
Aneris: A Diversified and

Correct-by-Construction Broadcast Service

Vincent Rahli, Nicolas Schiper, Robbert Van Renesse,
Mark Bickford, and Robert L. Constable

rahli@cs.cornell.edu
www.nuprl.org/Publications

October 30, 2012

Vincent Rahli Aneris October 30, 2012 1/26

Table of contents

Goals

Aneris

Diversity

From specifications to provably correct code

Conclusion

Vincent Rahli Aneris October 30, 2012 2/26

Goals

Long term goal: Platform to develop provably correct
programs.

Problem: Distributed programs are hard to implement,
even more so if they have to be fault-tolerant.

Goal: Build Aneris: a synthesized and verified ordered
broadcast service with diversity.

Vincent Rahli Aneris October 30, 2012 3/26

Table of Contents

Goals

Aneris

Diversity

From specifications to provably correct code

Conclusion

Vincent Rahli Aneris October 30, 2012 4/26

Aneris

A synthesized and verified ordered broadcast service
with diversity.

An ordered broadcast service?

{ A fault-tolerant service using state machine replication.

{ The service can still be used even when machines crash (up
to a certain number of failures).

{ The service receives requests from clients and ensures that
they will be delivered by the replicas in the same order.

{ Ordered delivery is implemented using consensus on the ith

command, and this for every i .

Vincent Rahli Aneris October 30, 2012 5/26

Aneris

A synthesized and verified ordered broadcast service
with diversity.

An ordered broadcast service?

{ Each replica fills a sequence of slots with requests from
clients.

{ Once a replica has filled a slot s with a request r , it
delivers a message (r , s) to the clients.

Aneris ensures:

(1) validity: each delivery is initiated by a request.

(2) uniqueness: a replica delivers a given message at most
once.

Vincent Rahli Aneris October 30, 2012 6/26

Aneris
A synthesized and verified ordered broadcast service
with diversity.

An ordered broadcast service?

(3) agreement: for any slot s, if (r1, s) and (r2, s) get
delivered then r1 = r2.

(4) termination: if a replica never crashes, a request r
eventually results in a delivery (r , s).

(5) relay: if a replica delivers (r , s), then each replica that
never crashes eventually delivers (r , s).

(6) gap-free: if a replica delivers (r , s > 0) then it has
previously delivered (r ′, s − 1).

Vincent Rahli Aneris October 30, 2012 7/26

Aneris

A synthesized and verified ordered broadcast service
with diversity.

Synthesis?

{ Automatic generation of “code” from “constructive”
specifications.

{ Easier to maintain, modify, and reason about (reasoning is
done at the specification level).

Vincent Rahli Aneris October 30, 2012 8/26

Aneris

A synthesized and verified ordered broadcast service
with diversity.

Verified?

{ Proofs that the specification is correct (w.r.t. some criteria)
using a proof assistant (Nuprl [CAB+86, Kre02, ABC+06]).

{ Proof that the synthesized code satisfies the specification.

{ Some automation.

{ One gets provably correct code (correct-by-construction).

Vincent Rahli Aneris October 30, 2012 9/26

Aneris
A synthesized and verified ordered broadcast service
with diversity.

Diversity?

{ Diversified for failure independence.

{ If all the replicas were to run the same code they would
share the same vulnerabilities.
All the replicas could crash because of a single bug.

{ Diversity in space: the replicas run different code.

{ Still, the replicas may have vulnerabilities that adversaries
may try to exploit.

{ Diversity in time: the code changes over time.

Vincent Rahli Aneris October 30, 2012 10/26

Table of Contents

Goals

Aneris

Diversity

From specifications to provably correct code

Conclusion

Vincent Rahli Aneris October 30, 2012 11/26

Diversity

Diversity in space: data structures, evaluation. . .

Diversity in time: currently Aneris uses 2 consensus
protocols (f is the number of tolerated failures):

◮ 2/3 consensus:
◮ 3f + 1 replicas (3f + 1 machines)
◮ At best a single message round

◮ Paxos Synod:
◮ 2f + 1 acceptors and f + 1 leaders (at least 2f + 1

machines)
◮ At best 2 message rounds

Vincent Rahli Aneris October 30, 2012 12/26

Diversity

An attack scenario:

Vincent Rahli Aneris October 30, 2012 13/26

Table of Contents

Goals

Aneris

Diversity

From specifications to provably correct code

Conclusion

Vincent Rahli Aneris October 30, 2012 14/26

Programming with the help of a proof assistant
In Nuprl, specifications are expressed in the Logic of
Events [Bic09, BC08] (logical framework to reason about and
synthesize distributed protocols).

