((eob—c)—(eo(a M (a=b))—c))~d)
o 22 M M0 (D) (y(1.0)y(10))) + (39 : ey ((egb—c)—(eo(a M (a—b))—c))—d k3 d)
2@ DD Ap(210) 321 (p(2:1.0)(2:1.0)))

{2 1 ey(eq((eghb—c)—=(eg(aM (a—=b))—=c))—=d) b3 ead)

Y2 (2@ DD Ap210) 421 (p(2:1.0)4(21.0))))
{2 : ey(eq((egb—c)—(eo(a M (a—=b))—=c))—=d),y® : (ead—a) Mbl3 a)

)\y®.(y@(x(2)(/\u(Qvl).)\v(271*0).u(271)(v(2*170)v(2*170)))))
(D) : ey(eq((egb—c)—=(eo(aM (a—=b))—=c))—=d) k3 ((ead—a) M b)—a)

)\x(2) .)\y®.(y® (.Z‘(Q) ()\u(z’l) .)\U(Q,l,o) _u(2,1) (U(2’1’0)’l}(2’1’0)))))
:{() ks ez(e1((eob—c)=(eo(a M (a—b))—c))—d)~(((e2d—a) T b)—a))

Arl2 AyPr (ylr (oB2 (uls ol uls (vBaple))))

1 {() 3 e3(e2(e1((eob—c)—=(eo(a M (a=b))—c))=d)~(((e2d—a) Mb)—a)))

Let us now define our decreasing functions onThging,.

Definition 2.17. 1. If U € ITy, andI’ € TyEnv, such thatleg(I') > 0 anddeg(U) > 0 then we let
T U)" =T "y U

2. If U € ITy; andl" € TyEnv; such thatdeg(I") = L anddeg(U) = L then we let(T 3 U)~L =
Lk UL,

Next we show how ordering propagates to environments aatesetegrees:

Lemma2.4. 1. T CI',UC U, andz! € dom(T") thendom(T") = dom(I’) andT, (z! : U) C
I (zf . U").

2.TCTiff T = (2 : U),, TV = (2 : U), andVi € {1,...,n}. U; C UL
3. Letj e {2,3}.THUCTI' - U'iff I"CTandU C U".
4, IfU; C Us thendeg(Ul) = deg(Ug) andU; € GlTy<=> U, € GlTy.
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5. fI'{ C Ty thendeg(Fl) = deg(FQ)
6. Letj € {2,3}. The relationC is well defined onlTy; x ITy;, on TyEnv; x TyEnv,, and on
Typing; X Typing;.
7. 1fT'1,T'y € TyEnvy andl'y C I's thenI'; € GTyEnv < T’y € GTyEnv
Proof:
We prove 1. and 2. by induction on the derivatibric TV. We prove 3. by induction on the derivation
I'H; U C T U'. We prove 4. by induction on the derivatiéh T U,. We prove 5. by induction on

the derivation'; C I's. We prove 6. by induction on a subtyping derivation. We prévby induction
on the derivation of'; C I's. O

The next theorem states that typings are well defined, ththtwa typing, degrees are well behaved
and that we do not allow weakening.

Theorem 2.3. Letj € {1,2,3}. We have:

1. F; is well defined onM; x TyEnv, x ITy;.

2. LetM : (T'F; U).
(a) deg(M) = deg(U), ok(T"), anddom(T") = fv(M).
(b) If j # 3thenU € GITy, M € M, T" € GTyEnv, anddeg(T") > deg(M).
(c) If j = 3thendeg(I") = deg(U).
(d) If j = 2 anddeg(U) > kthenM —F : (IF |-, U™F),
(e) If j = 3 anddeg(U) = K thenM X . (1=K 3 U—K).

Proof:
We prove 1. and 2. by induction on the derivatibh: (I' -; U). O

Let us now present admissible typing (and subtyping) rules.

M . <F1 |_3 U1> M . <F2 |—3 U2>
Remark2.1. 1. Therule M :(I'yTykF3 U MNUy)

()

is admissible

Ue€GITy deg(U)=n
2. Therule 2" : ((z" : U)o U)

(ax)

is admissible

aX//
3. The rulex@eeV) : ((zdeeU) : ) 5 U) ( is admissible

4. The rulely T dee) () is admissible

Let us now present some results concerningutitgpe and joinability.

Lemma25. 1. If M:(I'k3U)thenl' C env,
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2. If dom(T") = fv(M) andok(I") thenM : (T -3 wdes(M)),
3. Ifie{1,2,3}, My : (I'y F; Up) and My = (I = Us) thenD'y o I'y < My © M.

Proof:

1. Letl' = ( "1 Uy), wherefv(M) = {z*,... 2L} by Theorem 2.3.2a. By Remark 2.1, ¢
{1,.. n} U; C wieU:), By Theorem 23. Za)k( ) and thereforeri € {1,...,n}. deg(U;) =
L;. FlnaIIy, by Lemma2.4.2 C envM.

