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Abstract6

The principle of continuity is a seminal property that holds for a number of intuitionistic theories such7

as System T. Roughly speaking, it states that functions on real numbers only need approximations8

of these numbers to compute. Generally, continuity principles have been justified using semantical9

arguments, but it is known that the modulus of continuity of functions can be computed using effectful10

computations such as exceptions or reference cells. This paper presents a class of intuitionistic11

theories that features stateful computations, such as reference cells, and shows that these theories12

can be extended with continuity axioms. The modulus of continuity of the functionals on the Baire13

space is directly computed using the stateful computations enabled in the theory.14
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1 Introduction22

Continuity is a seminal property in intuitionistic theories which contradicts classical mathe-
matics but is generally accepted by constructivists. Roughly speaking, the principle states
that functions on real numbers only need approximations of these numbers to compute.
Brouwer, in particular, assumed his so-called continuity principle for numbers to derive that
all real-valued functions on the unit interval are uniformly continuous [16; 12; 5; 6; 31]. The
continuity principle for numbers, sometimes referred to as the weak continuity principle,
states that all functions on the Baire space (i.e., B ≔ NatNat) have a modulus of continuity.
More concretely, given a function F of type B → Nat and a function α of type B, the principle
states that F (α) can only depend on an initial segment of α, and the length of the smallest
such segment is the modulus of continuity of F at α. This is standardly formalized as follows,
where Bn ≔ {x ∶ Nat ∣ x < n} → Nat is the set of finite sequences of length n:

WCP = ΠF ∶B → Nat.Πα∶B.⇃Σn∶Nat.Πβ∶B.(α=β∈Bn) → (F (α)=F (β)∈Nat)

A number of theories have been shown to satisfy Brouwer’s continuity principle, or23

uniform variants, such as N-HAω by Troelstra [28, p.158], MLTT by Coquand and Jaber [10;24

9], System T by Escardó [14], CTT by Rahli and Bickford [25], BTT by Baillon, Mahboubi25

and Pedrot [4], to cite only a few (see Sec. 5 for further details). These proofs often rely26

on a semantical forcing-based approach [10; 9], where the forcing conditions capture the27

amount of information needed when applying a function to a sequence in the Baire space, or28

through suitable models that internalize (C-Spaces in [34]) or exhibit continuous behavior29

(e.g., dialogue trees in [14; 4]).30
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35:2 Realizing Continuity Using Stateful Computations

Not only can functions on the Baire space be proved to be continuous, but using effectful31

computations, as for example described in [21], one can compute the modulus of continuity32

of such a function. However, as shown for example by Kreisel [17, p.154], Troelstra [27,33

Thm.IIA], and Escardó and Xu [13; 33], continuity is not an extensional property in the34

sense that two equal functions might have different moduli of continuity. Therefore, to realize35

continuity, the existence of a modulus of continuity has to be truncated as explained, e.g.,36

in [13; 33; 25; 26], which is what the ⇃ operator achieves in WCP. Following the effectful37

approach, continuity was shown to be realizable in [25; 26] using exceptions.38

Instead of using exceptions, a more straightforward way to compute the modulus of39

continuity of a function on the Baire space is to use reference cells. This was explained, e.g.,40

in [21], where the use of references can be seen as the programming counterparts of the more41

logical forcing conditions. The computation using references is more efficient than when42

using exceptions as it allows computing the modulus of continuity of a function F at a point43

α simply by executing F on α, while recording the highest argument that α is applied to,44

while using exceptions requires repeatedly searching for the modulus of continuity.45

Following this line of work, in this paper we show how to use stateful computations to46

realize a continuity principle. This allows deriving constructive type theories that include47

continuity axioms where the modulus of continuity is internalized in the sense that it is48

computed by an expression of the underlying programming language. Concretely, we do so for49

TT□
C [7], which is a family of extensional type theories parameterized by a type modality □,50

and a choice type C, which are presented in more details in Sec. 2. More precisely, we prove51

in this paper that all TT□
C functions are continuous for some instances of □ and C: namely52

for “non-empty” equality modalities, and reference-like stateful choice operators. Our proof53

is for a variant of the weak continuity principle (see Thm. 13), which we show to be inhabited54

by a program that relies on a choice operator to keep track of the modulus of continuity of a55

given function, following Longley’s method [21]. This variant is restricted to “pure” functions56

F , α, and β without side effects, and Sec. 4.1 discusses issues arising with impure functions.57

Roadmap. After recalling in Sec. 2 the main aspects of TT□
C that are relevant to the results58

presented in this paper, Sec. 3 instantiates and extends TT□
C with additional components,59

which are, in turn, used in Sec. 4 to validate continuity using stateful computations. One key60

contribution of this paper, discussed in Sec. 3, is the fact that TT□
C now allows computations61

to modify the current world, which is accounted for in its forcing interpretation. Another62

key contribution, discussed in Sec. 4, is the internalization of the modulus of continuity of63

functions, in the sense that it can be computed by a TT□
C expression and used to validate the64

continuity principle. Finally, Sec. 5 concludes and discusses the related work on continuity.65

2 Background66

This section recalls TT□
C , a family of type theories parameterized by a choice operator C,67

and a metatheoretical modality □, which allows typing the choice operators. See [7] for68

further details. The choice operators are time-progressing elements that we will in particular69

instantiate with references. Sec. 3 carves out a sub-family for which we can validate70

computationally relevant continuity rules as shown in Sec. 4.71

2.1 Metatheory72

Our metatheory is Agda’s type theory [1]. The results presented in this paper have been73

formalized in Agda, and the formalization is available here: https://github.com/vrahli/opentt/.74

We use ∀,∃,∧,∨,→,¬ in place of Agda’s logical connectives in this paper. Agda provides75

https://github.com/vrahli/opentt/
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Figure 1 Core syntax (above) and small-step operational semantics (below)
v ∈ Value ∶∶= vt (type) ∣ λx.t (lambda) ∣ ⋆ (constant)

∣ n (number) ∣ inl(t) (left injection) ∣ δ (choice name)
∣ ⟨t1, t2⟩ (pair) ∣ inr(t) (right injection)

vt ∈ Type ∶∶= Πx∶t1.t2 (product) ∣ {x ∶ t1 ∣ t2} (set) ∣ t1+t2 (disjoint union)
∣ Σx∶t1.t2 (sum) ∣ t1=t2∈t (equality) ∣ �t (time truncation)
∣ Ui (universe) ∣ Nat (numbers)

t ∈ Term ∶∶= x (variable) ∣ v (value) ∣ !t (read)
∣ t1 t2 (application) ∣ fix(t) (fixpoint) ∣ let x, y = t1 in t2 (pair destructor)
∣ case t of inl(x) ⇒ t1 | inr(y) ⇒ t2 (injection destructor)

(λx.t) u ↦ w t[x\u]
fix(v) ↦ w v fix(v)

!δ ↦w choice?(w, δ)

let x, y = ⟨t1, t2⟩ in t ↦ w t[x\t1; y\t2]
case inl(t) of inl(x) ⇒ t1 | inr(y) ⇒ t2 ↦ w t1[x\t]
case inr(t) of inl(x) ⇒ t1 | inr(y) ⇒ t2 ↦ w t2[y\t]

an hierarchy of types annotated with universe labels which we omit for simplicity. Following76

