
Fundamenta Informaticae XXI (2001) 1001–1029 1001

IOS Press

Challenges and Solutions to Realisability Semantics for Intersection
Types with Expansion Variables

Fairouz Kamareddine
ULTRA Group (Useful Logics, Types, Rewriting, and their Automation), Heriot-Watt University,

School of Mathematical and Computer Sciences, Edinburgh EH14 4AS, UK.

Email: http://www.macs.hw.ac.uk/ultra/

Karim Nour
Université de Savoie, Campus Scientifique, 73378 Le Bourget du Lac, France.

Email: nour@univ-savoie.fr

Vincent Rahli∗

and J. B. Wells†

Abstract. Expansion is a crucial operation for calculating principal typings in intersection type sys-
tems. Because the early definitions of expansion were complicated, E-variables were introduced
in order to make the calculations easier to mechanise and reason about. Recently, E-variables have
been further simplified and generalised to also allow calculating other type operators than just in-
tersection. There has been much work on semantics for type systems with intersection types, but
none whatsoever before our work, on type systems with E-variables. In this paper we expose the
challenges of building a semantics for E-variables and we provide a novel solution. Because it is
unclear how to devise a space of meanings for E-variables, we develop instead a space of meanings
for types that is hierarchical. First, we index each type with a natural number and show that although
this intuitively captures the use of E-variables, it is difficult to index the universal type ω with this
hierarchy and it is not possible to obtain completeness of the semantics if more than one E-variable
is used. We then move to a more complex semantics where each type is associated with a list of
natural numbers and establish that both ω and an arbitrary number of E-variables can be represented
without losing any of the desirable properties of a realisability semantics.

Keywords: Realisability semantics, expansion variables, intersection types, completeness

Address for correspondence: ULTRA Group (Useful Logics, Types, Rewriting, and their Automation), Heriot-Watt
University, School of Mathematical and Computer Sciences, Mountbatten building, Edinburgh EH14 4AS, UK. Email:
http://www.macs.hw.ac.uk/ultra/
∗Same address as Kamareddine.
†Same address as Kamareddine.

1002 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

1. Introduction

Intersection types were developed in the late 1970s to type λ-terms that are untypable with simple types;
they do this by providing a kind of finitary type polymorphism where the usage of types is listed rather
than quantified over. They have been useful in reasoning about the semantics of the λ-calculus, and have
been investigated for use in static program analysis. Expansion was introduced at the end of the 1970s
as a crucial procedure for calculating principal typings for λ-terms in type systems with intersection
types, enabling support for compositional type inference. Coppo, Dezani, and Venneri [4] introduced
the operation of expansion on typings (pairs of a type environment and a result type) for calculating
the possible typings of a term when using intersection types. As a simple example, the λ-term M =
(λx.x(λy.yz)) can be assigned the typing Φ1 = 〈(z : a) ` (((a→ b)→ b)→ c)→ c〉, which happens
to be its principal typing. The term M can also be assigned the typing Φ2 = 〈(z : a1 u a2) ` (((a1 →
b1)→ b1) u ((a2 → b2)→ b2)→ c)→ c〉, and an expansion operation can obtain Φ2 from Φ1.

Because the early definitions of expansion were complicated, E-variables were introduced in order
to make the calculations easier to mechanize and reason about. For example, in System E [2], the typing
Φ1 from above is replaced by Φ3 = 〈(z : ea) ` (e((a→ b)→ b)→ c)→ c〉, which differs from Φ1 by
the insertion of the E-variable e at two places, and Φ2 can be obtained from Φ3 by substituting for e the
expansion term E = (a := a1, b := b1) u (a := a2, b := b2). Carlier and Wells [3] have surveyed the
history of expansion and also E-variables.

In many kinds of semantics, the meaning of a type T is calculated by an expression [T]ν that takes two
parameters, the type T and also a valuation ν that assigns to type variables the same kind of meanings that
are assigned to types. To extend this idea to types with E-variables, we would need to devise some space
of possible meanings for E-variables. Given that a type e T can be turned by expansion into a new type
S1(T) u S2(T), where S1 and S2 are arbitrary substitutions (they can be arbitrary further expansions),
and that this can introduce an unbounded number of new variables (both E-variables and regular type
variables), the situation is complicated. Because it is unclear how to devise a space of meanings for
expansions and E-variables, we instead develop a space of meanings for types that is hierarchical in
the sense of having many degrees. We specifically avoid trying to give a semantics to the operation
of expansion, and instead treat only the E-variables. Although this idea is not perfect, it seems to go
quite far in giving an intuition for E-variables, namely that each E-variable acts as a kind of capsule that
isolates parts of the λ-term being analyzed by the typing.

