
LSFA 2008

Simplified Reducibility Proofs of
Church-Rosser for β- and βη-reduction

Fairouz Kamareddine and Vincent Rahli 1

ULTRA Group, MACS, Heriot-Watt University, Edinburgh, Scotland, UK

Abstract

Reducibility has been used to prove a number of properties in the λ-calculus and is well known to offer on
one hand very general proofs which can be applied to a number of instantiations, and on the other hand, to
be quite mysterious and inflexible. It has, amongst other things, been used along with the so called method
of parallel reductions to prove the Church-Rosser property. In this paper, we concentrate on using the
methods of reducibility and of parallel reductions for proving Church-Rosser for both β- and βη-reduction.
Our contributions are two fold:

• We give a simple proof of CR for β-reduction which unlike the common proofs in the literature, avoids
any type machinery and is solely carried out in a completely untyped setting.

• We give a new proof of CR for βη-reduction which is a generalisation of our simple proof for β-reduction.

Keywords: Church-Rosser, Reducibility, Parallel reductions

1 Introduction

Reducibility is a method based on realisability semantics [7], developed by Tait [11]
in order to prove normalisation of some functional theories. The idea is to interpret
types by sets of λ-terms closed under some properties. Since its introduction, this
method has gone through a number of improvements and generalisations. In par-
ticular, Krivine [10] uses reducibility to prove the strong normalisation (SN) of his
intersection type system called system D. Koletsos [8] generalises and extends Kriv-
ine’s method to prove that the set of simply typed λ-terms holds the Church-Rosser
property (CR, also called confluence) w.r.t. β-reduction. Although it is well known
that β-reduction satisfies CR, reducibility proofs of CR are in line with proofs of
SN and hence, one can establish both SN and CR using the same method. More-
over, CR proofs can be quite involved (proofs solely via parallel reduction are very
lengthy). So, reducibility proofs can help within the same machinery to prove the
most important properties of a λ-calculus (such as SN, CR or standardisation).

1 http://www.macs.hw.ac.uk/ultra/

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://www.macs.hw.ac.uk/ultra/

Kamareddine and Rahli

In this paper we use reducibility for proving CR for both β- and βη-reduction.
We give a proof of CR for β-reduction which is simpler that the one given by
Ghilezan and Kunčak [4] and introduce a new proof of CR for βη-reduction which
is a generalisation of our simple proof for β-reduction. The CR theorem is a strong
form of a theorem stated by Church and Rosser [3] proving the consistency of the
λ-calculus. A binary relation R (where R∗ stands for its reflexive and transitive
closure) on the λ-calculus satisfies CR iff for any λ-terms M,M1,M2 such that
MR∗M1 ∧MR∗M2 there exists M3 such that M1R∗M3 ∧M2R∗M3.

As in a number of other works [9,6,4], our method to prove CR for a given set of
terms w.r.t. a reduction relation (we consider both β-reduction and βη-reduction)
consists in two main steps:

• Our first step, based on a “simplified” reducibility method, differs from the “com-
mon” reducibility method because we do not relate (even if this relation exists)
the given set of terms to a set of typable terms in some type system (such as
the systems D or DΩ [10] or the Simply Typed Lambda Calculus). This sim-
plification enables us to get rid of all the machinery involved in a type system
(the definitions of types, typing rules, environments, etc.). As it is crucial to a
reducibility method to use a soundness result, our method also needs a soundness
result. However, we replace type interpretations by simple sets of terms which
bear no relation to types.

• The second step of our method consists in reducing the problem of the confluence
of the λ-calculus w.r.t. the considered reduction relation to the problem of the
confluence of the defined set of terms w.r.t. the defined reduction. This second
step is done using a rather short method of parallel reductions by defining a new
simple reduction (whose reflexive closure is equal to the considered reduction)
and by proving it to be confluent.

To achieve their goals, all of [9,6,4] use the notion of developments. Both Ko-
letsos and Stavrinos [9] as well as Kamareddine and Rahli [6] use a complicated
handing of developments. On the other hand, Ghilezan and Kunčak [4] as well
as this article are based on some weaker and sufficient notions of developments.
Although this article was developed as a simplification of the work done by Kolet-
sos and Stavrinos [9] and by Kamareddine and Rahli [6], it can be regarded as a
simplification and generalisation of the work done by Ghilezan and Kunčak [4].

In section 2, we compare our solution to the related work in the literature,
especially to the one of Ghilezan and Kunčak [4] and Koletsos and Stavrinos [9].
In section 3 we introduce the needed machinery about the λ-calculus and our weak
form of developments. In section 4 we prove the Church-Rosser of the λ-calculus
w.r.t. β-reduction. In section 5 we prove the Church-Rosser of the λ-calculus w.r.t.
βη-reduction. Finally, we conclude in section 6. Due to space limitations, we omit
the details of the proofs. However, full proofs can be found in the extended version
of this article which will always be available at the authors’ web pages.

2

Kamareddine and Rahli

M

Ψ(M)

M1 M2

M3

P2 Q2

P1 Q1P QΨ(P) Ψ(Q)

R

Ψ(R)

R2

?
Ψ

��	o @@Ro

@@R
o ��	

o

�
�

��	

β
@
@
@@R

β

HHHHjβ
����� β

�
�
�
�	

β
@
@
@
@R

β

@@Ro ��	o

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�+

I

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs

I

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs

I

�
�

�
�
�

�
�
�

�
�
�

�
�

�
�+

I

-
Ψ

�
Ψ

-
o

�
o

6Ψ

6o

Fig. 1. The method of Ghilezan and Kunčak for the confluence of →I

2 Related Work and Comparison

In this section we compare our proposal in this paper to a number of the confluence
proof methods in the literature [4,6,1,9]. In this section and only in this section, we
consider the confluence property w.r.t. the β-reduction. In the Figures 1, 2 and 3,
an arrow labelled with o or β stands for →∗o or →∗β respectively. An arrow labelled
with Ψ or | − |cd stands for the application of the function with the same name to
the term at the start of the arrow.

In Figure 1 we recall the proof of Ghilezan and Kunčak [4] for the confluence
of the untyped λ-calculus w.r.t. to β-reduction. This proof, based on a parallel
reduction method, uses the confluence w.r.t. another reduction→I whose transitive
closure is equal to →∗β. The reduction →I is defined as τ−1◦ →∗β ◦τ where:

• τ =→∗o ◦Ψ
• →o is the compatible closure of the rule (o) : f(g(λx.M))N →o (λx.M)N
• Ψ is defined on the λ-calculus by: Ψ(x) = x, Ψ(λx.M) = g(λx.Ψ(M)) and

Ψ(MN) = fΨ(M)Ψ(N), where f and g are two constants (see remark 3.3).