Agda’s terminology, we refer to an Agda type as a set, and reserve the term type for TT□
C ’s77

types. We use P as the type of sets that denote propositions; N for the set of natural numbers;78

and B for the set of Booleans true and false. We use induction-recursion to define the forcing79

interpretation in Sec. 3.2, where we use function extensionality to interpret universes. We do80

not discuss this further here and the interested reader is referred to forcing.lagda in the Agda81

code for further details.82

2.2 Worlds83

To capture the time progression notion which underlines choice operators, TT□
C is parameter-84

ized by a Kripke frame [20; 19] defined as follows:85

▶ Definition 1 (Kripke Frame). A Kripke frame consists of a set of worlds W equipped with86

a reflexive and transitive binary relation ⊑.87

Let w range over W . We sometimes write w ′
⊒ w for w ⊑ w ′. Let Pw be the collection of88

predicates on world extensions, i.e., functions in ∀w ′
⊒ w.P. Note that due to ⊑’s transitivity,89

if P ∈ Pw then for every w ′
⊒ w it naturally extends to a predicate in Pw′ . We further define90

the following notations for quantifiers. ∀⊑

w(P ) states that P ∈ Pw is true for all extensions91

of w, i.e., P w ′ holds in all worlds w ′
⊒ w. ∃⊑

w(P ) states that P ∈ Pw is true at an extension92

of w, i.e., P w ′ holds for some world w ′
⊒ w. For readability, we sometime write ∀⊑

w(w ′
.P )93

(or ∃⊑

w(w ′
.P )) instead of ∀⊑

w(λw ′
.P ) (or ∃⊑

w(λw ′
.P )), respectively.94

2.3 TT□
C ’s Syntax and Operational Semantics95

Fig. 1 recalls TT□
C ’s syntax and operational semantics, where the blue boxes highlight the96

time-related components, and where x belongs to a set of variables Var. For simplicity,97

numbers are considered to be primitive. The constant ⋆ is there for convenience, and is used98

in place of a term, when the particular term used is irrelevant. Terms are evaluated according99

to the operational semantics presented in Fig. 1’s lower part. In what follows, we use all100

letters as metavariables for terms. Let t[x\u] stand for the capture-avoiding substitution of101

all the free occurrences of x in t by u.102

Types are syntactic forms that are given semantics in Sec. 3.2 via a forcing interpretation.103

The type system contains standard types such as dependent products of the form Πx∶t1.t2 and104

CSL 2023
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dependent sums of the form Σx∶t1.t2. For convenience we write t1 → t2 for the non-dependent105

Π type; True for 0=0∈Nat; False for 0=1∈Nat; and ¬T for (T → False).106

Fig. 1’s lower part presents TT□
C ’s small-step operational semantics, where t1 ↦w t2107

expresses that t1 reduces to t2 in one step of computation w.r.t. the world w. We omit the108

congruence rules that allow computing within terms such as: if t1 ↦w t2 then t1(u) ↦w t2(u).109

We denote by ⇓ the reflexive transitive closure of ↦, i.e., a ⇓w b states that a computes110

to b in ≥0 steps. We also write a ⤋w b if a computes to b in all extensions of w, i.e., if111

∀⊑

w(w ′
.a ⇓w′ b). We write ∼w for the symmetric and transitive closure of ⇓w.112

TT□
C includes time-progressing notions that rely on worlds to record choices and provides113

operators to access the choices stored in a world, which we now recall. Choices are referred to114

through their names. A concrete example of such choices are reference cells in programming115

languages, where a variable name pointing to a reference cell is the name of the corresponding116

reference cell. To this end, TT□
C ’s computation system is parameterized by a set N of choice117

names, that is equipped with a decidable equality, and an operator that given a list of names,118

returns a name not in the list. This can be given by, e.g., nominal sets [24]. In what follows119

we let δ range over N , and take N to be N for simplicity. TT□
C is further parameterized120

over abstract operators and properties recalled in Defs. 2 and 4–6, which we show how to121

instantiate in Ex. 7. Definitions such as Def. 2 provide axiomatizations of operators, and in122

addition informally indicate their intended use. Choices are defined abstractly as follows:123

▶ Definition 2 (Choices). Let C ⊆ Term be a set of choices,1 and let κ range over C. We124

say that a computation system contains ⟨N , C⟩-choices if there exists a partial function125

choice? ∈ W → N → C. Given w ∈ W and δ ∈ N , the returned choice, if it exists, is meant126

to be the last choice made for δ according to w. C is said to be non-trivial if it contains two127

values κ0 and κ1, which are computationally different, i.e., such that ¬(κ0 ∼w κ1) for all w.128

A choice name δ can be used in a computation to access choices from a world as follows:129

!δ ↦w choice?(w, δ) (as shown in Fig. 1). This allows getting the last δ-choice from the130

current world w. The quotienting type operator � allows assigning types to such expressions131

that compute to different values in different worlds. For example, as defined in Fig. 2, while132

Nat is the type of expressions that when they compute to i in w1 must also compute to i133

in w2 ⊒ w1, �Nat is the type of expressions that can compute to i in w1 and to another134

number j in w2 ⊒ w1. This is used to assign types to computations involving choices. For135

example, !δ inhabits �Nat when its choices are numbers.136

Note that the above definition of choice? is a slight simplification of the more general137

notion of choices presented in [7]. There, the choice? function was of type W → N → N → C.138

The additional N component enables a more general notion of choice operators, including ones139

in which the history is recorded. In references, which is the notion of choices we especially140

focus on in this paper, one only maintains the latest update and so the N component becomes141

moot. Thus, for simplicity of presentation, we elide the N component in this paper, but full142

details are available in the Agda implementation.143

TT□
C also includes the notion of a restriction, which allows assuming that the choices144

made for a given choice name all satisfy a pre-defined constraint. Here again we simplify the145

concept for choices without history tracking.146

1 To guarantee that C ⊆ Term, one can for example extend the syntax to include a designated constructor
for choices, or require a coercion C → Term. We opted for the latter in our formalization.
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▶ Definition 3 (Restrictions). A restriction r ∈ Res is a pair ⟨res, d⟩ consisting of a function147

res ∈ C → P and a default choice d ∈ C such that (res d) holds. Given such a pair r , we148

write r⋅d for d.149

Intuitively, res specifies a restriction on the choices that can be made at any point in150

time and d provides a default choice that meets this restriction (e.g., for reference cells, this151

default choice is used to initialize a cell). For example, the restriction ⟨λκ.κ ∈ N, 0⟩ requires152

choices to be numbers and provides 0 as a default value. To reason about restrictions, we153

require the existence of a “compatibility” predicate as follows.154

▶ Definition 4 (Compatibility). We say that C is compatible if there exists a predicate155

comp ∈ N → W → Res → P, intended to guarantee that restrictions are satisfied, and which is156

preserved by ⊑: ∀(δ ∶ N )(w1, w2 ∶W)(r ∶ Res).w1 ⊑ w2 → comp(δ, w1, r) → comp(δ, w2, r).157

TT□
C further requires the ability to create new choice names as follows.158

▶ Definition 5 (Extendability). We say that C is extendable if there exists a function159