In the open problems published in the proceedings of the Lecture Notes in Computer Science sym-
posium held in 1975 [7], it is suggested that an arrow type expresses functionality. Following this idea, a
type’s semantics is given as a set of closed λ-terms with behaviour related to the specification given by the
type. Hence, the semantic approach we use is realisability semantics. Atomic types (e.g., type variables)
are interpreted as sets of λ-terms that are saturated, meaning that they are closed under β-expansion
(i.e., β-reduction in reverse). Arrow and intersection types are interpreted naturally by function spaces
and set intersection. Realisability allows showing soundness in the sense that the meaning of a type T
contains all closed λ-terms that can be assigned T as their result type. This has been shown useful for
characterising the behaviour of typed λ-terms [14]. One also wants to show the converse of soundness
which is called completeness, i.e., that every closed λ-term in the meaning of T can be assigned T as its
result type.

Hindley [9, 10, 11] was the first to study this notion of completeness for a simple type system and he
showed that all the types of that system have the completeness property. Then, he generalised his com-

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1003

pleteness proof for an intersection type system [8]. Using his completeness theorem for the realisability
semantics based on the sets of λ-terms saturated by βη-equivalence, Hindley has shown that simple
types are uniquely realised by the λ-terms which are typable by these types. However, Hindley’s result
does not hold for his intersection type system and the completeness theorems were established with the
sets of λ-terms saturated by βη-equivalence. In this paper, our completeness result depends only on the
weaker requirement of β-equivalence, and we have managed to make simpler proofs that avoid needing
η-reduction, Church-Rosser (a.k.a. confluence), or strong normalisation (SN) (although we do establish
both confluence and SN for both β and βη).

Other work on realizability we have consulted includes that by Labib-Sami [15], Farkh and Nour [6],
and Coquand [5], although none of this work deals with intersection types or E-variables. Related work
on realisability that deals with intersection types includes that by Kamareddine and Nour [12], which
gives a realisability semantics with soundness and completeness for an intersection type system. This
system is quite different from the three hierarchical systems we present in this paper. The main difference
being the hierarchies which did not exist in [12].

Initially, we aimed to give a realisability semantics for the system of expansions proposed by Carlier
and Wells in [3]. In order to simplify our study, we considered the system with the expansion variables
but without the expansion rewriting rules. In essence, this meant that the syntax of terms is: M ::= x |
(M N) | (λx.M) where x ranges over a countably infinite set of variables V , that the syntax of types
is: T ::= a | ω | T1 → T2 | T1 u T2 | eT where a is a basic type ranging over a countably infinite
set of type variables A and e is an expansion variable ranging over a countably infinite set of expansion
variables E , and that the typing rules are:

x : 〈(x : T) ` T 〉
var

M : 〈() ` ω〉
ω

M : 〈Γ, (x : T1) ` T2〉
λx.M : 〈Γ ` T1 → T2〉

abs

M1 : 〈Γ1 ` T1 → T2〉 M2 : 〈Γ2 ` T1〉
M1 M2 : 〈Γ1 u Γ2 ` T2〉

app

M : 〈Γ1 ` T1〉 M : 〈Γ2 ` T2〉
M : 〈Γ1 u Γ2 ` T1 u T2〉

u

M : 〈Γ ` T 〉
M : 〈eΓ ` eT 〉

e-app

In order to give a realisability semantics for this system, we needed to define the interpretation of
a type to be a set of terms having this type. We were obviously forced to distinguish between the
interpretation of T and eT . However, in the typing rule e-app, the term M is unchanged and this poses
difficulties. For this reason, we modified slightly the above type system by indexing the terms of the
λ-calculus giving us the syntax of terms as: M ::= xi | (M N) | (λxi.M) (where i are natural

1004 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

numbers and where M and N need to satisfy a certain condition before (M N) is allowed as a term) and
by slightly changing our type rules and in particular the rule e-app:

M : 〈Γ `i U〉
M+ : 〈eΓ `i eU〉

(exp)

