Open Bar: a Brouwerian Intuitionistic Logic with a Pinch of Excluded Middle

Mark Bickford, Liron Cohen, Bob Constable, Vincent Rahli

January 27, 2021

In collaboration with

Liron Cohen

Mark Bickford

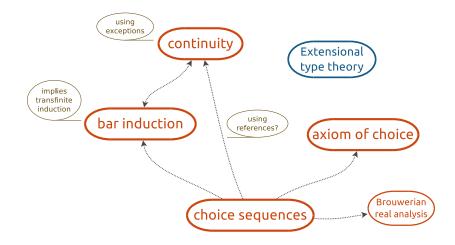
Bob Constable

Vincent Rahli

Open Bar

January 27, 2021

2/22



1952: Kleene proved that the Baire space $(\mathbb{N}^{\mathbb{N}})$ cannot be restricted to general recursive functions for the Fan Theorem and Bar Induction to hold.

1952: Kleene proved that the Baire space $(\mathbb{N}^{\mathbb{N}})$ cannot be restricted to general recursive functions for the Fan Theorem and Bar Induction to hold.

2017: We initially added infinite sequences to the Baire space

1952: Kleene proved that the Baire space $(\mathbb{N}^{\mathbb{N}})$ cannot be restricted to general recursive functions for the Fan Theorem and Bar Induction to hold.

2017: We initially added infinite sequences to the Baire space

Due to our realizability interpretation, some properties became undecidable, e.g., decidability of syntactic equality

1952: Kleene proved that the Baire space $(\mathbb{N}^{\mathbb{N}})$ cannot be restricted to general recursive functions for the Fan Theorem and Bar Induction to hold.

2017: We initially added infinite sequences to the Baire space

Due to our realizability interpretation, some properties became undecidable, e.g., decidability of syntactic equality

2018: (BITT) Replaced infinite sequences by choice sequences

- Contradict classical axioms!
- Enough to validate Bar Induction?

1952: Kleene proved that the Baire space $(\mathbb{N}^{\mathbb{N}})$ cannot be restricted to general recursive functions for the Fan Theorem and Bar Induction to hold.

2017: We initially added infinite sequences to the Baire space

Due to our realizability interpretation, some properties became undecidable, e.g., decidability of syntactic equality

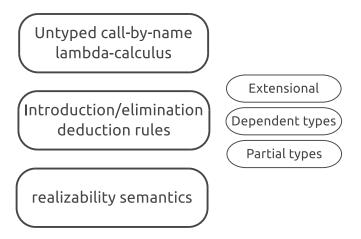
2018: (BITT) Replaced infinite sequences by choice sequences

- Contradict classical axioms!
- Enough to validate Bar Induction?

2020: (OpenTT) Relaxed model to validate classical axioms

- Consistent with classical axioms!
- Enough to validate Bar Induction?

Starting point: an Extensional Type Theory



Choice Sequences

Choice Sequences

Broader sense of computation

lawless (free choice) sequences: no restrictions on the choices (except for initial segments)

- $\mathsf{LS}_1 \text{ (density)} \qquad \forall s. \exists \alpha. \alpha \in s$
- $\mathsf{LS}_2 \text{ (discreteness)} \qquad \forall \alpha, \beta. (\alpha \equiv \beta \lor \neg \alpha \equiv \beta)$

 $\mathsf{LS}_3 \text{ (open data)} \qquad A(\alpha) \ \Rightarrow \ \exists n. \forall \beta. (\overline{\alpha}n = \overline{\beta}n \ \Rightarrow \ A(\beta))$

sfinite sequence α lawless sequence $\alpha \in s$ s is an initial segment of α \equiv intensional equality $\overline{\alpha}n$ the initial segment of α of length n

Open Bar

BITT

OpenTT

LS1 $\Pi n: \mathbb{N}. \Pi f: \mathcal{B}_n. \Sigma \alpha: \text{Free}. f = \alpha \in \mathcal{B}_n$