νC ∈ W → N , where νC(w) is intended to return a new choice name not present in w, and160

a function startνC ∈ W → Res → W, where startνC(w, r) is intended to return an extension161

of w with the new choice name νC(w) with restriction r , satisfying the following properties:162

Starting a new choice extends the current world: ∀(w ∶W)(r ∶ Res).w ⊑ startνC(w, r)163

Initially, the only possible choice is the default value of the given restriction, i.e.:164

∀(r ∶ Res)(w ∶W)(κ ∶ C).choice?(startνC(w, r), νC(w)) = κ → κ = r⋅d165

A choice is initially compatible with its restriction:166

∀(w ∶W)(r ∶ Res).comp(νC(w), startνC(w, r), r)167

Lastly, TT□
C requires the ability to update a choice as follows.168

▶ Definition 6 (Mutability). We say that C is mutable if there exists a function update ∈169

W → N → C → W such that if w ∈ W, δ ∈ N , κ ∈ C, then w ⊑ update(w, δ, κ).170

From this point on, we will only discuss choices C that are compatible, extendable and171

mutable. The abstract notion of choice operators has many concrete instances. This paper172

focuses on one concrete instance — mutable references.173

▶ Example 7 (References). Reference cells, which are values that allow a program to174

indirectly access a particular object, are choice operators since they can point to different175

objects over their lifetime. Formally, we define references to numbers, Ref, as follows176

(see worldInstanceRef.lagda for details):177

Non-trivial Choices Let N ≔ N and C ≔ N, which is non-trivial, e.g., take κ0 ≔ 0 and178

κ1 ≔ 1.179

Worlds Worlds are lists of cells, where a cell is a quadruple of (1) a choice name, (2) a180

restriction, (3) a choice, and (4) a Boolean indicating whether the cell is mutable. ⊑ is181

the reflexive transitive closure of two operations that allow (i) creating a new reference182

cell, and (ii) updating an existing reference cell. We define choice?(w, δ) so that it simply183

accesses the content of the δ cell in w.184

Compatible comp(δ, w, r) states that a reference cell named δ with restriction r was created185

in the world w (using operation of type (i) described above), and that the current value186

of the cell satisfies r .187

Extendable νC(w) returns a reference name not occurring in w; and startνC(w, r) adds a188

new reference cell to w with name νC(w) and restriction r (using operation of type (i)189

mentioned above).190

Mutable update(w, δ, κ) updates the reference δ with the choice κ if δ occurs in w, and191

otherwise returns w (using operation of type (ii) mentioned above).192

CSL 2023
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35:6 Realizing Continuity Using Stateful Computations

3 Instantiating TT□
C193

To validate continuity, we need to internalize some semantical properties of TT□
C that were194

introduced in [7] and recalled in Sec. 2. Concretely, we instantiate (and extend) TT□
C with195

the following components, which are formally defined next.196

An operator that allows us to make a choice. This has far-reaching consequences, as a197

computation can now modify its current world. We generalize TT□
C ’s semantics accordingly.198

This is an internalization of the mutability requirement.199

An operator to generate a “fresh” choice name. This is an internalization of the extend-200

ability requirement.201

A type that states the “purity” of an expression, i.e., that the expression has no side202

effects. This will allow us to formalize the variant of the continuity principle we validate.203

Sec. 4.1 provides further details.204

3.1 Syntax & Operational Semantics205

We extend TT□
C ’s syntax as follows:

t ∈ Term ∶∶=⋯ ∣ choose(t1, t2) ∣ νx.t ∣ let x = t1 in t2

∣ if t1 < t2 then t3 else t4 ∣ t1 + t2

vt ∈ Type ∶∶=⋯ ∣ pure ∣ t1 ∩ t2 ∣ ⇃t

As in Sec. 2.3, the blue boxes highlight the time-related component. The term pure is206

the type of “pure” terms, i.e. terms that do no contain choice names. The term t1 ∩ t2 is an207

intersection type, which is inhabited by the inhabitants of both t1 and t2. Finally, ⇃t turns a208

type t into a subsingleton type that equates all elements of t. The expression choose(δ, t)209

makes the δ-choice t; while νx.t creates a “fresh” choice name w.r.t. t, thereby internalizing210

the notion of extendability presented in Def. 5. The term let x = t1 in t2 is a call-by-value211

operator that allows evaluating t1 to a value before proceeding with t2. We write t1;t2 for212

let x = t1 in t2 where x does not occur free in t2.213

We extend TT□
C ’s operational semantics as follows. We turn the ternary relation a ⇓w b

into a four-place relations a ⇓
w1
w2 b which captures that a computes to b starting from the

world w1 and updating it so that the resulting world is w2 at the end of the computation.
Most computations do not modify the current world except choose(t1, t2).

(λx.t) u ↦
w
w t[x\u]

fix(v) ↦
w
w v fix(v)

!δ ↦
w
w choice?(w, δ)

let x, y = ⟨t1, t2⟩ in t ↦w
w t[x\t1; y\t2]

case inl(t) of inl(x) ⇒ t1 | inr(y) ⇒ t2 ↦
w
w t1[x\t]

case inr(t) of inl(x) ⇒ t1 | inr(y) ⇒ t2 ↦
w
w t2[y\t]

In addition we now have the following computations:

if n < m then t1 else t2 ↦
w
w t1, if n < m

if n < m then t1 else t2 ↦
w
w t2, if m ≤ n

n +m ↦
w
w n +m

let x = v in t2 ↦
w
w t2[x\v]

The semantics of choose(t1, t2) is defined as follows:

choose(δ, t) ↦w
update(w,δ,t) ⋆
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Choosing a δ-choice t using choose(δ, t) results in a corresponding update of the current214

world, namely update(w, δ, t). The computation returns ⋆, which is reminiscent of reference215

updates in OCaml for example, which are of type unit. As mentioned in Def. 2, we216

require C ⊆ Term so that choices can be included in computations. In addition, because217

update ∈ W → N → C → W , for update(w, δ, t) to be well-defined for t ∈ Term, we require a218

coercion from Term to C so that t can be turned into a choice, and update can be applied to219

that choice. This coercion is left implicit for readability. We further require that applying220

this coercion to a choice κ returns κ, which is used to validate the assumption Ass3 discussed221

in Sec. 4.2.222

▶ Example 8. We saw in Ex. 7, that C can for example be instantiated to be N. A coercion223

from Term to C can then turn n into n and all other terms to 0, which satisfies the requirement224

that choices are mapped to the same choices.225

Finally, we describe how νx.t computes. Intuitively, it selects a “fresh” choice name δ

and instantiate the variable x with δ. Formally, it computes as follows:

νx.t ↦
w
startνC(w,r) t[x\νC(w)]

where r is the restriction ⟨λc.(c ∈ N), 0⟩, which constrains the choices to be numbers, with226

default value 0. Other restrictions could be supported, for example by adding different ν227

symbols to the language and by selecting during computation the appropriate restriction228

based on the ν operator at hand. This is however left for future work as we especially focus229

here on the choices presented in Ex. 8.230

▶ Remark 9 (Freshness). The fresh operator used in [25] computes νx.a by reducing a to231

b, and then returning νx.b, thereby never generating new fresh names. As opposed to that232

fresh operator, which was based on nominal sets, the one introduced in this paper cannot233

put back the “fresh” constructor at each step of the small step derivation, otherwise a234

multi-step computation would not be able to use a choice name to keep track of the modulus235

of continuity of a function across multiple computation steps by recording it in the current236

world. One consequence of this is that this fresh operator cannot guarantee that it generates237

a truly “fresh” name that does not occur anywhere else (therefore, it does not satisfy the238

nominal axioms). For example (νx.x) δ might generate the name δ because it does not occur239

in the local expression νx.x.240

Formally, a ⇓
w1
w2 b is the reflexive and transitive closure of ↦, i.e., it holds if a in world w1241

computes to b in world w2 in 0 or more steps. Thanks to the properties of startνC presented242

in Def. 5, and the properties of update presented in Def. 6, computations respect ⊑:243