In this rule, M+ is M where all the indices are increased by 1. Obviously these indices needed a revision
of the β-reduction and of the typing rules in order to preserve the desirable properties of the type system
and the realisability semantics. For this, we defined the good terms and the good types and showed that
these notions go hand in hand (e.g., a good type contains only good terms). We developed a realisability
semantics where each use of an E-variable in a type corresponds to an index at which evaluation occurs
in the λ-term that is assigned the type. This is an elegant solution that captures the intuition behind
E-variables. However, in order for this new type system to function well, it was necessary to consider
λI-terms only (removing a subterm from M also removes important information about M) and to drop
ω completely. This led us to the introduction of λIN-calculus and our first type system `1 for which we
developed a sound realisability semantics for E-variables. However, although the first type system `1

is crucial to understand the intuition behind the indexing we propose, the realisability semantics for `1

does not satisfy completeness (and neither subject reduction). For this reason, we modified our system
`1 by considering a smaller set of types (where intersections and expansions cannot occur directly to the
right of an arrow), and by adding subtyping rules. This new system `2 has both soundness and subject
reduction. As for completeness, we needed to limit the list of expansion variables to a single element
list. This problem of completeness for `2 comes from the fact that the indexes (the natural numbers) do
not permit us to differentiate between the types e1T and e2T for two different expansion variables e1

and e2. So, again, we were forced to revise our type system. For this, we decided to limit our λ-terms by
indexing them by lists of natural numbers (where the natural number i represents the expansion variable
ei). This way the rule exp above will allow us to distinguish the interpretations of the types eiT and ejT
when ei 6= ej . Furthermore, this way, our λ-terms are constructed in such a way that K-reductions do
not limit the information on the starting terms (in fact, β-reduction is not always allowed). In order to
obtain completeness with the ω-rule, we should also consider ω indexed by lists. This means that the
new calculus becomes rather heavy but this is unavoidable. It is needed to obtain a complete realisability
semantics where an arbitrary (possibly infinite) number of expansion variables is allowed and where the
universal type ω is present. The use of lists complicates matters and hence, needs to be understood in
the context of the first semantics where indices are natural numbers rather than lists of natural numbers.
In addition to the above, we have considered three notions of saturations (in line with the literature)
illustrating that these notions behave well in our complete realisability semantics.

Section 2 gives the syntax of the indexed calculi we consider in this paper: the λIN-calculus, which
is the λI-calculus with each variable marked by a natural number degree, and the full λ-calculus λLN-
calculus indexed with finite sequences of natural numbers. We show the confluence of β, βη and weak
head reduction h on our indexed λ-calculi. Section 3 introduces the syntax and terminology for types
used in both indexed calculi. Section 4 introduces our three intersection type systems with E-variables `i

for i ∈ {1, 2, 3}, where in one, the syntax of types is not restricted (and hence subject reduction fails) but
in the other two it is restricted but then extended with a subtyping relation. In Section 5 we study the type
theoretical properties of our three type systems including subject reduction and expansion with respect
to our various reduction relations (β, βη, h). In Section 6, we introduce our realisability semantics and
show its soundness for all the three type systems we consider (and for all the reduction relations). In

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1005

Section 7 we establish the challenges of showing completeness for the realisability semantics of the first
two systems. We show that completeness does not hold for the first system and that it also does not hold
for the second system if more than one expansion variable is used, but does hold for a restriction of this
system to one single E-variable. This is an important study in the semantics of intersection type systems
with expansion variables since a unique expansion variable can be used many times and can occur nested.
In Section 8 we establish the completeness of `3 by introducing a special interpretation. We conclude in
Section 9. Due to space limitations, we omit the details of the proofs. Full proofs however can be found
in the expanded version of this article (currently at [13]) which will always be available at the authors’
web pages.

2. The syntax of the indexed λ-calculi

We assume that if a metavariable v ranges over a set S then vi for i ≥ 0 and v′, v′′, etc. also range over S.
A binary relation is a set of pairs. Let rel range over binary relations. Let dom(rel) = {x | 〈x, y〉 ∈ rel}
and ran(rel) = {y | 〈x, y〉 ∈ rel}. A function is a binary relation fun such that if {〈x, y〉, 〈x, z〉} ⊆ fun
then y = z. Let fun range over functions. Let s → s′ = {fun | dom(fun) ⊆ s ∧ ran(fun) ⊆ s′}. We
sometimes write x : s instead of x ∈ s.