2. Letl = (z : U;),,.. Then by hypothesefs( ) = {1, .. zlyandvi e {1 .,n}.deg(U;) =
L;. By Remark 2.1.4yi € {1,...,n}. U; C w%. By Lemma2 4.2 Cenvy, = (wLi whi),.
Since by rulgw), M : (env§, 3 weM)) we have by rulesC) and(C ), M : (I' b3 wdee(M)),

3. <) Letz € dom(I';) andx2 € dom(I's) then by Theorem 2.3.2a,* € fv(M;) andz? €
fv(Ms). BecauseM; o M,, thenl; = I, and thereford’; o I's. =) Let 2/t ¢ fv(M;) and
x2 € fv(Ms) then by Theorem 2.3.2a’* € dom(I';) andz’2 € dom(T';). Becausd'; Iy, then
I, = I, and therefore\f; ¢ M.

0
2.4. Subject reduction and expansion properties of our typsystems
2.4.1. Subject reduction and expansion properties for; and -

Now we list the generation lemmas foer andt (for proofs see the expanded version of this article [22]).

Lemma 2.6. (Generation fort-;)
1. Ifz": (' T)thenl = (2™ : T).

2. If Xa™. M : (' by T1-T) thenM : (T, 2™ : Ty 1 T3).

3. If MN : <F 1 T> anddeg(T) mthenl' =T NIy, T = |_|Z 1 ](1 m),i Tron>1, M : <F1 1
M1 €(1m),i (T =Ti)) and N = (Do by M1 €1.m) i T7)-

Lemma 2.7. (Generation fort-5)
1. If 2" : (' ko U) thenl’ = (2™ : V') whereV C U.

2. If \a®.M : (T 5 U) anddeg(U) = m thenU = 1M¥_,&}(1.m);(V;~T;) wherek > 1 and
Vi < {1, e ,k} M : <F,1’n : gj(lm),z% "2 éf](lm),ljw

3. If MN : (I by U) anddeg(U) = m thenU = M, &}(1.m) ;T Wherek > 1, T = I'; 1Ty,
M : <P1 Fo |_|Z 1 ](1 m), Z(UZ%E», andN : <F2 Fo Hf:lgj(l:m),iUi>'
We also show that nG-redexes are blocked in a typable term.
Remark 2.2. (Noj-redexes are blocked in typable terms)

Leti € {1,2} andM : (I" ; U). If (Az"™.M;)M; is a subterm of\/ thendeg(M>) = n and hence
()\wan)MQ -5 M1 [I‘n = MQ]
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Lemma 2.8. (Substitution fort5)
If M : (T2l :U Ry V), N: (Ao U)yandM o N thenM[z! := N]: (T A 5 V).

Proof:
By induction on the derivatiod : (I', 2! : U - V). O

Lemma 2.9. (Substitution and Subject3-reduction fails for 1)
Leta, b, c be different type variables. We have:

L (Aa2.2029) (4020) —o5 (5°2°)(5020).

2. 2920 : (29 : (a=c)Matky ¢).

3. (A2 (y°2%) : (40 : b=((a—c) Ma), 2’ : by c).

4. Itis not possible thaty"z%)(y°z°) : (° : b=((a—c) Ma),2% : by c).
Hence, the substitution and subjgkteduction lemmas fail folr-;.

Proof:
1., 2., and 3. are easy.

For 4., assuméy®zY)(y°2%) : (40 : b=((a—c) Ma),2° : b I ¢). By Lemma 2.6.3 twice, Theo-
rem 2.3 and Lemma 2.6.1:

o 4920 (40 b=((a—c)Ma), 2% : by M (T;—c)) andn > 1.
e 40 (40 b=((a—c)Ma) by M, T =Ti—c).
o M T/-Ti—c = b-((a—c)MNa).

Hence, for someé € {1,...,n}, b = T/ andT;—c = (a—c) Ma which is absurd. 0

Nevertheless, we show thatsubject reduction and expansion holdHsn This will be used in the
proof of completeness (more specifically in Lemma 3.6 whgkhe basis of the completeness Theo-
rem 3.1).

Lemma 2.10. (Subject reduction and expansion foks w.r.t. 3)
1. fM:(I't U)andM —5 N thenN : (I' b5 U).

2. If N: (T2 U)andM —5 N thenM : (I' 5 U).

2.4.2. Subject reduction and expansion properties foir 3

Now we list the generation lemmas fog (for proofs see the expanded version of this article [22]).

Lemma 2.11. (Generation fort3)
1. Ifzf . (T 3 U) thenl = (21 : V) andV C U.

2. If AxE.M : (T 5 U), 2F € fv(M) anddeg(U) = K thenU = wf orU = mt_,&x(V;~T;)
wherep > 1andvi € {1,...,p}. M : (T, al : 8xV; F3 8xT}).
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3. If Axl M : (T k3 U), 2% ¢ fv(M) anddeg(U) = K thenU = w® orU = Mt_,&x(V;~T;)
wherep > 1andVi € {1,...,p}. M : (I' b3 8xT;).

4. 1f Mal (T, (zV : U) -3 T) andal & fv(M), thenM : (T -3 U=T).