Vincent Rahli Aneris October 30, 2012 15/26

EventML
2/3:

. .
c l a s s TT Repl i ca = NewVoters >>= Vote r ; ;
main TT Repl i ca @ l o c s

Paxos Synod:

. . .
c l a s s Leade r = SpawnF i r s tScout

| | ((Leade rPropose | | Leade rAdopted) >>= Commander)
| | (Leade rPreempted >>= Scout) ; ;

main Leade r @ l d r s | | Acceptor @ ac cpt s

Aneris replicas:

. . .
c l a s s R e p l i c aS t a t e =

Stat e (\ . (i n i t s t a t e ,{}) ,
o u t t r p r o po s e i n l , swap’base ,
o u t t r p r opo s e i n r , b c a s t ’ b a s e ,
o u t t r o n d e c i s i o n , d e c i s i o n ’ b a s e) ; ;

c l a s s R e p l i c a = (\ . snd) o Re p l i c aS t a t e ; ;
main Re p l i c a @ r e p s

Vincent Rahli Aneris October 30, 2012 16/26

Code synthesis

For each combinator of the Logic of Events, we have defined a
process (in our General Process Model [BCG10] defined in
Nuprl) that implements it.

Most of them are simple recursive functions.

EventML synthesize code and Nuprl (recursively) checks that
the code implements the specification.

Vincent Rahli Aneris October 30, 2012 17/26

Code synthesis
Optimized version of the Aneris process:

aneris_main-program-opt(Cid;Op;clients;eq_Cid;pax_procs;reps;tt_procs) ==

λi.case bag-deq-member(λa,b.if a=2 b then inl · else (inr ·);i;reps)

of inl() =>

fix((λmk-hdf,s.

(inl (λv.let x,y = v

in case name_eq(x;[swap]) ∧b ...

of inl(x1) =>

let v1 ← ... aneris_propose_inl(Cid;Op;...;...;...;...;...) ...

in let x,y = v1 in let v2 ← y @ [] in <mk-hdf <x, y>, v2>

| inr(y1) =>

case name_eq(x;[bcast]) ∧b ...

of inl(x1) =>

let v1 ← ... aneris_propose_inr(Cid;Op;...;...;...;...;...) ...

in let x,y = v1 in let v2 ← y @ [] in <mk-hdf <x, y>, v2>

| inr(y1) =>

case name_eq(x;[decision]) ∧b ...

of inl(x1) =>

let v1 ← ... aneris_on_decision(Cid;Op;...;...;...;...;...;...;...) ...

in let x,y = v1 in let v2 ← y @ [] in <mk-hdf <x, y>, v2>

| inr(y1) =>

let v1 ← s

in let x,y = v1 in let v2 ← y @ [] in <mk-hdf <x, y>, v2>))))

<aneris_init_state(Cid;Op), []>

| inr() =>

inr ·

The dots correspond to small terms.

Vincent Rahli Aneris October 30, 2012 18/26

Verification

Using the tools we have built in Nuprl, it took us:

◮ about 2 days to prove the safety properties of 2/3,

◮ about 2 weeks for Paxos Synod,

◮ about 1 additional week to prove full Paxos (Synod +
learners),

◮ a few hours to prove validity.

◮ Proving the other properties should take us a few more
days worth of work.

Vincent Rahli Aneris October 30, 2012 19/26

Verification
We use causal induction and inductive logical forms. Logical
explanation of why decisions are made by Paxos:

∀[Cmd:{T:Type| valueall-type(T)}]. ∀[accpts,ldrs:bag(Id)]. ∀[ldrs_uid:Id → Z]. ∀[reps:bag(Id)].

∀[es:EO’]. ∀[e:E]. ∀[i:Id]. ∀[p:Proposal].

(decision’send(Cmd) i p ∈ pax_mb_main(Cmd;accpts;ldrs;ldrs_uid;reps)(e)

⇐⇒ loc(e) ∈ ldrs

∧ (header(e) = ‘‘pax_mb p2b‘‘)

∧ (msgtype(e) = P2b)

∧ i ∈ reps

∧ (∃e’:{e’:E| e’ ≤loc e }

∃z:PValue

((((header(e’) = [propose])

∧ (msgtype(e’) = Proposal)

∧ ((↑ (proposal_slot (proposal_cmd LeaderStateFun(e’))))

∧ (¬↑ (in_domain (proposal_slot msgval(e’)) (proposal_cmd (proposal_cmd LeaderStateFun(e’))))))

∧ (z = (mk_pvalue (proposal_slot LeaderStateFun(e’)) msgval(e’))))

∨ ((header(e’) = ‘‘pax_mb adopted‘‘)

∧ (msgtype(e’) = pax_mb_AState(Cmd))

∧ ((astate_ballot msgval(e’)) = (proposal_slot LeaderStateFun(e’)))

∧ z ∈ map(λsp.(mk_pvalue (astate_ballot msgval(e’)) sp);

update_proposals (proposal_cmd (proposal_cmd LeaderStateFun(e’)))

(pmax(ldrs_uid) (astate_pvals msgval(e’))))))

∧ (no commander_output(accpts;reps) z@Loc

o (Loc,p2b’base(), CommanderState(accpts) (pval_ballot z) (proposal_slot (pval_proposal z)))

between e’ and e)