Definition 2.1. (Indices)
We have two kinds of indices: natural numbers for our first semantics (clause 1) and lists of natural
numbers for our second semantics (clauses 2..5). We let I, J , range over indices.

1. Let n, m range over the set of natural numbers N = {0, 1, 2, . . . }.

2. Let L,K, R range over LN the set of finite sequences of natural numbers (ni)1≤i≤l. We denote �
the empty sequence of natural numbers.

3. If L = (ni)1≤i≤l, we use m :: L to denote the sequence (ri)1≤i≤l+1 where r1 = m and for all
i ∈ {2, . . . , l + 1}, ri = ni−1. In particular, k :: � = (k).

4. If L = (ni)1≤i≤n and K = (mi)1≤i≤m, we use L :: K to denote the sequence (ri)1≤i≤n+m where
for all i ∈ {1, . . . , n}, ri = ni and for all i ∈ {n + 1, . . . , n + m}, ri = mi−n. In particular,
L :: � = � :: L = L.

5. We define on LN a binary relation � by:

L1 � L2 (or L2 � L1) if there exists L3 ∈ LN such that L2 = L1 :: L3.

Lemma 2.1. � is an order relation on LN.

We assume that x, y, z range over a countably infinite set of variables V .
We will define two indexed calculi: the λIN-calculus (whose set of terms is called M1 as well as

M2 for notational reasons) and the λLN-calculus (whose set of terms isM3). As obvious, indices in λIN

are simple but only allow the I-part of the calculus.
We let M,N,P range over M1 = M2 (resp. M3) and use = for syntactic equality. We assume

the usual definition of subterms and the usual convention for parentheses and their omission (see Baren-
dregt [1] and Krivine [14]).

1006 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

The joinability M � N of terms M and N ensures that in any term that contains M and N , each
variable has a unique index (note that it is more accurate to include this as part of the simultaneous
inductions in Definitions 2.3 and 2.5, but for clarity, we took it apart here).

Definition 2.2. (Joinability �)
Let i ∈ {1, 2, 3}.

• Let M,N be terms of λIN (resp. λLN) and let FV(M) and FV(N) be the corresponding free
variables. We say that M and N are joinable and write M �N iff for all x ∈ V , if xI ∈ FV(M)
and xJ ∈ FV(N) (where I, J are indices in N (resp. LN)), then I = J .

• If X ⊆Mi such that ∀M,N ∈ X ,M �N , we write, �X .

• If X ⊆Mi and M ∈Mi such that ∀N ∈ X ,M �N , we write, M � X .

Now we give the syntax of λIN, an indexed version of the λI-calculus where indices (which range
over the set of natural numbers N) help categorise the good terms where the degree of a function is never
larger than that of its argument. This amounts to having the full λI-calculus at each index and creating
new λI-terms through a mixing recipe.

Definition 2.3. (The set of terms M1 (also called M2))
The set of terms M1 = M2, the set of free variables FV(M) of M ∈ M2 and the degree d(M) of a
term M , are defined by simultaneous induction:

• If x ∈ V , n ∈ N, then xn ∈M2, FV(xn) = {xn}, and d(xn) = n.

• If M,N ∈ M2 such that M �N (see Definition 2.2), then M N ∈ M2, FV(M N) = FV(M) ∪
FV(N) and d(M N) = min(d(M), d(N)) (where min is the minimum)

• If M ∈ M2 and xn ∈ FV(M), then λxn.M ∈ M2, FV(λxn.M) = FV(M) \ {xn}, and
d((λxn.M1)) = d(M1).

Note that a subterm of M ∈M2 is also in M2.

Here is now the syntax of good terms in the λIN-calculus.

Definition 2.4. (The set of good terms M ⊂M2)
1. The set of good terms M ⊂M2 is defined by:

• If x ∈ V , n ∈ N, then xn ∈ M,

• If M,N ∈ M, M �N and d(M) ≤ d(N) then M N ∈ M.

• If M ∈ M and xn ∈ FV(M), then λxn.M ∈ M.

Note that a subterm of M ∈ M is also in M.

2. For each n ∈ N, we let: • Mn = M ∩Mn
2

Lemma 2.2. 1. (M is good and xn ∈ FV (M)) iff λxn.M is good.