The relation τ enables to “freeze” some β-redexes and the potential β-redexes (the
other applications) of a term (in fact, τ does more, because Ψ does more by en-
capsulating the λ-abstractions using g which is needed by Ghilezan and Kunčak to
prove the typability of a defined set of terms in the Simply Typed Lambda Calcu-
lus). The reduction τ−1 is equivalent to our (and the one of Krivine [10] before)
erasure function | − |cd (see below), which “unfreezes” the redexes in a term. By
definition of M →I P , there exist M1 and P1 such that Φ(M) →∗o M1 →∗β P1 and
Φ(P) →∗o P1 (left part of the figure). By definition of M →I Q, there exist M2

and Q1 such that Φ(M)→∗o M2 →∗β Q1 and Φ(Q)→∗o Q1 (right part of the figure).
Because M1 can be different from M2, a confluence lemma for the →o reduction
and a commutation lemma for the reductions →∗o and →∗β are needed. The central
part of the figure is due to the confluence of the terms typable in the Simply Typed
Lambda Calculus. However, the confluence of the Simple Typed Lambda Calculus
is not provided because the result has already been proved many times in the lit-
erature. For example, as cited by Ghilezan and Kunčak, Koletsos [8] proved this
result using a reducibility method. Hence, when combined with Koletsos’s proof
of the confluence of the Simple Typed Lambda Calculus, Ghilezan and Kunčak’s

3

Kamareddine and Rahli

method can be regarded as the combination of a reducibility method and a method
of parallel reductions.

The reduction→I (designed by Ghilezan and Kunčak [4]) defines a development
without specifying explicitly the set of redexes which are allowed to be reduced and
their residuals (as done for example by Barendregt al. [1] , and which differ from
the “common” one as defined for example by Barendregt [2] or Hindley [5]). Let
us consider the reduction M →I P (unfolded above). First, the function Ψ blocks
all the redexes in M . Then →∗o enables to set the set of redexes which are allowed
to be reduced in M without explicitly naming them, by unblocking some redexes
in Ψ(M). The reduction M1 →∗β P1 reduces the allowed redexes. And finally in
Ψ(P)→∗o P1, the reduction→∗o sets the set of residuals of the set of redexes in M1

without naming them.
The gap in the work of Krivine [10] or Koletsos and Stavrinos [9] is about the

treatment of the occurrences of β-redexes. In these works, occurrences are treated
intuitively and not formally. So, the work turns out to be much more complicated
than it seems when one wants to “formally” prove the results (see [6]), or even just
define the developments. Ghilezan and Kunčak [4] do not face the same problem.
The reduction →∗o enables to unblock a certain set of β-redexes without explicitly
specifying the set of unblocked redexes. In the work of Ghilezan and Kunčak, as in
the work of Barendregt et al. [1] for example, a development of a term is defined
without explicit control on the set of occurrences of reduced β-redexes, which is not
needed.

Although Ghilezan and Kunčak [4] consider a simpler definition of develop-
ments than the “common” one, the scheme of their proof method is exactly the
one followed by Koletsos and Stavrinos [9]. Koletsos and Stavrinos consider the
following “common” definition of developments: there exists a development from
M to N iff 〈M, s1〉 →∗d 〈N, s2〉 where s1 is a set of redexes in M and s2 is
the set of residuals of s1 in N (where →∗d is a new (complex) reduction relation
based on →∗β). Their proof of the confluence of developments uses, among other
things, the following claim: if 〈M, s1〉 →∗d 〈N, s2〉 then there exists s4 such that
〈M, s1 ∪ s3〉 →∗d 〈N, s2 ∪ s4〉, where s3 is a set of redexes of M . It is useful to prove
that if 〈M, s1〉 →∗d 〈M1, s

′
1〉 and 〈M, s2〉 →∗d 〈M2, s

′
2〉 then there exist s′′1 and s′′2 such

that 〈M, s1 ∪ s2〉 →∗d 〈M1, s
′
1 ∪ s′′2〉 and 〈M, s2 ∪ s1〉 →∗d 〈M2, s

′
2 ∪ s′′1〉. This corre-

sponds to the proof of the confluence of→∗o of Ghilezan and Kunčak, which is useful
to get the reductions (Ψ(M) →∗o M1 →∗o M3 →∗β P2 and Ψ(P) →∗o P1 →∗o P2) and
(Ψ(M) →∗o M2 →∗o M3 →∗β Q2 and Ψ(Q) →∗o Q1 →∗o Q2). Ghilezan and Kunčak
emphasised this more strongly than Koletsos and Stavrinos.

We have to notice that the major difference between the methods of Ghilezan
and Kunčak [4] and Barendregt et al. [1] is how developments are proved confluent.
Barendregt et al. too give a definition of developments without explicitly naming
an occurrence of a redex (no set of occurrences is defined), introducing among other
things, a second abstraction λ. The correspondence between the untyped λ-calculus
and the calculus with this second abstraction is similar to the correspondence be-
tween the untyped λ-calculus and the marked calculus introduced by Krivine and
reused in other works [10,4,9,6]. The result obtained by Barendregt et al. is based
on the finiteness (which is a termination result) and the confluence of developments.

4

Kamareddine and Rahli

M

Ψ(M)

P1 Q1

R1

P Q

Ψ(P) Ψ(Q)

P2 Q2

R

?