LS2 $\Pi \alpha, \beta$:Free. $(\alpha = \beta \in \beta) + (\neg \alpha = \beta \in \beta)$

LS3 -

 $\neg \text{LEM} \neg \Pi P : \mathbb{P} . \downarrow (P + \neg P)$

 $\neg \mathsf{MP} \neg \mathsf{\Pi} P: \mathbb{B}^{\mathbb{N}}, \neg (\mathsf{\Pi} n: \mathbb{N}, \neg P(n)) \rightarrow \Sigma n: \mathbb{N}, P(n)$

 $\neg \mathsf{IP} \neg \mathsf{\Pi} A: \mathbb{P}. \mathsf{\Pi} B: \mathbb{P}^{\mathbb{N}}. (A \rightarrow \Sigma n: \mathbb{N}. B(n))$ $\rightarrow \Sigma n:\mathbb{N}.(A \rightarrow B(n))$

 $\neg LPO \neg \Pi P: \mathbb{B}^{\mathbb{N}}.(\Sigma \mathbb{N}:n.P(n)) + (\Pi n: \mathbb{N}.\neg P(n))$

LS1 $\Pi n: \mathbb{N}. \Pi f: \mathcal{B}_n. \downarrow \Sigma \alpha: \text{Free}. f = \alpha \in \mathcal{B}_n$ **LS2** $\Pi \alpha, \beta$:Free. $(\alpha = \beta \in \mathcal{B}) + (\neg \alpha = \beta \in \mathcal{B})$ **LS3** $\Pi \alpha$:Free. $P(\alpha) \rightarrow$

 $\Sigma n: \mathbb{N}_{\langle}.\Pi \beta: \texttt{Free.}(\alpha = \beta \in \mathcal{B}_{\langle n} \to \downarrow P(\beta))$

LEM $\Pi P:\mathbb{P}.\downarrow(P+\neg P)$

(where $\mathcal{B} = \mathbb{N}^{\mathbb{N}}$ and $\mathcal{B}_n = \mathbb{N}^{\mathbb{N}_n}$) $(\downarrow is a "proof erasure" operator)$

Vincent Rahli

Open Bar

January 27, 2021

Syntax & Operational Semantics Syntax: $T \in Type ::= \mathbb{N} | \mathbb{U}_i | \Pi x:t.t | \Sigma x:t.t | \{x : t | t\}$ $| t = t \in t | t+t | ...$ | Free (choice sequence type)

 $v \in \text{Value} ::= T \mid \star \mid \underline{n} \mid \lambda x.t \mid \langle t, t \rangle \mid \text{inl}(t) \mid \text{inr}(t) \mid \dots \\ \mid \eta \text{ (choice sequence name)}$

$$\begin{array}{ll} t \in \texttt{Term} & ::= x \mid v \mid t \ t \mid \texttt{fix}(t) \mid \texttt{let} \ x := t \ \texttt{in} \ t \\ & \mid \texttt{case} \ t \ \texttt{of} \ \texttt{inl}(x) \Rightarrow t \mid \texttt{inr}(y) \Rightarrow t \\ & \mid \texttt{let} \ x, y = t \ \texttt{in} \ t \mid \texttt{if} \ t = t \ \texttt{then} \ t \ \texttt{else} \ t \mid \dots \end{array}$$

Syntax & Operational Semantics Syntax: $T \in Type ::= \mathbb{N} | \mathbb{U}_i | \Pi x:t.t | \Sigma x:t.t | \{x : t | t\}$ $| t = t \in t | t+t | ...$ | Free (choice sequence type)