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1007

2. (M1 and M2 are good, M1 �M2 and d(M1) ≤ d(M2)) iff M1M2 is good.

Now, we give the syntax of λLN . Note that in M3, an application M N is only allowed when
d(M) � d(N). This restriction was not made in λIN. Furthermore, we only allow the abstraction
λxL.M in λLN L � d(M) which is also the case in λIN since there, we only consider the I-calculus.
The elegance of λIN is the ability to give the syntax of good terms, which is not obvious in λLN .

Definition 2.5. (The set of terms M3)
The set of terms M3, the set of free variables FV(M) of M ∈ M3 and the degree function d : M3 →
LN are defined by simultaneous induction:

• If x ∈ V and L ∈ LN, then xL ∈M3, FV(xL) = {xL} and d(xL) = L.

• If M,N ∈ M3, d(M) � d(N) and M �N (see Definition 2.2), then M N ∈ M3, FV(MN) =
FV(M) ∪ FV(N) and d(M N) = d(M).

• If x ∈ V , M ∈ M3 and L � d(M), then λxL.M ∈ M3, FV(λxL.M) = FV(M) \ {xL} and
d(λxL.M) = d(M).

Note that every subterm of M ∈M3 is also in M3.

As expansions change the degree of a term, indexes in a term need to increase/decrease. The next
definitions turn terms of degree n into terms of higher degrees and also, if n > 0, they can be turned into
terms of lower degrees. Note that + and − are well behaved operations with respect to all that matters
(free variables, reduction, joinability, substitution, etc.).

Definition 2.6. 1. For each n ∈ N, we let: •Mn
2 = {M ∈M2 | d(M) = n}

•M>n
2 = M≥n+1

2 •M≥n
2 = {M ∈M2 | d(M) ≥ n}

2. We define + : M2 →M2 and − : M>0
2 →M2 by:

• (xn)+ = xn+1 • (M1 M2)+ = M+
1 M+

2 • (λxn.M)+ = λxn+1.M+

• (xn)− = xn−1 • (M1 M2)− = M−
1 M−

2 • (λxn.M)− = λxn−1.M−

3. Let X ⊆M2. If ∀M ∈ X , d(M) > 0, we write d(X) > 0. We define:
• X+ = {M+ | M ∈ X} • If d(X) > 0, X− = {M− | M ∈ X}.

4. We define M−n by induction on d(M) ≥ n ≥ 0. If n = 0 then M−n = M and if n ≥ 0 then
M−(n+1) = (M−n)−.

Definition 2.7. Let i ∈ N and M ∈M3.

1. For each L ∈ LN, we let: •ML
3 = {M ∈M3 | d(M) = L}

•M≥L
3 = {M ∈M3 | d(M) � L}

2. We define M+i by:
•(xL)+i = xi::L •(M1 M2)+i = M+i

1 M+i
2 •(λxL.M)+i = λxi::L.M+i

3. If d(M) = i :: L, we define M−i by: •(xi::K)−i = xK

•(M1 M2)−i = M−i
1 M−i

2 •(λxi::K .M)−i = λxK .M−i

1008 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

4. Let X ⊆M3. We define X+i = {M+i | M ∈ X}.
Note that (X ∩ Y)+i = X+i ∩ Y+i.

Definition 2.8. (Substitution, alpha conversion, compatibility, reduction)
• Let m ≥ 0, 1 ≤ i ≤ m, M,Ni be terms of λIN (resp. λLN) and Ii ∈ N (resp. LN). M [(xIi

i :=
Ni)1≤i≤m] (or simply M [(xIi

i := Ni)m]), the simultaneous substitution of Ni for all free occur-
rences of xIi

i in M only matters when:

– �X where X = {M} ∪ {Ni | 1 ≤ i ≤ m}.

– ∀i such that 1 ≤ i ≤ m, we have d(Ni) = Ii.

We restrict substitution to incorporate these conditions. WithX as above, M [(xIi
i := Ni)m] is only

defined when �X and when d(Ni) = Ii for every i.1 We may write xI1
1 := N1, . . . , x

Im
m := Nm

instead of (xIi
i := Ni)m. We also write M [(xIi

i := Ni)1≤i≤1] as M [xI1
1 := N1].