Ψ

�
�

�
�	

β
@
@
@
@R

β

@
@
@
@R

β

�
�
�
�	

β

�
| − |

-
| − |

�
�

�
�

�
�
�

�
�
�

�
�
�

�+

1

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs

1

@
@
@
@
@
@
@
@
@
@
@
@
@
@R

1

�
�
�

�
�
�

�
�
�

�
�
�

�
�	

1

PPPPPPqΨ
������) Ψ

@
@
@@R

β �
�

��	

β

A
A
A
A
AAU

| − |

�
�
�
�
���

| − |

�
�	
o @

@R
o

?

| − |

�
�	o

@
@Ro

Fig. 2. Our method for the confluence of →1

In Figure 2 we draw the diagram of our method to prove the confluence of the
λ-calculus. By definition of M →1 P , there exists P1 such that Φ(M) →∗β P1

and |P1|cd = P (left part of the figure). By definition of M →1 Q, there exists
Q1 such that Φ(M) →∗β Q1 and |Q1|cd = Q (right part of the figure). Moreover
P1 →∗o Ψcd(|P1|cd) and Q1 →∗o Ψcd(|Q1|cd). So, because P1 and Ψcd(|P1|cd) might
be different (as for Q1 and Ψcd(|Q1|cd)), as Ghilezan and Kunčak [4], we need
a commutation result for the reductions →∗β and →∗o. Then, the whole diagram
commutes because |P2|cd = |R1|cd = |Q2|cd. As in the Figure 1, the central part is
due to the confluence of a defined set of terms (in both cases typable in the Simply
Typed Lambda Calculus, even if we do not use this fact because we do not use
types). We do not need to prove the confluence of the reduction →∗o, because we
use the following property: if M →∗o N then |M |cd = |N |cd (bottom of the figure).
So, as we can see in Figure 2, we can get rid of the erasure function and use instead
Ψ−1◦ →∗o and the confluence of →∗o which, we think, is more intuitive.

Our method is also based on some kind of weak developments, where all the
β-redexes are let unblocked and where all the potential β-redexes (all the other
applications) are blocked. In this paper we define two weak developments such as
the reduction →I defined by Ghilezan and Kunčak. They are called →1 for the β
case and →2 for the βη case. In that way, we do not need the reduction →∗o to
unblock some redexes in order to perform some reductions. But, it does not seem
possible to get rid of the work done by this reduction. Indeed, our choice implies the
introduction of some other material which turns out to be identical to the reduction
→∗o (which is why we called our reduction→∗o too). Both the two different methods
need the introduction of some equivalent material, but not at the same place. the
reduction →∗o is used by Ghilezan and Kunčak to unblock some redexes in order to
enable some reductions whereas we use the reduction →∗o to unblock some redexes
which turned to be blocked after some reductions.

As we can see in these two figures, because the occurrences of redexes are not
explicitly taken into consideration, the function Ψ (which enables to embed a term
in a simply typed term, by blocking redexes or potential future redexes) needs to

5

Kamareddine and Rahli

M

P

P1 P2

P3

M1 M2

M3

?

Ψ

�
�
�
�	

β+
@
@
@
@R

β+

@
@
@
@R

β+
�

�
�
�	

β+

-Ψ � Ψ

�
�
�

�
�
�

�
��	

1

@
@
@
@
@
@
@
@@R

1

@
@
@
@
@
@
@
@@R

1

�
�
�

�
�
�

�
��	

1
6
Ψ

Fig. 3. What we would like to get

block or let unblocked all the redexes of a term. If all the redexes are blocked by
Ψ, the reduction →o is needed before being able to perform some reductions (see
Figure 1). In this case some technical results are needed such as the confluence
of →o. In the other case (Ψ let unblocked all the redexes), because a term with
all its redexes unblocked does not necessarily reduce to a term with all its redexes
unblocked, some technical results on→o are also needed as we previously explained
(see Figure 2).

Finally, We have to notice that the just described methods [4,9,6,1] follow the
proof scheme depicted in Figure 3. In this figure the reduction β+ stands for a
reduction based on the β-reduction, such as developments. But, depending on how
they are defined, developments may need the introduction of a huge machinery to
deal with occurrences of redexes [9,6]. So, the central part, even if still obtained
by a simple reducibility method (whether or not using a type system such as the
Simply Typed Lambda Calculus), may turn out to be very complicated [9,6]. Hence,
a better solution should be as depicted in Figure 3 with a simple proof of the
confluence of a calculus w.r.t. the reduction β+. We still have to find out if it is
possible to perform more simplifications on the proof given by Ghilezan and Kunčak
[4] or on the present proof, because our attempt to do so in this article only partially
succeed (we do need some “complicated” definitions and lemmas as depicted in the
lower half of the Figure 2).

3 The Formal Machinery

In this section we provide some known formal machinery and introduce new defini-
tions and lemmas that are necessary for the paper. Let n,m be metavariables which
range over the set of natural numbers N = {0, 1, 2, . . .}. We take as convention that
if a metavariable v ranges over a set s then the metavariables vi such that i ≥ 0
and the metavariables v′, v′′, etc. also range over s.

A binary relation is a set of pairs. Let rel range over binary relations. If
〈x, y〉 ∈ rel then we sometimes write it x rel y. Let dom(rel) = {x | 〈x, y〉 ∈ rel}
and ran(rel) = {y | 〈x, y〉 ∈ rel}. A function is a binary relation fun such that if
{〈x, y〉, 〈x, z〉} ⊆ fun then y = z. Let fun range over functions. Let s→ s′ = {fun |
dom(fun) ⊆ s ∧ ran(fun) ⊆ s′}.

Given n sets s1, . . . , sn, where n ≥ 2, s1 × . . . × sn stands for the set of all the
tuples built on the sets s1, . . . , sn. If x ∈ s1 × . . . × sn, then x = 〈x1, . . . , xn〉 such

6

Kamareddine and Rahli

that xi ∈ si for all i ∈ {1, . . . , n}.

3.1 Background on the λ-calculus

This section consists of one long definition of some familiar (mostly standard) con-
cepts of the λ-calculus and one basic lemma.

Definition 3.1 (i) Let x, y, z range over Var, a countable infinite set of variables.
The set of terms of the λ-calculus is defined as follows:

M ∈ Λ ::= x | (λx.M) | (M1M2)

We let M,N,P,Q,R range over Λ. We call a term of the form λx.M , a λ-
abstraction or just abstraction. We call a term of the form M1M2 an applica-
tion. We assume the usual definition of subterms and write N ⊆ M if N is a
subterm of M (M ⊆M). We also assume the usual convention for parenthesis
and omit these when no confusion arises. In particular, we write MN0 · · ·Nn

instead of (· · · ((MN0)N1) · · ·Nn−1)Nn.
We take terms modulo α-conversion and use the Barendregt convention (BC)

where the names of bound variables differ from the free ones. When two terms
M and N are equal (modulo α), we write M = N . We write fv(M) for the set
of the free variables of term M .

(ii) Let n ≥ 0. We define Mn(N), by induction on n, as follows: M0(N) = N and
Mn+1(N) = M(Mn(N)).

(iii) We define as usual the substitution M [x := N] of N for all free occurrences of
x in M . We let M [x1 := N1, . . . , xn := Nn] be the simultaneous substitution
of Ni for all free occurrences of xi in M for 1 ≤ i ≤ n.