Proof:
1. By induction on the derivation” : (I' -3 U). 2. By induction on the derivatiohz”.M : (T 3 U).
3. Same proof as that of 2. 4. By induction on the derivafién” : (I, 2" : U 3 T). O

Lemma 2.12. (Substitution fort-3)
If M : (T2l U3 V),N:(AF3U)andM o N thenM [zl := N]: (T A3 V).

Proof:
By induction on the derivatiod/ : (T', 2% : U 3 V). O

Sincel-3 does not allow weakening, we need the next definition sincerveiterm is reduced, it may
lose some of its free variables and hence will need to be typadgmaller environment.

Definition 2.18. LetI'[, stand fors < I'. We writeI'[; instead ofl" [, (/).
Now we are ready to prove the main result of this section:

Theorem 2.4. (Subject reduction fort-3)
If M: ('3 U)andM —5, N thenV : (TCIn k3 U).

Proof:
By induction on the reduction/ —5, N. O

Corollary 2.1. 1. If M : (I't3 U) andM —% N thenN : (I'[y 3 U).
2. If M : (T F3 U)andM —* N thenN : (D 3 U).

The next lemma is needed for expansion.

Lemma 2.13. If M[z* := N]: (T' 3 U),deg(N) = L, z* € fv(M), andM o N then there exist a type
V and two type environments;, I's such thadeg(V) = L, M : (I'y,z" : V k3 U), N : (T'y 3 V),
andl’ =T'; M Is.

Proof:
By induction on the derivatiod/ [z* := N] : (T 3 U). O

Since more free variables might appear in thexpansion of a term, the next definition gives a
possible enlargement of an environment.

Definition 2.19. Letm > n, T = (zX : U;), and X = {z¥,... 2k}, We write T4 for 211 -
Ul,...,zkn Un,xflff cwhnr o plm I I dom(T) C fv(M), we write T+ instead of

I‘b]\fv(M).
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We are now ready to establish that subjéatxpansion holds if3 (Theorem. 2.5) and that subject
n-expansion fails (Lemma 2.14).

Theorem 2.5. (SubjectB-expansion holds int3)
If N:(['t3 U)andM —% N thenM : (Tt k3 U).

Proof:
By induction on the length of the derivatiol/ —7 N using the fact that ifv(P) C fv(Q) then
(T17)19 =T19. O

Corollary 2.2. If N : (T -3 U) andM —} N thenM : (T'tM 5 U).

Lemma 2.14. (Subjecty-expansion fails int-3)
Let a be a type variable and let# y. We have:

1. A2 Az2.y%2? —p Ny©@.y©.
2. 249 : {() b3 a—a).
3. Itis not possible that\y® . \z?.y?z? : {() I3 a—a). Hence, subject-expansion fails if-.

Proof:

1. and 2. are easy. For 3., assumg’ \x?.y%x? : (() F3 a—a). By Lemma 2.11.2Az%.y%z? :
{(y : a) F3 a). Again, by Lemma 2.11.23 = w® or there exists: > 1 such thata = M7, (U;~T;),
absurd. 0

3. Realisability semantics and their completeness

3.1. Realisability

Crucial to a realisability semantics is the notion of a satien set:

Definition 3.1. (Saturated sets)
Leti € {1,2,3} andM, M, My C M,;.

1. LetMy ~ My ={M € M; |VN € M. Mo N = MN € M}.
2. Letﬁlzﬁg iff VMEMl WMQ.HNEMLMON.

3. Forr € {B,8n,h}, 1etSAT" = {M C M; | (M - NAN € M)= M € M}. If M € SAT"
then we say thal/ is r-saturated.

Saturation is closed under intersection, lifting and asow
Lemma 3.1. Leti € {1,2,3},r € {B,n,h}, andM, My C M,;.
1. If My, M, arer-saturated sets theld; N M is r-saturated.

2. If My C M, isr-saturated thed/,* is r-saturated.
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3. If M; C M5 isr-saturated theﬂfi is r-saturated.

4. If M, is r-saturated thed/; ~~ M, is r-saturated.

5. If My, My C Mythen(My ~ My)* C Myt ~ Mo+,

6. If My, M5 C My then(M ~ M)+ C T, ~ My

7. LetMy, My C Mo. If Myt Myt thenM+ ~ Mot C (M~ Mo)™ .
8. LetMy, My C M. It Mt M, thenM | ~ M;" C (M ~ Ma)*.
9. Foreveryn € N, the sefM” is r-saturated.

The interpretations and meanings of types are crucial talegsadility semantics:

Definition 3.2. (Interpretations and meaning of types)
Let Var = Var; U Vary such thatdj(Vary, Vary) and Vary, Vary, are both countably infinite. Let €
{1,2,3}.