• In λIN (resp. λLN), we take terms modulo α-conversion given by: λxI .M = λyI .(M [xI := yI])
where ∀J, yJ 6∈ FV(M) (where I, J ∈ N (resp. LN)). We use the Barendregt convention (BC)
where the names of bound variables differ from the free ones and where we rewrite terms so that
not both λxI and λxJ co-occur when I 6= J .

• Let i ∈ {1, 2, 3}. A relation R on Mi is compatible iff for all M,N,P ∈Mi:

– If 〈M,N〉 ∈ R and λxI .M, λxI .N ∈Mi then 〈λxI .M, λxI .N〉 ∈ R.

– If 〈M,N〉 ∈ R and MP,NP ∈Mi then 〈MP,NP 〉 ∈ R.

– If 〈M,N〉 ∈ R, and PM,PN ∈Mi then 〈PM,PN〉 ∈ R.

• Let i ∈ {1, 2, 3}. The reduction relation �β on Mi is defined as the least compatible relation
closed under the rule: (λxI .M)N �β M [xI := N] if d(N) = I.

• Let i ∈ {1, 2, 3}. The reduction relation �η on Mi is defined as the least compatible relation
closed under the rule: λxI .(M xI) �η M if xI 6∈ FV(M)

• Let i ∈ {1, 2, 3}. The weak head reduction �h on Mi is defined by:
(λxI .M)NN1 . . . Nn �h M [xI := N]N1 . . . Nn where n ≥ 0

• We let �βη = �β ∪�η.

• For a reduction relation �r, we denote by �∗
r the reflexive and transitive closure of �r. We denote

by 'r the equivalence relation induced by �∗
r .

The next theorem states that reductions preserve the free variables and the degree of a term.

Theorem 2.1. Let i ∈ {1, 2, 3}. Let M ∈Mi and r ∈ {β, βη, h}.

1. If M �∗
η N , then FV(N) = FV(M) and d(M) = d(N).

1We can prove the following lemma: Let X = {M} ∪ {Nj | 1 ≤ j ≤ m}. We have: �X and ∀1 ≤ j ≤ m, d(Nj) = Ij iff
M [(x

Ij

j := Nj)m] ∈Mi where i ∈ {1, 2, 3}.

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1009

2. If i = 3 and M �∗
r N , then FV(N) ⊆ FV(M) and d(M) = d(N).

3. If i 6= 3 and M �∗
β N then FV(M) = FV(N), d(M) = d(N) and M is good iff N is good.

Proof:

1. By induction on M �∗
η N .

2. Case r = β. By induction on M �∗
β N .

Case r = βη, by the β and η cases.
Case r = h, by the β case.

3. By induction on M �∗
β N .

ut

Normal forms are defined as usual.

Definition 2.9. Let i ∈ {1, 2, 3}.

1. M ∈ Mi is in β- (resp. βη-, h-) normal form if there is no N ∈ Mi such that M �β N (resp.
M �βη N , M �h N).

2. M ∈Mi is β-normalising (resp. βη-normalising, h-normalising) if there is an N ∈Mi such that
M �∗

β N (resp. M �βη N , M �h N) and N is in β-normal form (resp. βη-normal form, h-normal
form).

Finally, β, βη and h reductions are confluent on the indexed lambda calculi:

Theorem 2.2. (Confluence)
Let i ∈ {1, 2, 3}. Let M,M1,M2 ∈Mi and r ∈ {β, βη, h}.

1. If M �∗
r M1 and M �∗

r M2, then there is M ′ such that M1 �∗
r M ′ and M2 �∗

r M ′.

2. M1 'r M2 iff there is a term M such that M1 �∗
r M and M2 �∗

r M .

Proof:
We establish the confluence using the standard parallel reduction method. Full details can be found
in [13]. ut

3. The types of the indexed calculi

We assume that a, b range over a countably infinite set of type variables A, and that e ranges over
a countably infinite set of expansion variables E = {e0, e1, . . . }. We denote ei1 . . . ein by ~ei(1:n) or
alternatively by ~eK , where K = (i1, . . . , in). In all our type systems, we quotient types by taking u
to be commutative (i.e. U1 u U2 = U2 u U1), associative (i.e. U1 u (U2 u U3) = (U1 u U2) u U3)
and idempotent (i.e. U u U = U), by assuming the distributivity of expansion variables over u (i.e.
ei(U1 u U2) = eiU1 u eiU2). We denote Un u Un+1 · · · u Um by um

i=nUi (when n ≤ m).