▶ Lemma 10 (Computations respect ⊑). If a ⇓
w1
w2 b then w1 ⊑ w2.244

3.2 Forcing Interpretation245

TT□
C ’s semantics is similar to the one presented in [7], which we recall and extend in Fig. 2.246

It is interpreted via a forcing interpretation in which the forcing conditions are worlds. This247

interpretation is defined using induction-recursion as follows: (1) the inductive relation248

w ⊨ T1≡T2 expresses type equality in the world w; (2) the recursive function w ⊨ t1≡t2∈T249

expresses equality in a type. We further use the following abstractions: w ⊨ type(T ) for250

w ⊨ T ≡T , w ⊨ t∈T for w ⊨ t≡t∈T , and w ⊨ T for ∃(t ∶ Term).w ⊨ t∈T . Note that a major251

difference is that while a ⤋w b is still defined as ∀⊑

w(w ′
.a ⇓w′ b) as in [7], a ⇓w′ b is now defined252

as ∃(w ′′ ∶W).a ⇓
w′

w′′ b to account for the fact that computations can now update the current253

CSL 2023



35:8 Realizing Continuity Using Stateful Computations

Figure 2 Forcing Interpretation
Numbers:

w ⊨ Nat≡Nat ⟺ True
w ⊨ t≡t

′
∈Nat ⟺ □w(w ′

.∃(n ∶ N).t ⤋w′ n ∧ t
′
⤋w′ n)

Products:
w ⊨ Πx∶A1.B1≡Πx∶A2.B2 ⟺ Famw(A1, A2, B1, B2)
w ⊨ f≡g∈Πx∶A.B ⟺ □w(w ′

.∀(a1, a2 ∶ Term).w ′
⊨ a1≡a2∈A → w ′

⊨ f a1≡g a2∈B[x\a1])
Sums:

w ⊨ Σx∶A1.B1≡Σx∶A2.B2 ⟺ Famw(A1, A2, B1, B2)
w ⊨ p1≡p2∈Σx∶A.B ⟺ □w(w ′

.∃(a1, a2, b1, b2 ∶ Term).w ′
⊨ a1≡a2∈A ∧ w ′

⊨ b1≡b2∈B[x\a1] ∧
p1 ⤋w′ ⟨a1, b1⟩ ∧ p2 ⤋w′ ⟨a2, b2⟩)

Sets:
w ⊨ {x ∶ A1 ∣ B1}≡{x ∶ A2 ∣ B2} ⟺ Famw(A1, A2, B1, B2)
w ⊨ a1≡a2∈{x ∶ A ∣ B} ⟺ □w(w ′

.∃(b1, b2 ∶ Term).w ′
⊨ a1≡a2∈A ∧ w ′

⊨ b1≡b2∈B[x\a1])
Disjoint unions:

w ⊨ A1+B1≡A2+B2 ⟺ w ⊨ A1≡A2 ∧ w ⊨ B1≡B2

w ⊨ a1≡a2∈A+B ⟺ □w(w ′
.∃(u, v ∶ Term).(a1 ⤋w′ inl(u) ∧ a2 ⤋w′ inl(v) ∧ w ′

⊨ u≡v∈A) ∨
(a1 ⤋w′ inr(u) ∧ a2 ⤋w′ inr(v) ∧ w ′

⊨ u≡v∈B))
Equalities:

w ⊨ (a1=b1∈A)≡(a2=b2∈B) ⟺ w ⊨ A≡B ∧∀⊑

w(w ′
.w ′

⊨ a1≡a2∈A) ∧∀⊑

w(w ′
.w ′

⊨ b1≡b2∈B)
w ⊨ a1≡a2∈(a=b∈A) ⟺ □w(w ′

.w ′
⊨ a≡b∈A) (note that a1 and a2 can be any term here)

Time-Quotiented types:
w ⊨ �A≡�B ⟺ w ⊨ A≡B

w ⊨ a≡b∈�A ⟺ □w(w ′
.(λa, b.∃(c, d ∶ Value).a ∼w c ∧ b ∼w d ∧ w ⊨ c≡d∈A)+ a b)

Subsingletons:
w ⊨ ⇃A≡⇃B ⟺ w ⊨ A≡B

w ⊨ a≡b∈⇃A ⟺ □w(w ′
.w ′

⊨ a≡a∈A ∧ w ′
⊨ b≡b∈A)

Purity:
w ⊨ pure≡pure ⟺ True
w ⊨ a1≡a2∈pure ⟺ namefree(a1) ∧ namefree(a2)

Binary intersections:
w ⊨ A1 ∩B1≡A2 ∩B2 ⟺ w ⊨ A1≡A2 ∧ w ⊨ B1≡B2

w ⊨ a1≡a2∈A ∩B ⟺ □w(w ′
.w ′

⊨ a1≡a2∈A ∧ w ′
⊨ a1≡a2∈B)

Modality closure:
w ⊨ T1≡T2 ⟺ □w(w ′

.∃(T ′
1, T

′
2 ∶ Term).T1 ⤋w′ T

′
1 ∧ T2 ⤋w′ T

′
2 ∧ w ′

⊨ T
′
1≡T

′
2)

w ⊨ t1≡t2∈T ⟺ □w(w ′
.∃(T ′ ∶ Term).T ⤋w′ T

′ ∧ w ′
⊨ t1≡t2∈T

′)

world. We also define a ⤋!w b as ∀⊑

w(w ′
.a ⇓

w′

w′ b), capturing the fact that the computation254

does not change the initial world (this is used in Thm. 12). Fig. 2 defines in particular the255

semantics of pure, which is inhabited by name-free terms, where namefree(t) is defined256

recursively over t and returns false iff t contains a choice name δ or a fresh operator of the form257

νx.t. There, we write R
+ for R’s transitive closure, which is used to prove the transitivity258

of time-quotiented types, in the sense of Thm. 12. We also write Famw(A1, A2, B1, B2)259

for w ⊨ A1≡A2 ∧ ∀
⊑

w(w ′
.∀(a1, a2 ∶ Term).w ′

⊨ a1≡a2∈A1 → w ′
⊨ B1[x\a1]≡B2[x\a2]).260

This forcing interpretation is parameterized by a family of abstract modalities □, which we261

sometimes refer to simply as a modality, which is a function that takes a world w to its262

modality □w ∈ Pw → P. We often write □w(w ′
.P ) for □wλw ′

.P . As in [7], to guarantee that263

this interpretation yields a standard type system in the sense of Thm. 12, we require that264

the modalities satisfy certain properties reminiscent of standard modal axiom schemata [11],265

which we repeat here for ease of read:266
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▶ Definition 11 (Equality modality). The modality □ is called an equality modality if it267

satisfies the following properties:268

□1 (monotonicity of □): ∀(w ∶W)(P ∶ Pw).∀w ′
⊒ w. □w P → □w′P .269

□2 (K, distribution axiom): ∀(w ∶W)(P, Q ∶ Pw). □w (w ′
.P w ′

→ Q w ′) → □wP → □wQ270

□3 (C4, i.e., □ follows from □□): ∀(w ∶W)(P ∶ Pw). □w (w ′
. □w′ P ) → □wP271

□4: ∀(w ∶W)(P ∶ Pw).∀⊑

w(P ) → □wP272

□5 (T , reflexivity axiom): ∀(w ∶W)(P ∶ P). □w (w ′
.P ) → P273

▶ Theorem 12. Given a computation system with choices C and an equality modality □,
TT□