1. Letx € Var; andI an index. We define the following family of sets:
VARL = {M € M;|3Ny,...,N, € M. M =2'Ny...N,}.

2. InAIY, letr = Bandly = 0. In Ay, letr € {8, Bn, h} and Iy = ©.
(&) Anr;-interpretationz is a function inTyVar — IP’(M{O) such that for alb € TyVar:
Z(a) € SAT" Va € Var,. VAR C Z(a) In ATV, Z(a) € M°
(b) We extend’ to ITy, in case ofAI" and tol Ty, in case of\“" as follows:

INAIN andASv: (UL NUs) = Z(U) NI(Us)  Z(U-T) = Z(U) ~ I(T)
In ATN: Z(eU) =Z(U)*
In \&n: I(e;U) = Z(U) T I(wh) = ML

LetInterp” = {Z | T is ar;-interpretation}*.
(c) LetU € ITy;. We defingU],,, ther;-interpretation ofU as follows:
[U]M = {M € Mi | ClOSGd(M) A M € ﬂIGInterpTi I(U)}

Becausen is commutative, associative, idempotet/; N My)t = M;T N Myt in AN, (M N
M)t =M, nM;" in A%, andZ is well defined.

Type interpretations are saturated and interpretatiog®od types contain only good terms.

Lemma3.2. Letr € {5, 0n, h}. Leti € {1,2,3}.
1. (a) ForallU € ITy; andZ € Interp™, we haveZ(U) € SAT".

“We effectively define five interpretation sétserp®®, Interp”?, Interp®s, Interp®7s, andinterp”s
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(b) If deg(U) = L andZ € Interp™ thenVz € Var,. VARL C Z(U) € M.
(c) OnITy; (hence also onTy,), if U € GITy, deg(U) = n, andZ € Interp” thenVx €
Var;. 2™ € VARL C Z(U) C M".
2. Leti € {2,3}. If Z € Interp”* andU C V thenZ(U) C Z(V).

Proof:
la . By induction oV using Lemma 3.1. 1b. By induction di. 1c. By definition,z” € VAR]. We
proveVAR? C Z(U) C M" by induction onUU € GITy. 2. By induction of the derivatiot/ C V. O

Corollary 3.1. (Meanings of good types consist of good terms
OnITy, (hence also olily,), if U € GITy such thatdeg(U) = n then[U]z, C M".

Proof:
By Lemma 3.2.1c, for any interpretatidhe Interp®2, Z(U) C M™. O

Lemma 3.3. (Soundness dfq, -5, and F-3)
Leti € {1,2,3}, r € {B,6n,h}, Z € Interp™. If M : ((x

Z(U;), ando{M, Ni,..., N, } thenM [z} == N)n] € Z(U).

bk.\'

: Uj)n F; U>,V] S {1,...,n}. Nj S

~—

Proof:
I;

By induction on the derivatiod! : ((z;” : Uj)n ti U). 0

Corollary 3.2. Letr € {8,08n,h} andi € {1,2,3}. If M : (() F; U) thenM € [U],,.

Proof:
By Lemma 3.3,M € Z(U) for anyZ € Interp"’. By Theorem 2.3fv()M) = dom(()) = @ and hence
M is closed. Thereforey/ € [U],,. 0

Lemma 3.4. (The meaning of types is closed under type operatis)
Letr € {8, 8n,h} andj € {1,2,3}. The following hold:

1. [e;U]y, = (U]} and if j # 3 then[eU],, = [U],,*.

J

. [Unvl, = [0,

J

2 N[V,

3. fU-T € ITyg thenVZ € Interp™. Z(U)  Z(T).
4. If U=T € GITy thenVZ € Interp?. Z(U) 1 Z(T).
5

. OnlTy, only (sinceeU—eT ¢ ITy,), we have: itU—~T € GITy then[e(U-T)]s, = [eU—eTs,.

Proof:
1. and 2. are easy.

3. Letdeg(U) = L, M € Z(U) ~ Z(T) andx € Var; such thatvK. 2% ¢ fv(M), henceM o z*
and by Lemma 3.2:F € Z(U).
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4. Letdeg(U) = nandM € Z(U) ~ Z(T). Takex € Vary such thatvp. 2P ¢ fv(M). Hence,
M ¢ 2" By Lemma 2.3 € GITy and by Lemma 3.2 € Z(U).

5. SinceU-T € GITy then, by Lemma 2.3[,T € GITy anddeg(U) > deg(T). Again by
Lemma 2.3eU,eT € GITy, deg(eU) > deg(eT) andeU—eT € GITy. Hence by 4.Z(U)™
Z(T)*. Thus, by Lemma 3.1.5 and Lemma 3.2Z, € Interp®2. Z(e(U~T)) = Z(eU—eT).

O

Let us now put the realisability semantics in use.

Example 3.1. Let a andb be two distinct type variables ifiyVar. We define:
e idy = a—aandid; = eq(idp).
e d=(all(a—b))—b.
e naty = (a—~a)—(a—a), nat; = ej(naty), andnat(, = (eja—a)—(eja—a).

Moreover, if M, N are terms ana € N, we defing(M)™ N by induction om as follows: (M)°N = N
and(M)"™ N = M((M)™N).
We now illustrate our realisability semantics by providihg meaning of the types defined above:

1. [(anb)=alg, = {M e M° | M —% \y%4°}.

2. Itis not possible thaty.y° : () 1 (aMb)—a).

3. 200 () 2 (alb)—a).

4. fidolg, = {M € M | closed(M) A M —% Xy?.y°}.

5. fidi]g, = {M € M | closed(M) A M —% Ay .y D},

6. [dlg, = {M € Mg | closed(M) A M —% My®.y?y?}.