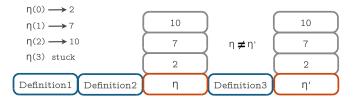
 $v \in \text{Value} ::= T \mid \star \mid \underline{n} \mid \lambda x.t \mid \langle t, t \rangle \mid \text{inl}(t) \mid \text{inr}(t) \mid \dots \\ \mid \eta \text{ (choice sequence name)}$

$$\begin{array}{ll} t \in \texttt{Term} & ::= x \mid v \mid t \ t \mid \texttt{fix}(t) \mid \texttt{let} \ x := t \ \texttt{in} \ t \\ & \mid \texttt{case} \ t \ \texttt{of} \ \texttt{inl}(x) \Rightarrow t \mid \texttt{inr}(y) \Rightarrow t \\ & \mid \texttt{let} \ x, y = t \ \texttt{in} \ t \mid \texttt{if} \ t = t \ \texttt{then} \ t \ \texttt{else} \ t \mid \dots \end{array}$$

Open Bar

World-Based Computations

World-dependent operational semantics:

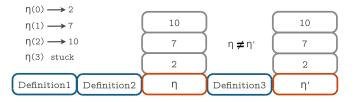


Worlds include:

choice sequences

World-Based Computations

World-dependent operational semantics:



Worlds include:

choice sequences

Worlds can be extended

horizontally

Vincent Rahli

$\frac{\Gamma, x : A \vdash b : B[x]}{\Gamma \vdash \lambda x.b : \Pi a: A.B[a]} \quad \Gamma \vdash \star : (A \in \mathbb{U}_i)$

$$\frac{\Gamma, x : A \vdash b : B[x] \qquad \Gamma \vdash \star : (A \in \mathbb{U}_i)}{\Gamma \vdash \lambda x.b : \Pi a: A.B[a]}$$

+ choice sequence rules:

$$\overline{\Gamma \vdash \star : (\eta \in \texttt{Free})} \qquad \overline{\Gamma \vdash \star : (\eta \in \mathcal{B})}$$

. . .

$$\frac{\Gamma, x : A \vdash b : B[x] \qquad \Gamma \vdash \star : (A \in \mathbb{U}_i)}{\Gamma \vdash \lambda x.b : \square a: A.B[a]}$$

+ choice sequence rules:

 $\overline{\Gamma \vdash \star : (\eta \in \texttt{Free})} \qquad \overline{\Gamma \vdash \star : (\eta \in \mathcal{B})} \qquad \cdots$

+ LS1 (density), LS2 (discreteness), LS3 (Open Data)

$$\frac{\Gamma, x : A \vdash b : B[x] \qquad \Gamma \vdash \star : (A \in \mathbb{U}_i)}{\Gamma \vdash \lambda x.b : \square a: A.B[a]}$$

+ choice sequence rules:

 $\overline{\Gamma \vdash \star : (\eta \in \texttt{Free})} \qquad \overline{\Gamma \vdash \star : (\eta \in \mathcal{B})} \qquad \cdots$

+ LS1 (density), LS2 (discreteness), LS3 (Open Data) + LEM

$$\frac{\Gamma, x : A \vdash b : B[x] \qquad \Gamma \vdash \star : (A \in \mathbb{U}_i)}{\Gamma \vdash \lambda x.b : \square a: A.B[a]}$$

+ choice sequence rules:

 $\overline{\Gamma \vdash \star : (\eta \in \texttt{Free})} \qquad \overline{\Gamma \vdash \star : (\eta \in \mathcal{B})} \qquad \cdots$

+ LS1 (density), LS2 (discreteness), LS3 (Open Data) + LEM

$$\frac{\Gamma, x : A \vdash b : B[x] \qquad \Gamma \vdash \star : (A \in \mathbb{U}_i)}{\Gamma \vdash \lambda x.b : \square a: A.B[a]}$$

+ choice sequence rules:

 $\overline{\Gamma \vdash \star : (\eta \in \texttt{Free})} \qquad \overline{\Gamma \vdash \star : (\eta \in \mathcal{B})} \qquad \cdots$

+ LS1 (density), LS2 (discreteness), LS3 (Open Data)

+ LEM

How do we validate these rules?

Why is LEM an OpenTT rule, but not a BITT rule?

