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History

◮ Existence of paradoxes.

◮ Functions can be applied to any function.

◮ Formalization of the concept of type by Russel [Rus08] to restrict
application of functions.

◮ Formalization of Mathematics: design of logical systems.



λ-calculus

◮ Design of the λ-calculus by Church in 1932 [Chu32].

◮ System to investigate functions.

◮ Syntax: M ∈ Λ ::= x | λx .M | M1M2

such that x ∈ V (term variables).

◮ Rule of conversion:
◮ (λx .M)N →β M[x := N]
◮ λx .Mx →η M where x 6∈ FV (M)

◮ Consistency: Church-Rosser theorem

◮ Church’s thesis: “Effectively calculable functions from positive
integers to positive integers are just those definable in the
λ-calculus”.

◮ Models: model D∞ of Scott; λ-models of Hindley and Longo.



Typed λ-calculus

◮ Simply typed λ-calculus.

σ ∈ Type ::= α | σ1 → σ2

where (α ∈)A is a set of type variables.

◮ Polymorphism: intersection types.

σ ∈ Type ::= α | σ1 → σ2 | σ1 ∩ σ2

◮ λ-cube of Barendregt: 8 type systems with 6= expressiveness.



Example of a type systems: λ∩Ω and D

(ref ) σ ≤ σ

(tr) σ ≤ τ ∧ τ ≤ ρ ⇒ σ ≤ ρ

(inL) σ ∩ τ ≤ σ

(inR) σ ∩ τ ≤ τ

(→ -∩) (σ → τ) ∩ (σ → ρ) ≤ σ → (τ ∩ ρ)
(mon′) σ ≤ τ ∧ σ ≤ ρ ⇒ σ ≤ τ ∩ ρ

(mon) σ ≤ σ′ ∧ τ ≤ τ ′ ⇒ σ ∩ τ ≤ σ′ ∩ τ ′

(→ -η) σ ≤ σ′ ∧ τ ′ ≤ τ ⇒ σ′ → τ ′ ≤ σ → τ

(Ω) σ ≤ Ω
(Ω′-lazy) σ → Ω ≤ Ω → Ω

Figure: Ordering axioms on types



Example of a type system: λ∩Ω and D

Γ ⊢ M : σ : typing judgment
(Γ, σ) : (typing of M)

Γ, x : σ ⊢ x : σ
(ax)

Γ ⊢ M : Ω
(Ω)

Γ ⊢ M : σ → τ Γ ⊢ N : σ
Γ ⊢ MN : τ

(→E )
Γ, x : σ ⊢ M : τ

Γ ⊢ λx .M : σ → τ
(→I )

Γ ⊢ M : σ Γ ⊢ M : τ
Γ ⊢ M : σ ∩ τ

(∩I )
Γ ⊢ M : σ σ ≤∇ τ

Γ ⊢ M : τ
(≤∇)

Figure: Typing rules



Example of a type system: λ∩Ω and D
Type system λ∩

Ω

◮ σ ∈ Typeλ∩Ω

::= α | σ1 → σ2 | σ1 ∩ σ2 | Ω.

◮ Bλ∩Ω

= {Γ = {x : σ | x ∈ V , σ ∈ Typeλ∩Ω

} | ∀x : σ, y : τ ∈
Γ, if σ 6= τ then x 6= y}.

◮ ∇ = {(ref ), (tr), (inL), (inR), (→ -∩), (mon′), (mon), (→
-η), (Ω), (Ω′ − lazy)}.

◮ The relation ≤∇ is defined on types Typeλ∩Ω

and the set of axioms
∇. The equivalence relation is defined by:
σ ∼∇ τ ⇐⇒ σ ≤∇ τ ∧ τ ≤∇ σ.

◮ λ∩Ω = 〈Λ, Typeλ∩Ω

,⊢〉 such that ⊢ is type derivability relation on

Bλ∩Ω

, Λ and Typeλ∩Ω

generated using the typing rules of Figure 2.



Example of a type system: λ∩Ω and D
Type system D

◮ σ ∈ TypeD ::= α | σ1 → σ2 | σ1 ∩ σ2.

◮ BD = {Γ = {x : σ | x ∈ V , σ ∈ TypeD} | ∀x : σ, y : τ ∈ Γ, if σ 6=
τ then x 6= y}.

◮ ∇ = {(ref ), (tr), (inL), (inR)}.