(iv) We assume the usual definition of compatibility (see the last line of Figure 4).
For r ∈ {β, βη}, we define the reduction relation →r on Λ as the least com-
patible relation closed under rule (r) : L→r R below, and we call L an r-redex
and R the r-contractum of L (or the L r-contractum).
• (β): (λx.M)N →β M [x := N].
• (η): λx.Mx→η M where x 6∈ fv(M).
We define →βη=→β ∪ →η.

(v) Let r ∈ {→β,→η,→βη}. We use →∗r to denote the reflexive transitive closure
(see the rules (refl) and (tr) of Figure 4) of →r. We let 'r denote the equiv-
alence relation induced by →r. If the r-reduction from M to N is in k steps,
we write M →k

r N .

(vi) Let r ∈ {β, βη} and n ≥ 2. A term (λx.M ′1)M ′2 . . .M
′
n is a direct r-reduct of

(λx.M1)M2 . . .Mn iff ∀i ∈ {1, . . . , n},Mi →∗r M ′i .
(vii) Let r ∈ {β, βη}. We say that M has the Church-Rosser property for r (has

r-CR) if whenever M →∗r M1 and M →∗r M2 then there exists M3 such that
M1 →∗r M3 and M2 →∗r M3. We define CRr = {M | M has r-CR}. We define
CRr→ = {M ∈ CRr | ∀N ∈ CRr. MN ∈ CRr}. We use CR to denote CRβ and
CR→ to denote CRβ→.

(viii) We define the set SAT of the saturated sets as follows:

7

Kamareddine and Rahli

let R be a binary relation on Λ.

M R M
(refl)

M1 R M2 M2 R M3

M1 R M3
(tr)

P R Q

λx.P R λx.Q
(abs)

Q R Q′

PQ R PQ′
(app1) P R P ′

PQ R P ′Q
(app2)

Fig. 4. Closure rules

SAT = {s ⊆ Λ | n ≥ 0 ∧M [x := N]P1 . . . Pn ∈ s⇒ (λx.M)NP1 . . . Pn ∈ s}.
(ix) We define the set VAR of the set satisfying the variable property as follows:

VAR = {s ⊆ Λ | n ≥ 0 ∧ (∀i ∈ {1, . . . , n}. Mi ∈ s)⇒ xM1 · · ·Mn ∈ s}

Lemma 3.2 Let r ∈ {β, βη}.

(i) If M →∗r N and P →∗r Q then M [x := P]→∗r N [x := Q].

(ii) fv(M [x := N]) ⊆ fv((λx.M)N).

(iii) If M →∗r N then fv(N) ⊆ fv(M).

(iv) If n ≥ 0, Q = (λx.M)NN1 . . . Nn →k
r P and P is not a direct r-reduct of Q

then (a) k ≥ 1, (b) if k = 1 then P = M [x := N]N1 . . . Nn and (c) there exists a
direct r-reduct (λx.M ′)N ′N ′1 . . . N

′
n of Q such that M ′[x := N ′]N ′1 . . . N

′
n →∗r P .

(v) Let n ≥ 0 and (λx.M)NN1 . . . Nn →∗r P . There exists P ′ such that P →∗r P ′
and M [x := N]N1 . . . Nn →∗r P ′.

(vi) CRr ∈ SAT.

(vii) CRr ∈ VAR.

(viii) If M ∈ CR then λx.M ∈ CR.

3.2 Pseudo Development Definitions

Throughout, we take c and d to be two distinct metavariables ranging over Var.

Remark 3.3 Such c and d are usually given not as metavariables, but as new
variables or constants [4,9,10]. We noted that this usual way leads to problems.

For example, Ghilezan and Kunčak [4], call c and d, f and g and are introduced
as “predefined constants” not belonging to the λ-calculus. But the function Ψ
defined by Ghilezan and Kunčak (similar to our function Ψcd) is proved to be a
function from Λ to Λ0 ⊂ Λ where Λ0 is a set of terms typable in the Simply Typed
Lambda Calculus in a certain environment. So, it is obvious that their function Ψ
does not associate a term in Λ0 to each term in Λ since Ψ adds some f and g to the
terms.

Moreover, typing environments (contexts) are defined as sets of type assignments
of the form x : φ where x is a term variable. Later, some contexts are built with
type assignments of the form f : φ, but f is not defined as a term variable. More
generally, the introduction of a new variable or a new constant implies that the

8

Kamareddine and Rahli

considered type system has to be defined on the new calculus.
Koletsos and Stavrinos [9], define two sets CR and CR0 which turn out to be

equal to ours. Among other things, CR,CR0 ⊆ Λ. Koletsos and Stavrinos prove that
each term typable in the type system D has the Church-Rosser property. But it is
not specified on which set of terms this result is stated. The proof of this statement
fails, for example, for terms with free variables not belonging to the set of variables
of the initial λ-calculus (c is defined as a variable not belonging to this set), since
the proof uses the fact that the free variables of the term belong to the set CR0.
But, further, this statement is used for a term which may contain some c.

As started by Krivine [10] and followed by many others [4,9,6], we use c and d

to “freeze” some current or potential redexes (applications which are not currently
redexes but which will become redexes after some substitutions). The following two
parametrised calculi (with parameters c and d) are the “frozen” calculi based on the
λ-calculus where some reductions are blocked by the use of c and d. For example
(λx.xy)(λz.z)→β (λz.z)y →β y, but (λx.cxy)(d(λz.z))→β c(d(λz.z))y which does
not reduce. In this example we remark that in fact c and d are not only needed
to “freeze” potential redexes, but, as we will see below, they are also both needed
to get our soundness results (lemma 4.4 and 5.6). Or, as proved by Ghilezan and
Kunčak (for a calculus similar to the first of the two ones presented below), to get
the typability of these calculi in the Simply Typed Lambda Calculus. It is easy to
see that Λβcd ⊂ Λβηcd ⊂ Λ.

Definition 3.4 [Λβcd, Λβηcd] Let x̄ , ȳ ∈ Varcd = Var \ {c, d}.