Open Bar

Realizability semantics

An inductive relation that expresses type equality

 $T_1 \equiv T_2$ type(T) is $T \equiv T$

A recursive function that expresses equality in a type

 $a \equiv b \in T$

Realizability semantics

An inductive relation that expresses type equality

 $T_1 \equiv T_2$ type(T) is $T \equiv T$

A recursive function that expresses equality in a type

 $a \equiv b \in T$

For example (product types):

Realizability semantics

An inductive relation that expresses type equality

 $T_1 \equiv T_2$ type(T) is $T \equiv T$

A recursive function that expresses equality in a type

 $a \equiv b \in T$

For example (product types):

Enough to validate choice sequence rules?

Vincent Rahli

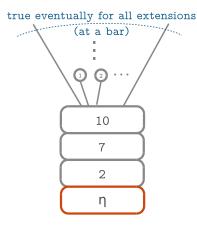
Open Bar

January 27, 2021

Why is $\eta \in \mathcal{B}$ valid in BITT?

Why is $\eta \in \mathcal{B}$ valid in BITT?

We used a Beth interpretation:



Formally:

 $\eta \in \mathcal{B}$ is true in world w \iff $\forall m : \mathsf{nat}. \exists b : \mathsf{bar}(w). \forall w' \in b.$ $\eta(m)$ computes to a nat in w'

This model rules out a number of axioms (e.g., LEM)

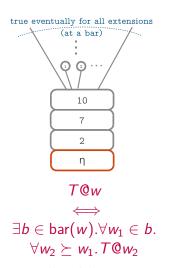
This model rules out a number of axioms (e.g., LEM) Why?

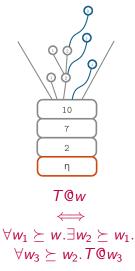
- This model rules out a number of axioms (e.g., LEM) Why?
- Given a "fresh" (no choices so far) free choice sequence α ,
 - ▶ it is not true that $\sum n:\mathbb{N}.\alpha(n) = 1 \in \mathbb{N}$ because there is a path where α is only extended with 0
 - ▶ it is not true that $\neg \Sigma n: \mathbb{N}.\alpha(n) = 1 \in \mathbb{N}$ because there is path where α is extended with 1
 - The meaning of $\neg T$ is that T is false in all extensions

Any way around this?

Beth model

Open Bar model





Vincent Rahli

Open Bar

 $T@w \iff \forall w_1 \succeq w. \exists w_2 \succeq w_1. \forall w_3 \succeq w_2. T@w_3$

 $T@w \iff \forall w_1 \succeq w. \exists w_2 \succeq w_1. \forall w_3 \succeq w_2. T@w_3$

Bears a resemblance to double negation translation:

• Kripke interpretation of $A \rightarrow B$:

$$\llbracket A \to B \rrbracket_w = \forall w_1 \succeq w . \llbracket A \rrbracket_{w_1} \Rightarrow \llbracket B \rrbracket_{w_1}$$

 $T@w \iff \forall w_1 \succeq w. \exists w_2 \succeq w_1. \forall w_3 \succeq w_2. T@w_3$

Bears a resemblance to double negation translation:

• Kripke interpretation of $A \rightarrow B$:

 $\llbracket A \to B \rrbracket_w = \forall w_1 \succeq w . \llbracket A \rrbracket_{w_1} \Rightarrow \llbracket B \rrbracket_{w_1}$

ln such a semantics, $\neg \neg A$ is interpreted as:

 $\forall w_1 \succeq w. \neg \forall w_2 \succeq w_1. \neg \llbracket A \rrbracket_{w_2}$

 $T@w \iff \forall w_1 \succeq w. \exists w_2 \succeq w_1. \forall w_3 \succeq w_2. T@w_3$

Bears a resemblance to double negation translation:

• Kripke interpretation of $A \rightarrow B$:

 $\llbracket A \to B \rrbracket_w = \forall w_1 \succeq w . \llbracket A \rrbracket_{w_1} \Rightarrow \llbracket B \rrbracket_{w_1}$

▶ In such a semantics, $\neg \neg A$ is interpreted as:

 $\forall w_1 \succeq w. \neg \forall w_2 \succeq w_1. \neg \llbracket A \rrbracket_{w_2}$

classically equivalent to:

$$\forall w_1 \succeq w. \exists w_2 \succeq w_1. \llbracket A \rrbracket_{w_2}$$

Vincent Rahli

Open Bar

LEM in the Open Bar model

This model still satisfies the choice sequence axioms

LEM in the Open Bar model

This model still satisfies the choice sequence axioms

LEM can now be validated using classical reasoning:

 $\Gamma \vdash \lambda P \star : \Pi P : \mathbb{P} \cdot \downarrow (P + \neg P)$

LEM in the Open Bar model

This model still satisfies the choice sequence axioms

LEM can now be validated using classical reasoning:

$\Gamma \vdash \lambda P \star : \mathbf{\Pi} P : \mathbb{P} \cdot \downarrow (P + \neg P)$

- Let w_0 be the current world
- ▶ $\forall w_1 \succeq w_0$, using classical reasoning we can assume that
 - either $\exists w_2 \succeq w_1.P@w_2$
 - or $\neg \exists w_2 \succeq w_1. P@w_2$

Either way we conclude trivially

Choice sequences in the Open Bar model

LS1 (density) is valid

 $\overline{\Gamma} \vdash \underline{\lambda}n, f. \star : \mathbf{\Pi}n: \mathbb{N}. \mathbf{\Pi}f: \mathcal{B}_n. \downarrow \mathbf{\Sigma}\alpha: \text{Free}. f = \alpha \in \mathcal{B}_n$

Choice sequences in the Open Bar model

LS1 (density) is valid

 $\overline{\Gamma} \vdash \underline{\lambda}n, f. \star : \mathbf{\Pi}n: \mathbb{N}. \mathbf{\Pi}f: \mathcal{B}_n. \downarrow \mathbf{\Sigma}\alpha: \text{Free}. f = \alpha \in \mathcal{B}_n$

LS2 (discreteness) is valid

 $\Gamma \vdash \lambda \alpha, \beta := : \mathbf{\Pi} \alpha, \beta : \texttt{Free.}(\alpha = \beta \in \mathcal{B}) + (\neg \alpha = \beta \in \mathcal{B})$

Choice sequences in the Open Bar model

LS1 (density) is valid

 $\Gamma \vdash \lambda n, f \star : \Pi n : \mathbb{N} . \Pi f : \mathcal{B}_n . \downarrow \Sigma \alpha : Free. f = \alpha \in \mathcal{B}_n$

LS2 (discreteness) is valid

 $\label{eq:rescaled_$

LS3 (Open Data) is valid

 $\begin{array}{l} \Gamma \vdash \lambda \alpha, p \star : \Pi \alpha : \texttt{Free.} \\ P(\alpha) \\ \rightarrow \downarrow \Sigma n : \mathbb{N} . \Pi \beta : \texttt{Free.} (\alpha = \beta \in \mathcal{B}_n \to \downarrow P(\beta)) \end{array}$

 $\mathbf{\Pi}\alpha: \texttt{Free}.P(\alpha) \to \mathbf{\downarrow}\mathbf{\Sigma}n: \mathbb{N}.\mathbf{\Pi}\beta: \texttt{Free}.(\alpha = \beta \in \mathcal{B}_n \to \mathbf{\downarrow}P(\beta))$

Why is LS3 (Open Data) valid?

 $\mathbf{\Pi}\alpha: \texttt{Free}.P(\alpha) \to \mathbf{\downarrow}\mathbf{\Sigma}n: \mathbb{N}.\mathbf{\Pi}\beta: \texttt{Free}.(\alpha = \beta \in \mathcal{B}_n \to \mathbf{\downarrow}P(\beta))$

Why is LS3 (Open Data) valid?