◮ The relation ≤∇ is defined on types TypeD and the set of axioms ∇.
The equivalence relation is defined by:
σ ∼∇ τ ⇐⇒ σ ≤∇ τ ∧ τ ≤∇ σ.

◮ λ∩Ω = 〈Λ, TypeD ,⊢〉 such that ⊢ is type derivability relation on BD ,
Λ and TypeD generated using the typing rules of Figure 2 except (Ω).



Properties of the λ-calculus

◮ Church-Rosser property:
R : binary relation on Λ.
R is Church-Rosser iff MRM1 ∧ MRM2 ⇒ ∃M3, M1RM3 ∧ M2RM3.

◮ method of parallel reductions
◮ method of finiteness of developments

Let L be a set of terms and → a reduction relation:

CRL
→

= {M ∈ L | M → M1∧M → M2 ⇒ ∃M3, M1 → M3∧M2 → M3}

CRL = CRL
→β

and CR→ = CRΛ
→

.

◮ Normalization properties.
◮ Standardization
◮ Developments

SN = {M ∈ Λ | each β-reduction from M is finite}.
WN = {M ∈ Λ | ∃ aβ-reduction from M which is finite}.

Goal: generalization and simplification of proof methods.



Properties of Type Systems

Properties that we might want to be held by a type system:

◮ Decidability of the type inference.

◮ Decidability of the type checking.

◮ Principal typing.

◮ Subject Reduction/Expansion.

◮ Strong Normalization.



Proof Methods

There exists different methods to prove properties of the λ-calculus or of
type systems but not an universal one.

◮ 6= properties ⇒ 6= proof methods.

◮ changes of framework ⇒ all the proofs need to be reproved.

◮ A method may work in a framework but not in another one ⇒
Introduction of new methods, new concept.

◮ Expansion: new concept to calculate typing from a principal one in
intersection type systems

◮ Reducibility: general proof methods to prove properties of the
λ-calculus.



Expansion

◮ Calculate a type of a term from its principal one, in a intersection
type system, need more than substitution [CDCV80].

◮ Introduction of the mechanism of expansion.

◮ Development of the mechanism of expansion [KW99]: expansion
variables.

◮ Goal: find a semantics of an intersection type system with expansion
mechanism.



Reducibility

Let P ⊆ Λ.

The reducibility method is based on realisability semantics.

◮ Interpretation of types by sets of terms such that they (mostly) turn
to be subsets of P .

◮ Proof of a soundness result.



Semantics of Type Systems

◮ Interpretation of the logical contents of a type system
(Curry-Howard isomorphism).

◮ Study and characterization of legal types.

◮ Verification of the intended behavior of a type system.

A semantics is complete w.r.t. a type system if: a typing judgment is
true in the semantics if and only if it is derivable in the type system
[Hin83] (soundness: if direction).

Realisability semantics: types are interpreted by realizers (functions).



Reducibility in [GL02]

Let P ⊆ Λ.

◮ Definition of an interpretation of the types in Typeλ∩Ω

:
◮ JαK = P ,
◮ Jσ → τK = {M ∈ P | ∀N ∈ JσK, MN ∈ JτK},
◮ Jσ ∩ τK = JσK ∩ JτK,
◮ JΩK = Λ

◮ Definition of closure properties:
◮ VAR(P ,X ): ∀x ∈ V,∀n ≥ 0, ∀M1, . . . , Mn ∈ P , xM1 . . . Mn ∈ X .
◮ SAT(P ,X ): ∀M, N ∈ Λ,∀n ≥ 0, ∀M1, . . . , Mn ∈ P ,

M[x := N]M1 . . . Mn ∈ X ⇒ (λx .M)NM1 . . . Mn ∈ X .
◮ CLO(P ,X ): ∀M ∈ X , λx .M ∈ P .
◮ INV(P): ∀M ∈ Λ, M ∈ P ⇐⇒ λx .M ∈ P .



Reducibility in [GL02]

◮ Proof of a soundness result:
(∀σ ∈ Typeλ∩Ω

, VAR(P , JσK) ∧ SAT(P , JσK) ∧ CLO(P , JσK)) ⇒

(∀σ ∈ Typeλ∩Ω

, Γ ⊢ M : σ ∧ σ 6∼∇ Ω ⇒ M ∈ JσK ⊆ P).