∧ ((pval_ballot z) = (bl_ballot (p2b_bl msgval(e))))

∧ ((proposal_slot (pval_proposal z)) = (p2b_slot msgval(e)))

∧ ((pval_ballot z) = (p2b_ballot msgval(e)))

∧ (#(CommanderStateFun(pval_ballot z;proposal_slot (pval_proposal z);es.e’;e)) < threshold(accpts))

∧ (p = (pval_proposal z)))))

decision of p sent to i at e

e happens at a leader location

the decision is triggered by a p2b message

the recipient of the decision message is a replica

proposal p is extracted from a pvalue z

either pvalue z is made from a proposal and current ballot

or either pvalue z received in an adopted message or in leader state

this decision is the first output of the commander

the acceptor that sent the p2b message has accepted pvalue z

the commander has received a p2b messages from a majority of acceptors

Vincent Rahli Aneris October 30, 2012 20/26

Verification

Tracing back the information flow of the system from outputs
to inputs and state variables, we easily proved validity:

∀[Cid,Op:ValueAllType].∀[eq_Cid:EqDecider(Cid)].∀[eq_Op:EqDecider(Op)].

∀[accpts,ldrs,locs,reps:bag(Id)].

∀[ldrs_uid:Id → Z]. ∀[flrs:Z]. ∀[es:EO’].

(∀i:Id. ∀s:Z. ∀k:Cid. ∀c:Op.

if Aneris_main() outputs (Aneris_deliver’send() i <s, k, c>)

then Aneris_broadcast’base() observed <i, k, c>)

supposing ((∀i:Id. ∀s:Z. ∀c:Cid × (Atom List) + (Id × Cid × Op).

if c23_main() outputs (c23_notify’send([decision]) i <s, c>)

then c23_propose’base([tt_propose]) observed <s, c>)

and (∀i:Id. ∀s:Z. ∀c:Cid × (Atom List) + (Id × Cid × Op).

if cpax_main() outputs (cpax_decision’send([decision]) i <s, c>)

then cpax_propose’base([pax_propose]) observed <s, c>)

and Aneris_message-constraint-p1(es))

Vincent Rahli Aneris October 30, 2012 21/26

Verification

That was possible thanks:

◮ to Nuprl’s large library of definitions and facts,

◮ to the powerful logic of events theory developed in Nuprl
by Mark Bickford and Robert Constable over the past few
years (especially to the delegation combinator), and

◮ to the collaboration between the PRL and system groups
at Cornell.

Vincent Rahli Aneris October 30, 2012 22/26

Table of Contents

Goals

Aneris

Diversity

From specifications to provably correct code

Conclusion

Vincent Rahli Aneris October 30, 2012 23/26

Current and future work

{ Performance

◮ We are currently working on formally optimizing the
synthesized code in Nuprl.

◮ We plan on implementing interpreters and a compiler.

{ ShadowDB (implemented by Nicolas Schiper)

◮ Replicated database that uses Aneris to handle failures.

◮ We plan to replace more of ShadowDB’s components by
synthesized versions (e.g., reconfiguration module).

◮ Designing/running experiments.

Vincent Rahli Aneris October 30, 2012 24/26

Summary

{ Synthesized and partially verified an ordered broadcast
service called Aneris.

{ Diversity in time (protocol swapping). Diversity in space
(data structures, evaluators, parameters, . . .).

{ Aneris in used by the replicated database ShadowDB that
itself will be used by Nuprl.

{ Example that our methodology to specify (using
small human manageable components) and verify (ILFs
+ causal induction) protocols works.

{ Started engaging proof assistants in the programming
process using EventML and Nuprl (long term goal).

Vincent Rahli Aneris October 30, 2012 25/26

References I

Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori Lorigo, and

Evan Moran.
Innovations in computational type theory using Nuprl.
J. Applied Logic, 4(4):428–469, 2006.

Mark Bickford and Robert L. Constable.

Formal foundations of computer security.
In NATO Science for Peace and Security Series, D: Information and Communication Security, volume 14,
pages 29–52. 2008.

Mark Bickford, Robert Constable, and David Guaspari.

Generating event logics with higher-order processes as realizers.
Technical report, Cornell University, 2010.

Mark Bickford.

Component specification using event classes.
In Component-Based Software Engineering, 12th Int’l Symp., volume 5582 of LNCS, pages 140–155.
Springer, 2009.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe,

T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
Implementing mathematics with the Nuprl proof development system.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

Christoph Kreitz.

The Nuprl Proof Development System, Version 5, Reference Manual and User’s Guide.
Cornell University, Ithaca, NY, 2002.
www.nuprl.org/html/02cucs-NuprlManual.pdf .

Vincent Rahli Aneris October 30, 2012 26/26

www.nuprl.org/html/02cucs-NuprlManual.pdf

	Goals
	Aneris
	Diversity
	From specifications to provably correct code
	Conclusion