- no computational content: $\lambda \alpha, p.\star$
- we assume $P(\alpha)@w$, where w is the current world
- within the metatheory we realize the modulus of continuity n with |w| (w's depth)

 $\mathbf{\Pi}\alpha: \texttt{Free}.P(\alpha) \to \mathbf{\downarrow}\mathbf{\Sigma}n: \mathbb{N}.\mathbf{\Pi}\beta: \texttt{Free}.(\alpha = \beta \in \mathcal{B}_n \to \mathbf{\downarrow}P(\beta))$

Why is LS3 (Open Data) valid?

- no computational content: $\lambda \alpha, p.\star$
- we assume $P(\alpha)@w$, where w is the current world
- within the metatheory we realize the modulus of continuity n with |w| (w's depth)
- we get to assume that α and β have the same choices up to |w| in some $w_1 \succeq w$, and we have to show $P(\beta)@w_1$
- there must be a world w₁ ≥ w₀ ≥ w such that α and β have exactly the same choices in w₀
- by monotonicity: $P(\alpha)@w_0$
- we swap α and β : $P(\beta)@w_0$
- by monotonicity: $P(\beta)@w_1$

 $\mathbf{\Pi}\alpha: \texttt{Free}.P(\alpha) \to \mathbf{\downarrow}\mathbf{\Sigma}n: \mathbb{N}.\mathbf{\Pi}\beta: \texttt{Free}.(\alpha = \beta \in \mathcal{B}_n \to \mathbf{\downarrow}P(\beta))$

Can we validate a version with computational content?

 $\mathbf{\Pi}\alpha: \texttt{Free}.P(\alpha) \to \mathbf{\downarrow}\mathbf{\Sigma}n: \mathbb{N}.\mathbf{\Pi}\beta: \texttt{Free}.(\alpha = \beta \in \mathcal{B}_n \to \mathbf{\downarrow}P(\beta))$

Can we validate a version with computational content? Can we compute *n* solely based on α and $P(\alpha)$?

 $\mathbf{\Pi}\alpha: \texttt{Free}.P(\alpha) \to \mathbf{\downarrow}\mathbf{\Sigma}n: \mathbb{N}.\mathbf{\Pi}\beta: \texttt{Free}.(\alpha = \beta \in \mathcal{B}_n \to \mathbf{\downarrow}P(\beta))$

Can we validate a version with computational content? Can we compute *n* solely based on α and $P(\alpha)$? At least:

 $\mathbf{\Pi} \alpha: \mathtt{Free.} P(\alpha) \to \mathbf{\Sigma} n: \mathbb{N}_{\boldsymbol{\zeta}}. \mathbf{\Pi} \beta: \mathtt{Free.} (\alpha = \beta \in \mathcal{B}_{\boldsymbol{\zeta} n} \to \downarrow P(\beta))$

 $\mathbf{\Pi}\alpha: \texttt{Free}.P(\alpha) \to \mathbf{\downarrow}\mathbf{\Sigma}n: \mathbb{N}.\mathbf{\Pi}\beta: \texttt{Free}.(\alpha = \beta \in \mathcal{B}_n \to \mathbf{\downarrow}P(\beta))$

Can we validate a version with computational content? Can we compute *n* solely based on α and $P(\alpha)$? At least:

 $\mathbf{\Pi} \alpha: \mathtt{Free.} P(\alpha) \to \mathbf{\Sigma} n: \mathbb{N}_{\frac{1}{2}} \cdot \mathbf{\Pi} \beta: \mathtt{Free.} (\alpha = \beta \in \mathcal{B}_{\frac{1}{2}n} \to \downarrow P(\beta))$

We add an operator to the language to compute the depth of the current world:

$$t \in \texttt{Term} ::= \cdots \mid \texttt{wDepth}$$

 $\mathbf{\Pi}\alpha: \texttt{Free}.P(\alpha) \to \mathbf{\downarrow}\mathbf{\Sigma}n: \mathbb{N}.\mathbf{\Pi}\beta: \texttt{Free}.(\alpha = \beta \in \mathcal{B}_n \to \mathbf{\downarrow}P(\beta))$

Can we validate a version with computational content? Can we compute *n* solely based on α and $P(\alpha)$? At least:

 $\mathbf{\Pi} \alpha: \mathtt{Free.} P(\alpha) \to \mathbf{\Sigma} n: \mathbb{N}_{\natural}. \mathbf{\Pi} \beta: \mathtt{Free.} (\alpha = \beta \in \mathcal{B}_{\natural n} \to \downarrow P(\beta))$

We add an operator to the language to compute the depth of the current world:

```
t \in \texttt{Term} ::= \cdots \mid \texttt{wDepth}
```

• We realize this formula using $\lambda \alpha, p. \langle wDepth, ... \rangle$

```
Vincent Rahli
```

Open Bar

2 variants of Open Data:

- $\blacktriangleright \ \mathbf{\Pi} \alpha: \texttt{Free}. P(\alpha) \to \mathbf{\downarrow} \mathbf{\Sigma} n: \mathbb{N}. \mathbf{\Pi} \beta: \texttt{Free}. (\alpha = \beta \in \mathcal{B}_n \to \mathbf{\downarrow} P(\beta))$
- $\blacktriangleright \ \mathbf{\Pi} \alpha : \texttt{Free}. P(\alpha) \to \mathbf{\Sigma} n : \mathbb{N}_{\underline{\zeta}}. \mathbf{\Pi} \beta : \texttt{Free}. (\alpha = \beta \in \mathcal{B}_{\underline{\zeta} n} \to \downarrow P(\beta))$

2 variants of Open Data:

- $\blacktriangleright \ \mathbf{\Pi} \alpha: \texttt{Free}. P(\alpha) \to \mathbf{\downarrow} \mathbf{\Sigma} n: \mathbb{N}. \mathbf{\Pi} \beta: \texttt{Free}. (\alpha = \beta \in \mathcal{B}_n \to \mathbf{\downarrow} P(\beta))$
- $\blacktriangleright \ \mathbf{\Pi} \alpha : \texttt{Free}. P(\alpha) \to \mathbf{\Sigma} n : \mathbb{N}_{\underline{\zeta}}. \mathbf{\Pi} \beta : \texttt{Free}. (\alpha = \beta \in \mathcal{B}_{\underline{\zeta} n} \to \downarrow P(\beta))$

Time squashing vs. space squashing:

- \blacktriangleright a member of $\mathbb N$ computes to the same value in all worlds
- ▶ a member of \mathbb{N}_{ξ} can compute to \neq values in \neq worlds

2 variants of Open Data:

- $\blacktriangleright \ \mathbf{\Pi} \alpha: \texttt{Free}. P(\alpha) \to \mathbf{\downarrow} \mathbf{\Sigma} n: \mathbb{N}. \mathbf{\Pi} \beta: \texttt{Free}. (\alpha = \beta \in \mathcal{B}_n \to \mathbf{\downarrow} P(\beta))$
- $\blacktriangleright \ \mathbf{\Pi} \alpha : \texttt{Free}. P(\alpha) \to \mathbf{\Sigma} n : \mathbb{N}_{\underline{\zeta}}. \mathbf{\Pi} \beta : \texttt{Free}. (\alpha = \beta \in \mathcal{B}_{\underline{\zeta} n} \to \downarrow P(\beta))$

Time squashing vs. space squashing:

- \blacktriangleright a member of $\mathbb N$ computes to the same value in all worlds
- ▶ a member of $\mathbb{N}_{\{}$ can compute to \neq values in \neq worlds

Also useful to assign types to references

Can we still validate Bar Induction using such choice sequences?

- Can we still validate Bar Induction using such choice sequences?
- Can we still validate the Axiom of Choice using such choice sequences?

- Can we still validate Bar Induction using such choice sequences?
- Can we still validate the Axiom of Choice using such choice sequences?
- Can we validate continuity using references (similar to such choice sequences)?

- Can we still validate Bar Induction using such choice sequences?
- Can we still validate the Axiom of Choice using such choice sequences?
- Can we validate continuity using references (similar to such choice sequences)?