C is a standard type system in the sense that its forcing interpretation induced by □ satisfy
the following properties (where free variables are universally quantified):

transitivity: w ⊨ T1≡T2 → w ⊨ T2≡T3 → w ⊨ T1≡T3 w ⊨ t1≡t2∈T → w ⊨ t2≡t3∈T → w ⊨ t1≡t3∈T
symmetry: w ⊨ T1≡T2 → w ⊨ T2≡T1 w ⊨ t1≡t2∈T → w ⊨ t2≡t1∈T

computation: w ⊨ T ≡T → T ⤋!w T
′
→ w ⊨ T ≡T

′ w ⊨ t≡t∈T → t ⤋!w t
′
→ w ⊨ t≡t

′
∈T

monotonicity: w ⊨ T1≡T2 → w ⊑ w ′
→ w ′

⊨ T1≡T2 w ⊨ t1≡t2∈T → w ⊑ w ′
→ w ′

⊨ t1≡t2∈T

locality: □w(w ′
.w ′

⊨ T1≡T2) → w ⊨ T1≡T2 □w(w ′
.w ′

⊨ t1≡t2∈T ) → w ⊨ t1≡t2∈T
consistency: ¬w ⊨ t∈False

Proof. The proof relies on the properties of the equality modality. For example: □1 is used274

to prove monotonicity when w ⊨ T1≡T2 is derived by closing under □w; □2 and □4 are used,275

e.g., to prove the symmetry and transitivity of w ⊨ t≡t
′
∈Nat; □3 is used to prove locality;276

and □5 is used to prove consistency. See props3.lagda for further details. ◀277

As indicated in Thm. 12, and as opposed to the counterpart of the theorem in [7],278

w ⊨ T ≡T and w ⊨ t≡t∈T are no longer closed under all computations. For example, when279

T ≔ Nat, if t ⤋w t
′ and t ⤋w n, does not necessarily give us that t

′
⤋w n. An example is280

t ≔ (choose(δ, 1);if !δ < 1 then 0 else 1), which reduces to t
′
≔ (if !δ < 1 then 0 else 1)281

and also to 1 in all worlds, but t
′ does not reduce to 1 in all worlds, because δ could be282

initialized differently in different worlds. However, the following holds by transitivity of ⤋w:283

t
′
⤋w t → w ⊨ t≡t∈Nat → w ⊨ t≡t

′
∈Nat. Similarly, the following also holds by transitivity284

of ⤋w: w ⊨ T ≡T → T
′
⤋w T → w ⊨ T ≡T

′. Finally, note that, as indicated in Thm. 12, this285

semantics is closed under β-reduction, as β-reduction does not modify the current world.286

4 Proof of Continuity287

We can now state the version of Brouwer’s continuity principle that we validate in this288

paper, along with its realizer. For this we first introduce the following notation: Πpa∶A.B ≔289

Πa∶(A ∩ pure).B, which quantifies over pure elements of type A.290

▶ Theorem 13 (Continuity Principle). The following continuity principle, referred to as291

CONTp, is valid w.r.t. the semantics presented in Sec. 3.2:292

ΠpF ∶B → Nat.Πpα∶B.⇃Σn∶Nat.Πpβ∶B.(α=β∈Bn) → (F (α)=F (β)∈Nat) (1)293

and is inhabited by294

λF.λα.⟨mod(F, α), λβ.λe.⋆⟩ (2)295

where mod(F, α) is the modulus of continuity of the function F ∈ B → Nat at α ∈ B and is
computed by the following expression:

mod(F, α) ≔ νx.(choose(x, 0);F (upd(x, α));!x + 1)
upd(δ, α) ≔ λx.(let y = x in ((if !δ < y then choose(δ, y) else ⋆);α(y)))
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More precisely, the following is true for any world w:

w ⊨ λF.λα.⟨mod(F, α), λβ.λe.⋆⟩∈CONTp

The rest of this section describes the proof of this theorem (see continuity in continuity7.lagda296

for details). First, we intuitively explain how mod(F, α) computes the modulus of continuity297

of a function F at a point α. This is done using the following steps:298

1. selecting, using ν, a fresh choice name δ (the variable x gets replaced with the freshly299

generated name δ when computing mod), with the appropriate restriction (here a restriction300

that requires choices to be numbers as mentioned in Sec. 3.1);301

2. setting δ to 0 using choose(x, 0) (where x is δ when this expression computes);302

3. applying F to a modified version of α, namely upd(δ, α), which computes as α, except303

that in addition it increases δ’s value every time α is applied to a number larger than the304

last chosen one;305

4. returning the last chosen number using !x (again x is δ when this expression computes),306

increased by one in order to return a number higher than any number F applies α to.307

We divide the proof of the validity of the continuity principle, i.e., that it is inhabited by308

the expression presented in Eq. (2), into the following three components, where F ∈ B → Nat309

and α ∈ B:310

Proving that the modulus is a number, i.e., mod(F, α) ∈ Nat;311

Proving that mod(F, α) returns the highest number that α is applied to in the computation312

it performs;313

Given β ∈ B, proving that F (α) and F (β) return the same number if α and β agree up314

to mod(F, α).315

4.1 Purity316

According to Nat’s semantics, to prove that mod(F, α) ∈ Nat w.r.t. a world w, we have to317

prove it computes to the same number in all extensions of w. However, this will not be the318

case if F or α have side effects. For example, if F is λf.f(!δ0);0, for some choice name δ0,319

then it could happen that f gets applied to 0 in some world w1 if !δ0 returns 0, and to 1 in320

some world w2 ⊒ w1 if !δ0 returns 1. As mod(F, α) returns the highest number that F applies321

its argument to, then mod(F, α) would in this instance return different numbers in different322

extensions, and would therefore not inhabit Nat.323

Therefore, to validate a version of continuity which requires the modulus of continuity324

to be time-invariant as in Eq. (1), one can require that both F and α are pure (i.e.,325

name-free) terms. Thanks to Πp, we get to assume that both F and α are in pure and326

therefore are name-free. Note that it would not be enough to use the following pattern:327

ΠF ∶B → Nat.(F=F∈pure) → . . . , because then for the continuity principle to even be a328

type, we would have to prove that F is name-free to prove that F=F∈pure is a type, only329

knowing that F ∈ B → Nat, which is not true in general.330

Let us now mention a potential solution to avoid such a purity requirement, as well as some
difficulties it involves, which we leave investigating to future work. One could try to validate
instead the following version of the continuity axiom, where B�n = {x ∶ Nat ∣ x <� n} → Nat,
assuming the existence of some type x <� n that can relate an x ∈ Nat with an n ∈ �Nat:

ΠF ∶B → Nat.Πα∶B.⇃Σn∶�Nat.Πβ∶B.(α=β∈B�n) → (F (α)=F (β)∈Nat)

https://github.com/vrahli/opentt/blob/master/continuity7.lagda
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A first difficulty with this is the type x <� n, which to prove that it holds in some world w331

would require proving that x is equal to all possible values that n can take in extensions of w.332

Another related difficulty is that it is at present unclear whether this rule can be validated333

constructively. More precisely, proving its validity would require:334

(1) Proving that mod(F, α) ∈ �Nat, which is now straightforward.335

(2) Next, we have to prove that Πβ∶B.(α=β∈B�mod(F,α)) → (F (α)=F (β)∈Nat), i.e.,336

given β ∈ B such that α=β∈B�mod(F,α), we have to prove F (α)=F (β)∈Nat. The assumption337

α=β∈B�mod(F,α) tells us that given k ∈ Nat such that k <� mod(F, α), α(k)=β(k)∈Nat. As338

mentioned above, for k <� mod(F, α) to be true, it must be that k is less than mod(F, α) in339

all extensions of the current world. However, without the purity constraint, mod(F, α) can340

compute to different numbers in different extensions.341

Going back to our goal F (α)=F (β)∈Nat, given the semantics of Nat presented in Fig. 2,342

to prove this it is enough to assume that F (upd(δ, α)) computes to some number m in343

some world w, and to prove that F (β) also computes to m in w. We can then inspect344

the computation F (upd(δ, α)) ⇓
w
w1 k, where δ is the name generated by mod(F, α), and345

show that it can be converted into a computation F (β) ⇓w
w2 k, by replacing α(i) with β(i),346

whenever we encounter such an expression. To do this, we need to know that α(i) and β(i)347

compute to the same number using α=β∈B�mod(F,α). However, we only know that i is less348

than mod(F, α) in w, which is not enough to use this assumption, as i might be greater than349

mod(F, α) in some other world w ′. We can address this issue using classical logic to prove350

that there exists a w ′
⊒ w such that for all w ′′

⊒ w, the smallest number that α is applied to351

in the computation of mod(F, α) w.r.t. w ′ is less than the number that mod(F, α) computes352

to w.r.t. w ′′. In the argument sketched above we can then use w ′ instead of w.353

4.2 Assumptions354

Before we prove that the continuity principle is inhabited, we will summarize here the
assumptions we will be making to prove this result, where r is a restriction that requires
choices to be numbers (see continuity-conds.lagda for details):

(Ass1) ∀(w ∶W)(P ∶ Pw). □w P → ∃⊑

w(P )
(Ass2) ∀(δ ∶ N )(w ∶W)(n ∶ N). comp(δ, w, r)

→ ∀⊑

update(w,δ,n)(w
′
.∃(k ∶ N).choice?(w ′

, δ) = k)
(Ass3) ∀(δ ∶ N )(w ∶W)(k ∶ N).comp(δ, w, r) → choice?(update(w, δ, k), δ) = k

Ass1 requires the modality □ to be non-empty in the sense that for □wP to be true, it355

has to be true for at least one extension of w. This is true about all topological bar spaces356

(see →∃W in mod.lagda), and therefore about the Kripke, Beth, and Open modalities which are357

derived from such spaces [7, Sec.6.2]. Ass2 requires that the “last” choice of a r-compatible358

choice name δ is indeed a number. Ass3 guarantees that retrieving a choice that was just359

made will return that choice.360

The last two assumptions are true about Ref, the formalization of references to numbers361

presented in Ex. 7 (see for example contInstanceKripkeRef.lagda for the proof that TT□
C instan-362

tiated with a Kriple modality and references satisfies these properties). In addition both are363

true about another kind of stateful computations, namely a variant of the formalization of364

free choice sequences [16; 3; 29; 30; 18; 32; 22] presented in [7, Ex.5], where new choices are365

pre-pended as opposed to being appended in [7] (see for example contInstanceKripkeCS.lagda366

for the proof that TT□
C instantiated with a Kriple modality and choice sequences satisfies367

these properties).368
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4.3 The Modulus is a Number369

In this section we prove that mod(F, α) ∈ Nat. More precisely, we prove the following370

(see testM-NAT in continuity1.lagda for details):371

▶ Theorem 14 (The Modulus is a Number). If namefree(F ), namefree(α), w ⊨ F∈NatB,372

and w ⊨ α∈B, for some world w, then373

□w(w ′
.∃(n ∶ N).mod(F, α) ⤋w′ n) (3)374

To prove the above, we will make use of the fact that w ⊨ upd(δ, α)∈B and therefore also375

w ⊨ F (upd(δ, α))∈Nat, i.e., by the semantics of Nat presented in Fig. 2, we have for some376

fresh name δ:377

□w(w ′
.∃(n ∶ N).F (upd(δ, α)) ⤋w′ n). (4)378

But for this we first need to start computing mod(F, α) to generate a fresh name δ according379

to the current world. If that current world is some world w ′
⊒ w (obtained, for example, using380

□4 from Def. 11 on Eq. (3)), then we need to be able to get that F (upd(δ, α)) computes to a381

number w.r.t. w ′, which Eq. (4) might not provide. This is the reason for assumption Ass1.382

Going back to the proof of Eq. (3), we use □4, and have to prove ∃(n ∶ N).mod(F, α) ⤋w1 n383

for some w1 ⊒ w. We then:384

(A) first have to find a number n such that mod(F, α) computes to n w.r.t. w1,385

(B) and then that it does so also for all w ′
1 ⊒ w1.386

Let us prove (A) first. We now start computing mod(F, α) w.r.t. w1. We generate a387

fresh name δ ≔ νC(w1), and have to prove that choose(δ, 0);F (upd(δ, α));!δ + 1 computes388

to a number w.r.t. w2 ≔ startνC(w1, r) that satisfies comp(δ, w2, r) (by the properties of389

startνC presented in Def. 5). We keep computing this expression and have to prove that390

F (upd(δ, α));!δ + 1 computes to a number w.r.t. w3 ≔ update(w2, δ, 0).391

From Ass1 and Eq. (4), we obtain w5 ⊒ w and n ∈ N such that F (upd(δ, α)) ⤋w5 n,392

from which we obtain by definition that there exists a w6 such that F (upd(δ, α)) ⇓
w5
w6 n.393

Now, because F and α are name-free, we can derive that there exists a w4 such that394