M̄ ∈ Λβcd ::= x̄ | d(λx̄ .M̄) | (λx̄ .M̄1)M̄2 | cM̄1M̄2

M̄ ∈ Λβηcd ::= x̄ | d(cM̄) | d(λx̄ .M̄) | (λx̄ .M̄1)M̄2 | cM̄1M̄2

We let M̄ , N̄ , P̄ , Q̄ , R̄ range over Λβηcd

We now define the function which “freezes” the potential redexes. The difference
with similar definitions in the literature [4,9,10,6], is that with our definition (third
clause below), the current β-redexes of a term are all “unfrozen”. Furthermore, our
definition does not freeze the current η-redexes and does not freeze the potential
η-redexes which are not current η-redexes. For example, M = d(λx.(λy.czx)z) does
not contain any η-redex but contains a potential η-redex, since M →β d(λx.czx) =
N and N contains a η-redex. As we will see in this paper, it is not necessary to
“freeze” the potential η-redexes.

Definition 3.5 [Ψcd(−)] Ψcd(−) is defined as follows:

(i) Ψcd(x) = x

(ii) Ψcd(λx.N) = d(λx.Ψcd(N)), where x 6∈ {c, d}
(iii) Ψcd((λx.N)Q) = (λx.Ψcd(N))Ψcd(Q), where x 6∈ {c, d}
(iv) If P is not a λ-abstraction then Ψcd(PQ) = cΨcd(P)Ψcd(Q).

Similarly to those given in the literature [9,10,6], the following erasure function
enables us to erase every c and d from a term of the “frozen” calculi Λβcd and Λβηcd .

9

Kamareddine and Rahli

Definition 3.6 [| − |cd] | − |cd : Λ→ Λ, is defined as follows:

• |x|cd = x

• |λx.N |cd = λx.|N |cd, where x 6∈ {c, d}
• If P ∈ {c, d} then |PQ|cd = |Q|cd
• If P 6∈ {c, d} then |PQ|cd = |P |cd|Q|cd.

The next definition introduces the reduction →o which is a kind of partial era-
sure. This reduction turns out to be a simplification and a generalisation (in order
to handle the βη-reduction) of the reduction, named also →o, defined by Ghilezan
and Kunčak [4]. Note that a term in Λβcd never reduces by the compatible closure
of the rule (dc). But this rule is introduced in order to handle the βη case.

Definition 3.7 [→o] Let the reduction relation →o on Λ be the least compatible
relation closed under the following rules:

• (cd) : c(dM)→o M .
• (dc) : d(cM)→o M .

As usual →∗o is the reflexive and transitive closure of →o.

Notation 3.8 Let (d ◦ c)0(M) stand for M and if n ≥ 0, let (d ◦ c)n+1(M) stand
for d(c((d ◦ c)n(M))).

Definition 3.9 [weak developments: →1, →2] Let M such that c, d 6∈ fv(M) and
〈r, s〉 ∈ {〈1, β〉, 〈2, βη〉}.

M →r N ⇐⇒ ∃P. Ψcd(M)→∗s P ∧ |P |cd = N

As usual, →∗r is the reflexive and transitive closure of →r.

4 A simple Church-Rosser proof for β-reduction

Koletsos and Stavrinos [9] gave a proof of the Church-Rosser property for the set of
terms typable in the intersection type system called system D [10] w.r.t. β-reduction
and showed that this can be used to establish confluence of β-developments without
using strong normalisation. Ghilezan and Kunčak [4] gave a proof of the Church-
Rosser property for the set of terms typable in Simply Typed Lambda Calculus
w.r.t. β-reduction and showed that this can be used to establish confluence of a
weak form of β-developments without using strong normalisation.

The first aim of this section, was to simplify the proof of Koletsos and Stavrinos
[9]. During this simplification, we obtained a proof that bears some resemblance to
the proof of Ghilezan and Kunčak [4] but that is much simpler. The second aim of
this section is to provide a framework for our main result: the extension to the case
βη where we give a simple proof of Church-Rosser for βη-reduction (section 5).

The next two lemmas are useful technicalities related to the reduction →o and
to the set of terms Λβcd.

Lemma 4.1 (i) If M̄ ∈ Λβcd and M̄ →o N then N ∈ Λβcd, M̄ 6∈ Varcd, |M̄ |cd =
|N |cd, fv(M̄) \ {c, d} = fv(N) \ {c, d} and:

10

Kamareddine and Rahli

• if M̄ = d(λx̄ .P̄) then N = d(λx̄ .P ′) such that P̄ →o P
′.

• if M̄ = (λx̄ .P̄)Q̄ then N = (λx̄ .P ′)Q̄ such that P̄ →o P
′ or N = (λx̄ .P̄)Q′

such that Q̄ →o Q
′.

• if M̄ = cP̄Q̄ then N = cP ′Q̄ such that P̄ →o P
′ or N = cP̄Q′ such that

Q̄ →∗o Q′ or P̄ = d(λx̄ .R̄) and N = (λx̄ .R̄)Q̄.

(ii) If M̄ ∈ Λβcd and M̄ →∗o d(λx.Q) then M̄ = d(λx.P) and P →∗o Q.

(iii) If M̄ ∈ Λβcd and M̄ →∗o N then N ∈ Λβcd, |M̄ |cd = |N |cd, fv(M̄) \ {c, d} =
fv(N) \ {c, d} and
• if M̄ ∈ Varcd then N = M̄ .
• if M̄ = d(λx̄ .P̄) then N = d(λx̄ .P ′) such that P̄ →∗o P ′.
• if M̄ = (λx̄ .P̄)Q̄ then N = (λx̄ .P ′)Q′ such that P̄ →∗o P ′ and Q̄ →∗o Q′.
• if M̄ = cP̄Q̄ then N = cP ′Q′ such that P̄ →∗o P ′ and Q̄ →∗o Q′ or P̄ =
d(λx̄ .R̄) and N = (λx̄ .R′)Q′ such that R̄ →∗o R′ and Q̄ →∗o Q′.

Lemma 4.2 (i) fv(M) \ {c, d} = fv(Ψcd(M)) \ {c, d}.
(ii) If M̄ ∈ Λβcd then fv(|M̄ |cd) = fv(M̄) \ {c, d}.

(iii) If M̄ ∈ Λβcd and |M̄ |cd = λx̄ .N then M̄ = d(λx̄ .P̄) and |P̄ |cd = N .

The next lemma states that the function Ψcd(−) associates to each term of the
untyped λ-calculus (which does not contain c and d) a term in the language Λβcd.

Lemma 4.3 Let M ∈ Λ such that c, d 6∈ fv(M) then Ψcd(M) ∈ Λβcd.

The next lemma, as part of our “simplified” reducibility method, states the
soundness of our simple calculus based on the set of terms Λβcd w.r.t. our simple
interpretation based on the set CR (as we can see in the proof of this lemma available
in the extended version on the authors web pages), we also use the set CR→ which
correspond to the interpretation of an arrow type in the work done for example by
Koletsos [8]) using among other things the saturation of the set CR (note that this
lemma does not involve any type system).