7. [natglp, = {M € M | closed(M)A(M —5 Af@.fOV(n > 1AM —% Af€ Xy?.(f€)"y?))}.

8. [nati]g, = {M € MY | closed(M)A(M —%5 AfM.fOV(n > 1AM —% AFDAz®. (FD)yW)) ),

9. [natylg, = {M € MJ | closed(M) A (M =5 Af2.fOV M =5 Af2 Ay foy W)},

3.2. Completeness challenges ix/™

In this document we consider two realisability semantidypés involving E-variables. These semantics
are based on a hierarchy of types and terms. Considering kg&nsions can introduce new substitu-
tions, new expansions and an unbound number of new variéllss variables and E-variables), it was
decided to use a hierarchy on types and terms to give meattrgggansions to represent the encapsu-
lation of types by E-variables. An obvious (and naive) applois to label types and terms with natural
numbers. This is the hierarchy we used\iii'. When assigning meanings to types, we ensured that each
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use of an E-variable in a typing simply changes the indexégak and terms in the typing and that each
E-variable acted as a kind of capsule that isolates partsednalysed-term in a typing. This captured
the intuition behind E-variables. However, there are tvaués w.r.t. this indexing: it imposes that the
typew should have all possible indexes (which is impossilaled hence we eliminated from the type
systems forMs) and it implies that the realisability semantics can onlycbeplete when a single E-
variable is used (as we will see in this section). In ordemtdanstand the challenges of the semantics of
E-variables withv and the idea behind the hierarchy, we first studied two reptative intersection type
systems for the\I-calculus. The restriction td (where in every \z. M) the variabler must occur free

in M) was motivated by not supporting thetype while preserving the intuitive indexes made of single
natural numbers. Fdfq, the first of these type systems, we showed that subject tieduand hence
completeness do not hold.

3.2.1. Completeness for fails

Remark 3.1. (Failure of completeness fot-;)

Items 1., 2., and 3. of Example 3.1 show that we can not havengpleteness result (a converse of the
soundness Lemma 3.3 for closed terms)Hfor To type the term\y°./° by the type(a M b)—a, we need
an elimination rule for1 which we do not have ifr;.

Note that failure of completeness for is related to the failure of its subject reduction. So, onghi
think that since-,, the second type system faf, has subject reduction, its semantics is complete. This
is not entirely true.

3.2.2. Completeness for- fails with more than one E-variable

Remark 3.2. (Failure of completeness fok-, if more than one E-variable are used)
Let a be a type variables; ande, be two distinct expansion variable, ansgt] = (e;a—a)—(esa—a).
Then:

1. AfO.f9 € [nat]]s,.
2. itis not possible that f.f° : (() o nat})).

HenceAfC.f0 € [nat]]s, but Af.f0 is not typable bynat] and we do not have completeness in the
presence of more than one expansion variable.

However, we will see that we have completeness-fpif only one expansion variable is used.

3.2.3. Completeness for5 with only one E-variable

The problem shown in remark 3.2 comes from the fact that thksebility semantics designed fonp
identifies all expansion variables. In order to give a congpless theorem far, we will, in what
follows, restrict our system to only one expansion varialiighe rest of this section, we assume that the
setExpVar contains only one expansion variaklg

SLet us assume that that our type language contains ttype annotated with integers, i.e., of the fowfi, then we would
neede;w™ = w" ! andesw™ = W™, and finally we would have;w™ = esw™.
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The need of one single expansion variable is clear in iteriZemma 3.5 which would fail if we use
more than one expansion variable. For example; i e; then(eja)™ = a = (eza)™ buteja # esa.
This lemma is crucial for the rest of this section and henaingle expansion variable is also crucial.

Lemma 3.5. LetU,V € ITy, anddeg(U) = deg(V') > 0.
1. eeU =U.
2. fU~ =V~ thenU =V.

Proof:
1. is by induction orU. 2. goes as follows: i/ = = V™ thene; U~ =e;V-and by 1.U = V. O

Despite the difference in the number of considered expangwiables in the completeness proof
presented in the current section and the one of Sec. 3.3,pottis share some similarities. We still
write these two proofs independently to illustrate the radthnd especially since the proof in the cur-
rent section is far simpler. Furthermore, in the currentiseonve only show the completeness of our
semantics w.r.t3-reduction.

The first step of the proof is to dividgy™ | y € Vary} into disjoint subset amongst types of oraer

Definition 3.3. Let U € ITy,. We define the set of variabld3Vary by induction ondeg(U). If
deg(U) = 0thenDVary is an infinite se{y® | y € Vary} such thatif/ # V anddeg(U) = deg(V) = 0
thendj(DVar, DVary). If deg(U) = n + 1 thenDVary = {y"*! | y™ € DVary-}.

Our partition ofVar, allows useful infinite sets containing type environments thill play a crucial
role in one particular type interpretation. These sets amd@ments are given in the next definition.