F (upd(δ, α)) ⇓
w3
w4 n (see differNF⇓APPLY-upd in terms7.lagda). It now remains to prove that395

n;!δ + 1, computes to a number w.r.t. w4. It is then enough to prove that !δ computes to396

a number k w.r.t. w4, in which case n;!δ + 1 computes to k+1 w.r.t. w4. To prove this we397

make use of Ass2 which states that r constrains the δ-choices to be numbers. Using this and398

the facts that comp(δ, w2, r) and w2 ⊑ w4 (by ⊑’s transitivity since w3 ⊑ w4 by Lem. 10 and399

w2 ⊑ w3 by Def. 6), we deduce that there exists a k ∈ N such that choice?(w4, δ) = k, and400

therefore !δ computes to k w.r.t. w4, and n;!δ+ 1 computes to k+1 w.r.t. w4, which concludes401

the proof of (A).402

To prove ∃(n ∶ N).mod(F, α) ⤋w1 n, we then instantiate the formula with k+1, and have403

to prove mod(F, α) ⤋w1 k+1. We already know that mod(F, α) ⇓w1
w4 k+1 (i.e., part (A)), and404

we now prove our statement labeled (B) above, i.e., that it does so in all extensions of w1 too.405

To prove (B) we assume a w ′
1 ⊒ w1 and have to prove that mod(F, α) computes to k+1406

w.r.t. w ′
1. As before, we start computing mod(F, α) w.r.t. w ′

1, and generate a fresh name407

δ
′
≔ νC(w ′

1), and have to prove that F (upd(δ′, α));!δ′ + 1 computes to k+1 w.r.t. w ′
3 ≔408

update(w ′
2, δ

′
, 0), where w ′

2 ≔ startνC(w ′
1, r). As F and α are name-free, t1 ≔ F (upd(δ, α))409

and t2 ≔ F (upd(δ′, α)) behave the same except that when t1 updates δ with a number, t2410

updates δ
′ with that number.411

https://github.com/vrahli/opentt/blob/master/continuity1.lagda
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Using a syntactic simulation method, we will prove that because t1 and t2 are “similar”412

(which is captured by Def. 15 below), choice?(w3, δ) = choice?(w ′
3, δ

′), and t1 ⇓
w3
w4 t

′
1, then413

t2 ⇓
w′

3
w′

4
t
′
2 such that t

′
1 and t

′
2 are also “similar” and choice?(w4, δ) = choice?(w ′

4, δ
′). Note414

that choice?(w3, δ) and choice?(w ′
3, δ

′) return the same choice because choice?(w3, δ) =415

choice?(update(w2, δ, 0), δ) = 0 and choice?(w ′
3, δ

′) = choice?(update(w ′
2, δ

′
, 0), δ

′) = 0. To416

derive these equalities, we need assumption Ass3 that relates choice? and update.417

Let us now define the simulation mentioned above (see differ in terms3.lagda for details):418

▶ Definition 15. The similarity relation t1 ∼δ1,δ2,α t2 is true iff

(t1 = upd(δ1, α) ∧ t2 = upd(δ2, α))
∨ (t1 = x ∧ t2 = x) ∨ (t1 = ⋆ ∧ t2 = ⋆) ∨ (t1 = n ∧ t2 = n)
∨ (t1 = λx.a ∧ t2 = λx.b ∧ a ∼δ1,δ2,α b)
∨ (t1 = (a1 b1) ∧ t2 = (a2 b2) ∧ a1 ∼δ1,δ2,α a2 ∧ b1 ∼δ1,δ2,α b2)
∨ . . .

Most cases are omitted in this definition as they similar to the ones presented above. Note419

however that crucially terms of the form δ or νx.t are not related, and that those are the only420

expressions not related, thereby ruling out names except when occurring inside upd through421

the first clause.422

As discussed above, a key property of this relation is then (see differ⇓ in terms6.lagda for423

details):424

▶ Lemma 16. If t1 ∼δ1,δ2,α t2, choice?(w1, δ1) = choice?(w2, δ2), t1 ⇓
w1
w′

1
t
′
1, namefree(α),425

comp(δ1, w1, r), and comp(δ2, w2, r), then there exist w ′
2 and t

′
2 such that t2 ⇓

w2
w′

2
t
′
2, t

′
1 ∼δ1,δ2,α426

t
′
2, and choice?(w ′

1, δ1) = choice?(w ′
2, δ2).427

which we prove by induction on the computation t1 ⇓
w1
w′

1
t
′
1.428

We therefore obtain that there exist t
′
2 and w ′

4 such that F (upd(δ′, α)) ⇓w′
3

w′
4

t
′
2, n ∼δ,δ′,α t

′
2429

and choice?(w ′
4, δ

′) = choice?(w4, δ) = k. Furthermore, by definition of the similarity relation,430

t
′
2 = n. We obtain that F (upd(δ′, α));!δ′+1 ⇓

w′
3

w′
4

n;!δ′+1 and so F (upd(δ′, α));!δ′+1 ⇓
w′

3
w′

4
!δ′+1.431

Because choice?(w ′
4, δ

′) = k, we finally obtain F (upd(δ′, α));!δ′ + 1 ⇓
w′

3
w′

4
k+1, which concludes432

the proof of (B), and therefore that mod(F, α) ∈ Nat.433

4.4 The Modulus is the Highest Number434

We now prove that mod(F, α) returns the highest number that α is applied to in the435

computation it performs (see steps-sat-isHighestN in continuity3.lagda for details):436

▶ Theorem 17 (The Modulus is the Highest Number). If mod(F, α) ⇓w
w′ n such that mod(F, α)437

generates a fresh name δ and choice?(w ′
, δ) = i, then for any world w0 occurring along this438

computation, it must be that choice?(w0, δ) = j such that j ≤ i.439

As shown above, we know that for any world w1 there exist w2 ∈ W and k ∈ N such that440

mod(F, α) ⇓w1
w2 k+1. As in Sec. 4.3, we start computing mod(F, α) w.r.t. the current world w1,441

and generate a fresh name δ ≔ νC(w1), and deduce that442

F (upd(δ, α));!δ + 1 ⇓
w′′

1
w2 k+1 (5)443

CSL 2023

https://github.com/vrahli/opentt/blob/master/terms3.lagda
https://github.com/vrahli/opentt/blob/master/terms6.lagda
https://github.com/vrahli/opentt/blob/master/continuity3.lagda


35:14 Realizing Continuity Using Stateful Computations

where w ′
1 ≔ startνC(w1, r) and w ′′

1 ≔ update(w ′
1, δ, 0). Furthermore, by Ass2, there must be444

a n ∈ N such that choice?(w2, δ) = n.445

We now want to show that if n < m, for some m ∈ N (which we will instantiate with k+1),446

then it must also be that for any world w along the computation in Eq. (5), if choice?(w, δ) = i447

then i < m. This is not true about any computation, but it is true about the above because448

upd only makes a choice if that choice is higher than the “current” one. To capture this,449

we define the property Updδ,α(t), which captures that the only place where δ occurs in t is450

wrapped inside upd(δ, α). That is, Updδ,α(t) is true iff t ∼δ,δ,α t. We can then prove the451

following result by induction on the computation (see continuity3.lagda):452

▶ Lemma 18. Let α be a closed name-free term, and t be a term such that Updδ,α(t) and453

t ⇓
w1
w2 u, and let choice?(w2, δ) = n, such that n < m, then for any world w along the454

computation t ⇓
w1
w2 u if choice?(w, δ) = i then i < m.455

Applying this result to F (upd(δ, α));!δ+ 1 ⇓
w′′

1
w2 k+1 and instantiating m with k+1, we obtain456

that for any world w along that computation if choice?(w, δ) = i then i < k+1.457