Lemma 4.4 If M̄ ∈ Λβcd, fv(M̄) \ {c, d} = {x1, . . . , xn} and for all i ∈ {1, . . . , n},
Mi ∈ CR then M̄ [x1 := M1, . . . , xn := Mn] ∈ CR.

We are now able to prove that each term in Λβcd is Church-Rosser (w.r.t. β-
reduction), using the previous lemma.

Corollary 4.5 Λβcd ⊆ CR.

Proof. Let M̄ ∈ Λβcd and fv(M̄)\{c, d} = {x1, . . . , xn}. By lemma 3.2.g, x1, . . . , xn ∈
CR. So by lemma 4.4, M̄ ∈ CR. 2

Here is another lemma containing needed technicalities:

Lemma 4.6 (i) If M̄ , N̄ ∈ Λβcd and x̄ ∈ Varcd then M̄ [x̄ := N̄] ∈ Λβcd.

(ii) |Ψcd(M)|cd = M .

(iii) If M̄ , N̄ ∈ Λβcd and x̄ ∈ Varcd then |M̄ [x̄ := N̄]|cd = |M̄ |cd[x̄ := |N̄ |cd].

(iv) If M̄ ∈ Λβcd and M̄ →∗β N then N ∈ Λβcd and |M̄ |cd →∗β |N |cd.

11

Kamareddine and Rahli

(v) If c, d 6∈ fv(M) and Ψcd(M)→∗β N then M →β |N |cd.

The next lemma is a key lemma of the method of parallel reductions. It states
that the reflexive and transitive closure of→β is equal to the reflexive and transitive
closure of →1.

Lemma 4.7 Let c, d 6∈ fv(M), then M →∗β N ⇐⇒ M →∗1 N .

The next lemma constitutes important properties of the reduction→∗o. The first
property states that for M̄ ∈ Λβcd, Ψcd(|M̄ |cd) is an “unfrozen” version of M̄ (not
totally “unfrozen”, but some “frozen” redexes of M are “unfrozen” in Ψcd(|M̄ |cd)).
The fourth property states that we can simulate the reduction of a term in Λβcd
from a partially “unfrozen” version of it. The fifth property is a technical result
needed to prove the confluence of the →∗1 reduction. The proof of this result is
based on properties of the reduction →∗o. This result is needed since in the proof of
the confluence of the →∗1 reduction, we need to build a reduction →∗1 of length two
from a →∗β reduction of a term in Λβcd. We saw that the function Ψcd associates to

a term of the λ-calculus a term in the calculus Λβcd. The problem comes from the
fact that, even if such a term always reduces to a term belonging to Λβcd, the reduct
is not always the image of a term under the function Ψcd. We fill the gap thanks to
the reduction →∗o and its properties. The seventh property is the confluence of the
λ-calculus w.r.t. →∗1 reduction.

Lemma 4.8 (i) If M̄ ∈ Λβcd then M̄ →∗o Ψcd(|M̄ |cd).

(ii) Let M̄ , N̄ ∈ Λβcd and x̄ ∈ Varcd. If M̄ →∗o M ′ and N →∗o N ′ then M̄ [x̄ :=
N̄]→∗o M ′[x̄ := N ′].

(iii) If M̄1 ∈ Λβcd, M̄1 →β N1 and M̄1 →∗o M2 then there exists N2 such that M2 →β

N2 and N1 →∗o N2.

(iv) If M̄1 ∈ Λβcd, M̄1 →∗β N1 and M̄1 →∗o M2 then there exists N2 such that M2 →∗β
N2 and N1 →∗o N2.

(v) Let M̄ ∈ Λβcd. If M̄ →∗β N and |M̄ |cd = P , then there exists Q ∈ Λβcd such that
Ψcd(P)→∗β Q and |Q|cd = |N |cd.

(vi) Let M ∈ Λ such that c, d 6∈ fv(M). If M →1 M1 and M →1 M2 then there
exists M3 such that M1 →1 M3 and M2 →1 M3.

(vii) Let M ∈ Λ such that c, d 6∈ fv(M). If M →∗1 M1 and M →∗1 M2 then there
exists M3 such that M1 →∗1 M3 and M2 →∗1 M3.

The confluence of the λ-calculus w.r.t. β-reduction is now proved using the
confluence of the λ-calculus w.r.t. →∗1 reduction and the equality between →∗β and
→∗1.

Theorem 4.9 Λ = CR.

Proof. CR ⊆ Λ is trivial, we only prove Λ ⊆ CR. Let M,M1,M2 ∈ Λ such that
M →∗β M1 and M →∗β M2 and c, d 6∈ fv(M). By lemma b, c, d 6∈ fv(M1) ∪ fv(M2).
By lemma 4.7, M →∗1 M1 and M →∗1 M2. By lemma 4.8.g, there exists M3 such
that M1 →∗1 M3 and M2 →∗1 M3. By lemma 4.7, M1 →∗β M3 and M2 →∗β M3. 2

12

Kamareddine and Rahli

5 A simple Church-Rosser proof for βη-reduction

Now that we stated the principal steps of the method of the Church-Rosser property
of the untyped λ-calculus w.r.t. β-reduction, we will generalise it to βη-reduction
following the same steps and using the Λβηcd language. this generalisation can be
regarded as an extension of the method of Ghilezan and Kunčak [4] and a simplifi-
cation of the method of Kamareddine and Rahli. [6].

Lemma 5.1 (i) If M̄ ∈ Λβηcd and M̄ →o N then N ∈ Λβηcd , |M̄ |cd = |N |cd, fv(M̄) \
{c, d} = fv(N) \ {c, d}, M̄ 6∈ Varcd and:
• if M̄ = d(λx̄ .P̄) then N = d(λx̄ .P ′) such that P̄ →o P

′.
• if M̄ = (λx̄ .P̄)Q̄ then N = (λx̄ .P ′)Q̄ such that P̄ →o P

′ or N = (λx̄ .P̄)Q′

such that Q̄ →o Q
′.

• if M̄ = cP̄Q̄ then N = cP ′Q̄ such that P̄ →o P
′ or N = cP̄Q′ such that

Q̄ →∗o Q′ or P̄ = d(λx̄ .R̄) and N = (λx̄ .R̄)Q̄.
• if M̄ = d(cP̄) then N = P̄ or N = d(cP ′) such that P̄ →o P

′.