Definition 3.4. e Let IPreEnv"” = {(y",U) | U € ITy, A deg(U) = n A y" € DVary} and
BPreEnv" = J,,,, IPreEnv™ (where “I” stands for “index” and “B” stands for “bound”). Ne
thatIPreEnv™ andBPreEnv™ are not type environments because they are not functions.

o If M € MyandU € ITy, then we writeM : (BPreEnv" -5 U) iff there is a type environment
I' C BPreEnv" whereM : (I' b5 U).

Now, for everyn, we define the set of the good terms of orderhich contain some free variahté
wherez € Var; and: > n.

Definition 3.5. LetOPEN™ = {M € M" | z* € fv(M) Az € Var; Ai > n}.

Obviously, ifz € Var; thenVAR? C OPEN".
Here is the cruciab,-interpretation for the proof of completeness:

Definition 3.6. LetI be thes,-interpretation defined as follows: for all type variable§(a) = OPEN’U
{M € MY | M: (BPreEnv® -5 a)}.

The functionl is indeed a3;-interpretation and the interpretation of a type of orderontains the
good terms of orden which are typable in the special environments which aresparthe infinite sets
of definition 3.4:
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Lemma 3.6. 1. Iis apq-interpretation, i.e., for al. € TyVar, I(a) is f-saturated andfz € Vary,
VAR! C I(a) C MO.

2. IfU € ITy,NGITy anddeg(U) = nthenl(U) = OPEN"U{M € M" | M : (BPreEnv" -5 U)}.

Proof:
We prove 1. by first showing thd{a) is saturated: ifA/ —5 N thenif N € OPENY we prove that

M € OPEN® and if N € {M € MY | M : (BPreEn\® I, a)} thenM € {M € MY | M :
(BPreEnv® 5 a)}. We then show/z € Var;. VAR? C I(a) C M. We prove 2. by induction on
U € GITy. 0

I'is used to prove completeness (for the proof see the expamusidn of this article [22])

Theorem 3.1. (Completeness)
LetU € ITy, N GITy such thateg(U) = n. The following hold:

1. [Ulg, ={M e M" | M : {() -2 U)}.
2. [U]g, is stable by reduction: i/ € [U]g, andM —% N thenN € [Ulg,.

3. [U]g, is stable by expansion: iV € [Ul]g, andM —% N thenM € [U]g,.

Proof:
The first item follows by Lemmas 3.6 and 3.3. We obtain the sddtem using subject reduction and
the third one using subject expansion. O

3.3. Completeness fop“r

Having understood the challenges of E-variables and tHewtly of representing the type using
natural numbers as indices for the hierarchy, we moved t@tbsentation of indices as sequences of
natural numbers and we provided our third type systgne developed a realisability semantics where
we allow the full \-calculus (i.e., where K-redexes are allowed) indexed \ists of natural numbers,
an arbitrary (possibly infinite) number of expansion vaeatand wherev is present, and we showed its
soundness. Now, we show its completeness.

We need the following partition of the set of indexed varst{ly” | y € Vary}.

Definition 3.7. o LetITyl = {U € ITy; | deg(U) = L} andVar® = {2l | = € Vary}.
o We inductively define, for every/ € ITy;, a set of variable®Var;; as follows:
— If deg(U) = @ then:
x DVary is an infinite set of indexed variables of degree

« If U # V anddeg(U) = deg(V') = @ thendj(DVary, DVary).
* UUelTy? DVary = Var®.

— If deg(U) = i :: LthenDVary = {y% | y* € DVary—i}.
Therefore, ifdeg(U) = L thenDVary = {y* | y© € DVary-.}.
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Let us now provide some simple results concerningDker;; sets:

Lemma3.7. 1. Ifdeg(U) = L,deg(V) = L,andU~" = V—L thenU = V.
2. If deg(U) = L thenDVary is an infinite subset ofar”.
3. If U # V anddeg(U) = deg(V') = L thendj(DVary, DVary).
4. UUGlTyg DVary = Vark.
5. If y* € DVary theny®:L € DVar,, .

6. If y:L' € DVary theny® € DVar,—..
Proof:
1. goes as follows: if. = (n;),, then we havel = e,, ...e,, U andV = e, ...e,, V’; then

UL =0Vt =V"andU’ = V/; thusU = V. 2., 3. and 4. are by induction dnand using 1. We
obtain 5. becausge;U)~* = U. 6. is by definition. O

The setVar,; as defined above allows us to give in the next definition udefidite sets containing
type environments that will play a crucial role in one parie type interpretation.

Definition 3.8. e Let L € Ly. We denotdPreEnv® = {(y*,U) | U € ITy} A y* € DVary} and
BPreEnv" = (U, 1, IPreEnv’*. Note thatlPreEnv" and BPreEnv” are not type environments
because they are not functions.

o LetL € L, M € M3 andU € ITy;, we write:

— M : (BPreEnv® I3 U) iff there exists a type environmeiit C BPreEnv” such thatM :
(T k5 U).

— M : (BPreEnv" b5 U) iff M —% N andN : (BPreEnv" -3 U).
Let us now provide some results concerning BireEnv’ sets:

Lemma3.8. 1. If ' C BPreEnvl thenok(T).
2. If T C BPreEnv” thene,I’ C BPreEnvi L.
3. If I' C BPreEnv*L thenl'~¢ C BPreEnv’.