4.5 The Modulus is the Modulus458

We now prove the crux of continuity, namely that F returns the same number on functions459

that agree up to mod(F, α) (see eqfg in continuity6.lagda for details):460

▶ Theorem 19 (The Modulus is the Modulus). If w ⊨ α≡β∈Bn then w ⊨ F (α)≡F (β)∈Nat.461

First, we prove that w ⊨ F (α)≡F (upd(δ, α))∈Nat, which follows from the semantics of Π and462

Nat presented in Fig. 2, and in particular the fact that w ⊨ α≡upd(δ, α)∈B. It is therefore463

enough to prove that F (upd(δ, α)) and F (β) are equal in Nat. Relating F (upd(δ, α)) and464

F (β) instead of F (α) and F (β) allows getting access to the values that α gets applied to in465

the computation F (α) as they are recorded using the choice name δ. We can then use these466

values to prove that F (upd(δ, α)) and F (β) behave similarly up to applications of α in the467

first computation, which are applications of β in the second, and that these applications468

reduce to the same numbers because the arguments, recorded using δ, are less than mod(F, α).469

However, even though upd(δ, α) and α are equal in B, they behave slightly differently
computationally as upd(δ, α) turns the call-by-name computations α(t) into call-by-value
computations by first reducing t into an expression of the form i. By typing, we know that
F (upd(δ, α)) and F (β) compute to numbers, and to relate the two computations to prove
that they compute to the same number, we first apply a similar transformation to F (β). Let
cbv be defined as follows:

cbv(f) ≔ λx.let y = x in f(y).

It is straightforward to derive that w ⊨ F (β)≡F (cbv(β))∈Nat from the semantics of Π and470

Nat presented in Fig. 2. It is therefore enough to prove that F (upd(δ, α)) and F (cbv(β))471

are equal in Nat.472

Because F (upd(δ, α)) ⇓
w
w′ n, by Lem. 18 for any world w0 along this computation if473

choice?(w0, δ) = i then i < k+1, where k+1 is the number computed by mod(F, α).474

We now prove that F (upd(δ, α)) and F (cbv(β)) both compute to n through another475

simulation proof that relies on the following relation (see updRel in continuity4.lagda for details):476

477
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▶ Definition 20. The similarity relation t1 ≈δ,α,β t2 is true iff

(t1 = upd(δ, α) ∧ t2 = cbv(β))
∨ (t1 = x ∧ t2 = x) ∨ (t1 = ⋆ ∧ t2 = ⋆) ∨ (t1 = n ∧ t2 = n)
∨ (t1 = λx.a ∧ t2 = λx.b ∧ a ≈δ,α,β b)
∨ (t1 = (a1 b1) ∧ t2 = (a2 b2) ∧ a1 ≈δ,α,β a2 ∧ b1 ≈δ,α,β b2)
∨ . . .

Most cases are omitted in this definition as they similar to the ones presented above. Note478

however that crucially terms of the form δ or νx.t are not related, and that those are the only479

expressions not related, thereby ruling out names except when occurring inside upd through480

the first clause.481

A key property of this relation is as follows, which captures the fact that t1 ≈δ,α,β t2482

is preserved by computations, and which we prove by induction on the computation483

(see steps-updRel in continuity5.lagda for details):484

▶ Lemma 21. If t1 ≈δ,α,β t2, α and β agree up to k, t1 ⇓
w
w′ t

′
1 and for any world w0 along485

this computation if choice?(w0, δ) = i then i < k+1, then t2 ⇓
w
w t

′
2 such that t

′
1 ≈δ,α,β t

′
2.486

Therefore, because F (upd(δ, α)) ≈δ,α,β F (cbv(β)) (as F is name-free) and F (upd(δ, α))487

computes to n, it must be that F (cbv(β)) also computes to n, which concludes our proof of488

Thm. 13.489

5 Conclusion and Related Works490

We have shown in this paper how to validate a continuity principle for a subset of the TT□
C491

family of type theories, such that the modulus of continuity of functions is internalized, i.e.,492

computed using an expression of the underlying computation system. In particular, we have493

used stateful computations, and have discussed some of the challenges arising from such494

impure computations. As mentioned in the introduction, and as recalled below, this is not495

the first proof of continuity, however to the best of our knowledge, this is the first proof of an496

“internal” validity proof of continuity that relies on stateful computations. Furthermore, the497

proof presented above relies on an “internal” notion of probing through the use of stateful498

computations internal to the computation language of the type theory, while approaches499

such as [10; 9; 34] rely on a meta-theoretic (or “external”) notion of probing.500

Troelstra proved in [28, p.158] that every closed term t ∈ NB of N-HAω has a provable501

modulus of continuity in N-HAω—see also [5] for similar proofs of the consistency of continuity502

with various constructive theories.503

Coquand and Jaber [10; 9] proved the uniform continuity of a Martin-Löf-like intensional504

type theory using forcing. Their method consists in adding a generic element f as a constant505

to the language that stands for a Cohen real of type 2N, and defining the forcing conditions506

as approximations of f. They then define a suitable computability predicate that expresses507

when a term is a computable term of some type up to approximations given by the forcing508

conditions. The key steps are to (1) first prove that f is computable and then (2) prove that509

well-typed terms are computable, from which they derive uniform continuity: the uniform510

modulus of continuity is given by the approximations.511

Similarly, Escardó and Xu [34] proved that the definable functionals of Gödel’s sys-512

tem T [15] are uniformly continuous on the Cantor space C (without assuming classical logic513

or the Fan Theorem). For that, they developed the C-Space category, which internalizes514
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continuity, and has a Fan functional which computes the modulus of uniform continuity of515

functions in C → N. Relating C-Space and the standard set-theoretical model of system T,516

they show that all System T functions on the Cantor space are uniformly continuous. Fur-517

thermore, using this model, they show how to extract computational content from proofs in518

HAω extended with a uniform continuity axiom, which is realized by the Fan functional.519

In [14], Escardó proves that all System T functions are continuous on the Baire space520

and uniformly continuous on the Cantor space without using forcing. Instead, he provides521

an alternative interpretation of system T, where a number is interpreted by a dialogue tree,522

which captures the computation of a function w.r.t. an oracle of type B. Escardó first proves523

that such computations are continuous, and then by defining a suitable relation between524

the standard interpretation and the alternative one, that relates the interpretations of all525

system T terms, derives that for all system T functions on the Baire space are continuous.526

In [25; 26], the authors proved that Brouwer’s continuity principle is consistent with527

Nuprl [8; 2] by realizing the modulus of continuity of functions on the Baire space also using528

Longley’s method [21], but using exceptions instead of references. The realizer there is more529

complicated than the one presented in this paper as it involves an effectful computation that530

repeatedly checks whether a given number is at least as high as the modulus of continuity,531

and increasing that number until the modulus of continuity is reached. We do not require532

such a loop, and can directly extract the modulus of continuity of a function.533

In [4] the authors prove that all BTT [23] functions are continuous by generalizing the534

method used in [14]. Their model is built in three steps as follows: an axiom model/translation535

adds an oracle to the theory at hand; a branching model/translation interprets types as536

intensional D-algebras, i.e., as types equipped with pythias; and an algebraic parametricity537

model/translation that relates the two previous translations by relating the calls to the538

pythia to the oracle. Their models allows deriving that all functions are continuous, but does539

not allow “internalizing” the continuity principle, which is the goal of this paper.540
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