(ii) If M̄ ∈ Λβηcd , n ≥ 0 and M̄ →∗o (d ◦ c)n(d(λx.Q)) then M̄ = (d ◦ c)m(d(λx.P))
such that m ≥ n and P →∗o Q.

(iii) If M̄ ∈ Λβηcd and M̄ →∗o N then N ∈ Λβηcd , |M̄ |cd = |N |cd, fv(M̄) \ {c, d} =
fv(N) \ {c, d} and:
• If M̄ ∈ Varcd then M̄ = N .
• If M̄ = d(λx̄ .P̄) then N = d(λx̄ .Q) such that P̄ →∗o Q.
• If M̄ = (λx̄ .P̄)Q̄ then N = (λx̄ .P ′)Q′ such that P̄ →∗o P ′ and Q̄ →∗o Q′.
• If M̄ = cP̄Q̄ then N = cP ′Q′ such that P̄ →∗o P ′ and Q̄ →∗o Q′ or P̄ =

(d ◦ c)n(d(λx̄ .P̄1)) and N = (λx̄ .P ′1)Q′ such that n ≥ 0, x̄ ∈ Varcd, P̄1 ∈ Λβηcd ,
P̄1 →∗o P ′1 and Q̄ →∗o Q′.

• If M̄ = (d ◦ c)n(P̄) such that n ≥ 0 then N = (d ◦ c)m(Q) such that m ≤ n

and P̄ →∗o Q.

Lemma 5.2 (i) If M̄ ∈ Λβηcd then fv(M̄) \ {c, d} = fv(|M̄ |cd).
(ii) If λx.M →∗βη N then:

• Either N = λx.M ′ such that M →∗βη M ′.
• Or M →∗βη Nx such that x 6∈ fv(N).

(iii) If x 6∈ fv(M) and Mx→∗βη N then M →∗βη P and:
• Either N = Px.
• Or P = λx.N .

Lemma 5.3 If M ∈ CRβη then λx.M ∈ CRβη.

Lemma 5.4 (i) If M̄ ∈ Λβηcd , x̄ ∈ Varcd and |M̄ |cd = λx̄ .N then M̄ = (d ◦
c)n(d(λx̄ .P̄)) where n ≥ 0, P̄ ∈ Λβηcd and |P̄ |cd = N .

(ii) If M̄ , N̄ ∈ Λβηcd and x̄ ∈ Varcd then M̄ [x̄ := N̄] ∈ Λβηcd .

The next lemma states that the function Ψcd associates to each term of the
λ-calculus (which does not contain the variables c and d) a term in the language
Λβηcd . This result is trivial, since Λβcd ⊂ Λβηcd .

Lemma 5.5 If c, d 6∈ fv(M) then Ψcd(M) ∈ Λβηcd .

13

Kamareddine and Rahli

Proof. By lemma 4.3, Ψcd(M) ∈ Λβcd. Since Λβcd ⊂ Λβηcd then Ψcd(M) ∈ Λβηcd . 2

The next lemma, as part of our “simplified” reducibility method, states the
soundness of our simple calculus based on the set of term Λβηcd w.r.t. our simple
interpretation based on the set CRβη (as we can see in the proof of this lemma, we
also use the set CRβη→ which corresponds to the interpretation of an arrow type in
the work done for example by Koletsos [8]) using among other things the saturation
of the set CRβη (note that as for lemma 4.4, this lemma does not involve any type
system).

Lemma 5.6 If M̄ ∈ Λβηcd , fv(M̄) \ {c, d} = {x1, . . . , xn} and for all i ∈ {1, . . . , n},
Mi ∈ CRβη then M̄ [x1 := M1, . . . , xn := Mn] ∈ CRβη.

We are now able to prove that each term in the Λβηcd calculus is Church-Rosser
(w.r.t. the βη-reduction), using the previous lemma.

Corollary 5.7 Λβηcd ⊆ CRβη.

Proof. Let M̄ ∈ Λβηcd and fv(M̄)\{c, d} = {x1, . . . , xn}. By lemma 3.2.g, x1, . . . , xn ∈
CRβη. So by lemma 5.6, M̄ ∈ CRβη. 2

Lemma 5.8 Let x 6∈ fv(P)∪ fv(y). If for all N ∈ Λ such that x 6∈ fv(N), M 6= Nx

then for all N ∈ Λ such that x 6∈ fv(N),M [y := P] 6= Nx.

Lemma 5.9 If x̄ ∈ Varcd and M̄ , N̄ ∈ Λβηcd then |M̄ [x̄ := N̄]|cd = |M̄ |cd[x̄ := |N̄ |cd].

Lemma 5.10 If M̄ ∈ Λβηcd and M̄ →∗βη N then N ∈ Λβηcd and |M̄ |cd →∗βη |N |cd.

Corollary 5.11 Let M ∈ Λ such that c, d 6∈ fv(M). If Ψcd(M) →∗βη N then
M →∗βη |N |cd.

Proof. By lemma 5.5, Ψcd(M) ∈ Λβηcd . By lemma 5.10, |Ψcd(M)|cd →∗βη |N |cd. By
lemma 4.6.b, M →∗βη |N |cd. 2

The next lemma is a key lemma of the parallel reduction method. It states that
the reflexive and transitive closure of →βη is equal to the reflexive and transitive
closure of →2.

Lemma 5.12 Let c, d 6∈ fv(M), then M →∗βη N ⇐⇒ M →∗2 N .

The next lemma states that for M ∈ Λβηcd , Ψcd(|M |cd) is an “unfrozen” version
of M (not totally “unfrozen”, but some “frozen” redexes of M are “unfroze” in
Ψcd(|M |cd)).

Lemma 5.13 If M̄ ∈ Λβηcd then M̄ →∗o Ψcd(|M̄ |cd).

Lemma 5.14 Let x̄ ∈ Varcd and M̄ , N̄ ∈ Λβηcd . If M̄ →∗o M ′ and N→∗oN ′ then
M̄ [x̄ := N̄]→∗o M ′[x̄ := N ′].

Lemma 5.15 If M̄1 ∈ Λβηcd , M̄1 →βη N1 and M̄1 →∗o M2 then there exists N2 such
that M2 →βη N2 and N1 →∗o N2.

The next lemma states that we can simulate the reduction of a term in Λβηcd from
an “unfrozen” version of it.