4. If 'y C BPreEnv?, I'y C BPreEnv®, andL < K thenl'; M Ty C BPreEnv’.

Proof:

1. is by definition. 2. and 3. are by Lemma 3.7. 4. First, by'10T"; is well defined. AlsoBPreEnv
BPreEnvl. Let (I'y MTy)(xX) = U, MUy wherel'y (zX) = Uy andTy(z2) = Us, thendeg(U7)
deg(Us) = L' andz® e DVary, NDVary,. Hence, by Lemma 3.7.8); = Uy andl'; My =T U
BPreEnv’.

oin N



1028 Kamareddine, Nour, Rahli, Wells / semantics of expansioiabkes

For everyL € Ly, we define the set of terms of degrkavhich contain some free variabté where
z € Varp andK > L.

Definition 3.9. For everyL € Ly, let OPEN® = {M € M} | 2K € fv(M) A2z € Vary AK = L} It
is easy to see that, for evefyc Ly andz € Vary, VARZ C OPEN”.

Let us now provide some results on tB@EN’ sets:

Lemma3.9. 1. (OPEN%)*™ = OPEN®L,
2. If y € Vary and My € OPEN® thenM € OPENT.
3. If M € OPENL, M o N,andL < K = deg(N) thenM N € OPENZ,

4. lfdeg(M)=L,L <K, MoN,andN € OPEN® thenM N € OPENZ.

Proof:
Easy using Def. 3.9. O

The crucial interpretatiofi (the three interpretatioris;,,, 13, andl;, for our three reduction relations)
used in the completeness proof is given as follows:

Definition 3.10. 1. Letlg, be thejns-interpretation defined by: for all type variablesls, (a) =
OPEN? U {M € MY | M : (BPreEnv® I3 a)}.

2. LetIs be thepss-interpretation defined by: for all type variablesIz(a) = OPEN? U {M €
MS | M : (BPreEnv® I3 a)}.

3. LetI};, be thehs-interpretation defined by: for all type variablesl;(a) = OPEN? U {M €
MS | M : (BPreEnv® k3 a)}.

The next crucial lemma shows thia{the three functiondg,, I3, andl}) is an interpretation and
that the interpretation of a type of ordércontains terms of ordek which are typable in these special
environments which are parts of the infinite sets of Def. 3.8.

Lemma 3.10. Letr € {fn, 3, h} andr’ € {5, h}.
1. If I € Interp” anda € TyVar thenl,.(a) € SAT" andVz € Vary. VAR? C I,.(a).
2. If U € ITy; anddeg(U) = L thenlg, (U) = OPEN* U {M € M¥ | M : (BPreEnv™ -5 U)}.
3. If U € ITy; anddeg(U) = L thenll.(U) = OPENL U {M € M% | M : (BPreEnvl 3 U)}.

Proof:

We prove the first item by first showing thBt(a) is saturated: if\/ —* N then if N € OPEN® we

prove thatd € OPEN? and if N € {M € M$ | M : (BPreEnv® 5 a)} thenM € {M € MY |

M : (BPreEnv® % a)}. We then show that for alt € Vary, VAR? C OPEN? C I,.(a). We prove the
second and third items by induction 6h O
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Now, we use this crucidl to establish completeness of our semantics.

Theorem 3.2. (Completeness ofs)
LetU € ITy; such thadeg(U) = L.

1. [Ulgys = {M € M¥ | closed(M) A M —% N AN :(() 3 U)}.
2. [Ulg, = [Ulny ={M € M | M : () b3 U)}.
3. [Ulay, is stable by reduction: iM € [U]g,, andM —g, N thenN € [Ulg,,.

Proof:

1. LetM € [Ulg,,. ThenM is closed andV € I, (U). By Lemma 3.10.2M € OPEN* U {M €
ML | M : (BPreEnvl % U)}. SinceM is closed,M ¢ OPEN”. Hence,M € {M € M¥ |
M : (BPreEnv" +3 U)} and so,M —% N andN : (I' k3 U) wherel' C BPreEnv". By
Theorem 2.1.2V is closed and, by Lemma 2.3.2,: (() 3 U).

Conversely, takeV/ closed such thal/ —5 N andN : (() k3 U). LetT € Interp®. By

Lemma 3.3,N € Z(U). By Lemma 3.2.1Z(U) is pn-saturated. Hencel/ € Z(U). Thus
M e [U]5773'

2. LetM € [Ulg,. ThenM is closed andV € T3(U). By Lemma 3.10.3M € OPEN" U {M ¢
ML | M : (BPreEnvl -3 U)}. SinceM is closed,M ¢ OPEN”. Hence,M € {M € M¥ |
M : (BPreEnvl k3 U)} and so,M : (I' k3 U) whereI' C BPreEnvl. By Lemma 2.3.2a,
N :{()F3U).

Conversely, také// such that) : (() 3 U). By Lemma 2.3.2a)/ is closed. Lefl € Interp™.
By Lemma3.3M € Z(U). ThusM € [U],.

It is easy to see that/|z, = [U]p,.