◮ “Generalization” of hypotheses:

(VAR(P ,P) ∧ SAT(P ,P) ∧ CLO(P ,P)) ⇒ (∀σ ∈ Typeλ∩Ω

, Γ ⊢ M :
σ ∧ σ 6∼∇ Ω ∧ (∀τ ∈ Type, τ 6∼∇ Ω ⇒ σ 6∼∇ Ω → τ) ⇒ M ∈ P).

◮ Proof of the proof method:
VAR(P ,P) ∧ SAT(P ,P) ∧ INV(P) ⇒ P = Λ.

◮ Proof of one of the principal result: VAR(CR, CR), SAT(CR, CR)
and INV(CR) are true. Hence, Λ = CR.



We establish that reducibility in [GL02] fails

Our counter example that [GL02] fails:

◮ VAR(WN, WN), SAT(WN, WN) and INV(WN) are satisfied,

◮ but Λ 6= WN.

Our solution to repair [GL02]:

◮ ◮ σ+ ∈ Typeλ∩
Ω+ = {σ ∈ Typeλ∩

Ω

| σ ∼∇ Ω}.

◮ σ− ∈ Typeλ∩
Ω
− = {σ ∈ Typeλ∩

Ω

| σ 6∼∇ Ω}.
◮ σ ∈ S1 ::= α | σ+

1 → σ+
2 | σ− → σ | σ1 ∩ σ2.

◮ (VAR(P ,P) ∧ SAT(P ,P) ∧ CLO(P ,P)) ⇒ (∀σ ∈ Typeλ∩Ω

, Γ ⊢ M :
σ ∧ σ 6∼∇ Ω ∧ (σ = τ → ρ ⇒ τ, ρ ∈ S1 ∧ ρ 6∼∇ Ω) ⇒ M ∈ P).



Reducibility in [KS07]

◮ Definition of an interpretation of the types in TypeD :
◮ JαK = CR,
◮ Jσ → τK = {M ∈ CR | ∀N ∈ JσK, MN ∈ JτK},
◮ Jσ ∩ τK = JσK ∩ JτK.

◮ Proof of a soundness result:
∀σ ∈ TypeD , Γ ⊢ M : σ ⇒ M ∈ JσK ⊆ CR.



Reducibility in [KS07]

Confluence of developments:

◮ Let x ∈ V ′ = V \ {c}, then
M ∈ Λc ::= x | λx .M | cM1M2 | (λx .M1)M2

◮ ∀M ∈ Λc , M is typable in the system D.

◮ A one step development of (M ,F) is a pair (M ′,F ′) such that
M →β M ′, F is a set of redexes in M and F ′ is the set of residuals
of F in M ′.

◮ Development = reflexive and transitive closure of a one step
development.

◮ Proof of the confluence of developments using the confluence of Λc .

Parallel reduction:

◮ M →1 M ′ ⇐⇒ ∃F ,F ′, (M ,F) →β (M ′,F ′).

◮ →∗

β=→∗

1 .

◮ Λ = CR.



Our extension of reducibility of [KS07]

We have:

◮ Adapted the method to βI : ΛI = CRΛI .

◮ Extended and generalized the method to βη: Λ = CRβη.

◮ Formalized the various steps of the proof so it can be further
extended.



Semantics of an intersection type system with expansion

Syntax:

◮ a set of expansion variables e ∈ E-var.

◮ a rule for introduction of e:

Γ ⊢ M : σ
eΓ ⊢ M : eσ

eI

Goal: Find a complete semantics for an intersection type system with
expansion mechanism.

Intermediate Goal: Find a complete semantics for an intersection type
system with expansion variables.



Semantics of an intersection type system with expansion

We have 2 results so far:

◮ [KNRW06] Complete semantics for an intersection type system
◮ with only one expansion variable
◮ without the expansion mechanism

◮ [KNRW07] Complete semantics for an intersection type system
◮ with an infinity of expansion variables
◮ without the expansion mechanism

Use of the λ-calculus with some decorations.



Future work

◮ Find a complete semantics for an intersection type system with the
expansion mechanism. (September 2007 – September 2008).

◮ Realisability semantics
◮ Denotational semantics
◮ Operational semantics

◮ Generalization of proof methods of properties of the λ-calculus using
reducibility. (September 2008 – July 2009).

◮ In the framework of the λ-cube
◮ In the framework of expansion

◮ Generalization and extension of PTSs. (September 2007 – July
2009).

◮ Capture of the Strong Normalization property.
◮ Extension with: Unified binder, Type inclusion, Π-application and

abbreviations.
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