14

Kamareddine and Rahli

Lemma 5.16 If M̄1 ∈ Λβηcd such that M̄1 →∗βη N1 and M̄1 →∗o M2 then there exists
N2 such that M2 →∗βη N2 and N1 →∗o N2.

Proof. Easy by lemma 5.15. 2

The next result is a technical result needed to prove the confluence of the →∗2
reduction. The proof of this result is based on properties of the reduction→∗o. This
lemma is needed since in the proof of the confluence of the→∗2 reduction, we need to
build a reduction→∗2 of length two from a→∗βη reduction of a term in Λβηcd . We saw
that the function Ψcd associates to a term of the λ-calculus a term in the calculus
Λβηcd . The problem comes from the fact that, even if a such term always reduces to
a term belonging to Λβηcd , the reduct is not always the image of a term under the
function Ψcd. We fill the gap thanks to the reduction →∗o and its properties

Corollary 5.17 Let M ∈ Λβηcd . If M →∗βη N and |M |cd = P , then there exists Q
such that Ψcd(P)→∗βη Q and |Q|cd = |N |cd.

Proof. By lemma 5.13, M →∗o Ψcd(|M |cd). By lemma 5.16, there exists Q such
that Ψcd(|M |cd)→∗βη Q and N →∗o Q. By lemma 5.1.c, |Q|cd = |N |cd. 2

Lemma 5.18 Let M ∈ Λ such that c, d 6∈ fv(M). If M →2 M1 and M →2 M2

then there exists M3 such that M1 →2 M3 and M2 →2 M3.

Proof. By definition, there exist P1, P2 such that Ψcd(M) →∗βη P1, Ψcd(M) →∗βη
P2, |P1|cd = M1 and |P2|cd = M2. By lemma 5.5, Ψcd(M) ∈ Λβηcd . So by corol-
lary 5.7, there exists P3 such that P1 →∗βη P3 and P2 →∗βη P3. Let M3 = |P3|cd.
By lemma 5.10, P1, P2 ∈ Λβηcd . By corollary 5.17, there exist Q1, Q2 such that
Ψcd(M1) →∗βη Q1, Ψcd(M2) →∗βη Q2, and |Q1|cd = M3 = |Q2|cd. By lemma 5.2.a,
c, d 6∈ fvM1 ∪ fv(M2). So M1 →2 M3 and M2 →2 M3. 2

It is then easy to deduce the confluence of the λ-calculus w.r.t. →∗2 reduction:

Lemma 5.19 Let M ∈ Λ such that c, d 6∈ fv(M). If M →∗2 M1 and M →∗2 M2

then there exists M3 such that M1 →∗2 M3 and M2 →∗2 M3.

Proof. Easy by lemma 5.18 2

The confluence of the λ-calculus w.r.t. βη-reduction is then proved using the
confluence of the λ-calculus w.r.t. →∗2 reduction and the equality between →∗βη and
→∗2.

Theorem 5.20 Λ = CRβη.

Proof. CRβη ⊆ Λ is trivial, we only prove Λ ⊆ CRβη. Let M,M1,M2 ∈ Λ and
c, d 6∈ fv(M) such that M →∗βη M1 and M →∗βη M2. By lemma 3.2.c, c, d 6∈
fv(M1)∪ fv(M2). By lemma 5.12, M →∗2 M1 and M →∗2 M2. By lemma 5.19, there
exists M3 such that M1 →∗2 M3 and M2 →∗2 M3. By lemma 5.12, M1 →∗βη M3 and
M2 →∗βη M3. 2

15

Kamareddine and Rahli

6 Conclusion

Although our work derives from the one done by Koletsos and Stavrinos [9] and
Kamareddine and Rahli [6], it turned out that it is also a simplification and gen-
eralisation of the work done by Ghilezan and Kunčak [4]. Because the work we
achieved is more similar to the one of Ghilezan and Kunčak, we adapted some of
our notations to theirs and focused our comparisons with the related work to their
work.

Thereby, the two improvements of the present article can be regarded as the
simplification of the work done by Ghilezan and Kunčak [4] by getting rid of all the
type machinery and the extension of the defined method to the βη-reduction.

As explained above, the main lines of our proof are: the definition of some weak
developments, the proof of the confluence of a simple calculus w.r.t. the considered
reduction (β or βη) using a simplified reducibility method, the proof of the conflu-
ence of the defined developments and the proof of the equality between the reflexive
and transitive closure of the developments and the reflexive and transitive closure
of the considered reduction using a method of parallel reductions.

We think that the definitions of developments presented by Ghilezan and Kunčak
[4] or in this paper would be hard to simplify further. But, as we pointed out in
section 2, finding a simpler definition of developments (or similar reduction) might
help simplifying further this kind of proof.

References

[1] H. Barendregt, J. A. Bergstra, J. W. Klop, H. Volken. Degrees, reductions and representability in the
lambda calculus. Technical Report Preprint no. 22, University of Utrecht, Department of Mathematics,
1976.

[2] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, revised edition,
1984.

[3] A. Church, J. B. Rosser. Some properties of conversion. Transactions of the American Mathematical
Society, 39(3), 1936.

[4] S. Ghilezan, V. Kunčak. Confluence of untyped lambda calculus via simple types. Lecture Notes in
Computer Science, 2202, 2001.

[5] R. Hindley. Reductions of residuals are finite. Transactions of the American Mathematical Society,
240, 1978.

[6] F. Kamareddine, V. Rahli, J. B. Wells. Reducibility proofs in the λ-calculus. Presented to ITRS ’08,
4th Workshop on Intersection Types and Related Systems, Turin, Italy, 25 March 2008, 2007.

[7] S. C. Kleene. On the interpretation of intuitionistic number theory. The Journal of Symbolic Logic,
10(4), 1945.

[8] G. Koletsos. Church-rosser theorem for typed functional systems. Journal of Symbolic Logic, 50(3),
1985.

[9] G. Koletsos, G. Stavrinos. Church-rosser property and intersection types. Australasian Journal of
Logic, 2007.

[10] J. L. Krivine. Lambda-calcul, types et modeles. Dunod, 1990.

[11] W. W. Tait. Intensional interpretations of functionals of finite type I. J. Symb. Log., 32(2), 1967.

16

file:citeseer.ist.psu.edu/463525.html
http://www.jstor.org/stable/1998825

	Introduction
	Related Work and Comparison
	The Formal Machinery
	Background on the -calculus
	Pseudo Development Definitions

	A simple Church-Rosser proof for -reduction
	A simple Church-Rosser proof for -reduction
	Conclusion
	References