3. LetM € [Ulgy, andM —5, N. By 1., M is closed,M —3 P, andP : (() b3 U). By
confluence Theorem 2.2, there(@ssuch thatP —»};n Q and N —>2§n (). By subject reduction
Theorem 2.4¢) : (() 3 U). By Theorem 2.1.2)N is closed and, by 1V € [U]gy,.

O

4. Conclusion and future work

Expansion may be viewed to work like a multi-layered simutaus substitution. Moreover, expansion
is a crucial part of a procedure for calculating principglibgs and helps support compositional type in-
ference. Because the early definitions of expansion wergliceaed, expansion variables (E-variables)
were introduced to simplify and mechanize expansion. Theddithis document is to give a complete
semantics for intersection type systems with expansioiaiias.

We studied first the.7N-calculus, an indexed version of th@-calculus. This indexed version was
typed using first a basic intersection type system with egjpanvariables but without an intersection
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elimination rule, and then using an intersection type systéth expansion variables and an elimination
rule.

We gave a realisability semantics for both type systems stgpthat the first type system is not
complete in the sense that there are types whose semantiostise set of\/"-terms having this type.
In particular, we showed thaty®./° is in the semantics afa 1 b)—a but that it is not possible to give
Ay?.y0 the type(a M b)—a in the type systenir; (see Example 3.1 in Ch. 3.1). The main reason for
the failure of completeness in the first system is associaiéit the failure of the subject reduction
property for this first type system. Hence, we moved to thersgsystem which we showed to have
the desirable properties of subject reduction and exparaid strong normalisation. However, for this
second system, we showed again that completeness failsui&more than one expansion variable but
that completeness succeeds if we restrict the system t@ke €rpansion variable.

In order to overcome the problems of completeness, we clangerealisability semantics from
one which uses natural numbers as indices to one that utsesflisatural numbers as indices. The new
semantics is more complex and we lose the elegance of thée#sécially in being able to define the
good terms and good types). However, we consider a third syptem for this new indexed calculus
and we show that is has all the desirable properties of a tygters and it handles all of the-calculus
(not simply theAl-calculus). We also show that this second semantics is aimpthen any number
(including infinite) of expansion variables is used w.rur ¢hird type system. As far as we know, our
work constitutes the first study of a realisability semant€intersection type systems with E-variables
and of the difficulties involved.

Note that a restricted version (restricted to normalisquk$), which we callRCDV, of the well
known CDV intersection type system, both systems introduced by CGdpepani and Venneri [7, 8] and
recalled by Van Bakel [1], can be embedded in our type systemwithout making use of expansion
variables (a more detailed remark can be found in the exphweision of this article [22]). We can
then restrict the range of our interpretations (see Dej.fBoen M to the “space of meaningMs (see
Def. 2.7) which is then the only necessary set because eparariables are not used and therefore they
do not allow one to change the index of terms. Unfortunatedydo not believe that it would be possible
to embedRCDV in our system such that we would make use of the expansioablas “as much as
possible” (everywhere where an expansion might be needeaf).example, ifAf : (" 3 Uy 1 Us)
is derivable fromM : (' 3 U;) and M : (' 3 Us) by the intersection introduction rule and we
apply the expansion introduction rule to each of the brasaighe derivation then we obtain the two
following typing judgementsM ™ : (e;T" -3 e;U) and M7 : (e;T" 5 e;U). If we use two different
expansion variableg € j) then, given these two new typing judgements, we cannothesitersection
introduction rule because;U M e;U is not alTy; type deg(e;U) = i :: deg(U) # j :: deg(U) =
deg(e;U)). This might be overcome by considering trees instead tsfdis indices in our semantics. We
let the investigation of such a system to future work.

In the present document we are not interested in a denashs@mantics of the presented calculus.
We are neither interested in an extensiokahodel interpreting the terms of the untypgetalculus.
Instead, we are interested in building a realisability setna by defining sets of realisers (programs
satisfying the requirements of some specification) of typie believe such a model would help high-
lighting the relation between terms of the untypedalculus and types involving expansion variables
w.r.t. a type system. Moreover, interpreting types in a rhbedps understanding the meaning of types

5Normalised types are types strongly related to normalesébpable) terms.
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(w.r.t. the model) which are defined as purely syntactic foamd are clearly used as meaningful expres-
sions. For example, the integer type (whatever its notasipis always used as the type of each integer.
An arrow type expresses functionality. In that way, modaisdal om\-models have been built for inter-
section type systems [16, 3, 10]. In these models, intéosettpes were interpreted by set-theoretical
intersections of meanings. Even though E-variables hage lm¢roduced to give a simple formalisation
of the expansion mechanism, i.e., as syntactic objectsyavimterested in the meaning of such syntactic
objects. We are particularly interested in answering a rarobguestions such as:

1. Can we find a second order function, whose range is the setasfns, and which interprets types
involving any kind of expansions (any expansion term andusitexpansion variables)?

2. How can we characterise the realisers of a type involvkpgesion terms?

3. How can the relation between terms and types involvinguegion terms be described w.r.t. a type
system?

4. How can we extend models such as the one given in KamaeeddithNour [21] to a type system
with expansion?

These questions have not yet been answered. We leave trestigation for future work.
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