1010 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

For λIN, we study two type systems (none of which has the ω-type). In the first, there are no
restrictions on where the arrow occurs. In the second, intersections and expansions cannot occur directly
to the right of an arrow.

Definition 3.1. (Types, good types and degree of a type for λIN)
1. The sets of types T2 ⊆ U2 ⊆ U1 are defined by U1 ::= A | U1 → U1 | U1 u U1 | EU1 and

U2 ::= U2 u U2 | EU2 | T2 where T2 ::= A | U2 → T2. We let T,U, V, W (resp. T , resp.
U, V,W) range over U1 (resp. T2, resp. U2).

2. We define a function d : U1 → N by (hence d is also defined on U2):
• d(a) = 0 • d(U → T) = min(d(U), d(T))
• d(eU) = d(U) + 1 • d(U u V) = min(d(U), d(V)).

3. We define the good types on U1 by (this also defines good types on U2):
• If a ∈ A, then a is good • If U is good and e ∈ E , then eU is good
• If U, T are good and d(U) ≥ d(T), then U → T is good
• If U, V are good and d(U) = d(V), then U u V is good

The next lemma states when arrow, intersection and expansion types are good.

Lemma 3.1. 1. On U1 (hence on U2), we have the following:

(a) (U, T are good and d(U) ≥ d(T)) iff U → T is good.

(b) (U, V are good and d(U) = d(V)) iff U u V is good.

(c) U is good iff eU is good.

2. On U2, we have in addition the following:

(a) If T ∈ T2, then d(T) = 0.

(b) If d(U) = n then U = uk
i=1~ei(1:n)Vi where k ≥ 1 and ∃i.Vi ∈ T2.

(c) If U is good and d(U) = n, then U = uk
i=1~ei(1:n)Ti where k ≥ 1 and ∀ 1 ≤ i ≤ k, Ti ∈ T2.

(d) U and T are good iff U → T is good.

For λLN , we study a type system (with the universal type ω). In this type system, in order to get
subject reduction and hence completeness, intersections and expansions cannot occur directly to the
right of an arrow (see U3 below). Note that our sets U3 and T3 are far more restricted here than for the
λIN-calculus and that we do not have the luxury of giving a syntax for a so-called good types. Note
also that the definitions of degrees and types are simultaneous (unlike for U2 and T2 where types were
defined without any reference to degrees).

Definition 3.2. (Types and degrees for λLN)
1. We define sets of types T3 ⊆ U3, and a function d : U3 → LN by simultaneous induction as

follows:

• If a ∈ A, then a ∈ T3 and d(a) = �.

• If U ∈ U3 and T ∈ T3, then U → T ∈ T3 and d(U → T) = �.

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1011

• If L ∈ LN, then ωL ∈ U3 and d(ωL) = L.

• If U1, U2 ∈ U3 and d(U1) = d(U2), then U1 u U2 ∈ U3 and d(U1 u U2) = d(U1) = d(U2).

• U ∈ U3 and ei ∈ E , then eiU ∈ U3 and d(eiU) = i :: d(U).

Note that d remembers the number of the expansion variables ei in order to keep a trace of them.

2. We let T range over T3, and U, V,W range over U3. We quotient types further by having ωL as a
neutral (i.e. ωL u U = U). We also assume that for all i ≥ 0 and K ∈ LN, eiω

K = ωi::K .

All our type systems use the following definition (of course within the corresponding calculus, with
the corresponding indices and types):

Definition 3.3. (Environments)
1. Let k ∈ {1, 2, 3}. A type environment for Uk is a set {xI1

1 : U1, . . . , x
In
n : Un | n ≥ 0,∀1 ≤

i, j ≤ n, Ui ∈ Uk, and if xIi
i = x

Ij

j then Ui = Uj}. We denote such environment (call it Γ) by
xI1

1 : U1, . . . , x
In
n : Un or simply by (xIi

i : Ui)n and define dom(Γ) = {xIi
i | 1 ≤ i ≤ n}. We let

EnvUk
be the set of type environments for Uk. If dom(Γ1) ∩ dom(Γ2) = ∅, we write Γ1,Γ2 for

Γ1 ∪ Γ2. Let Γ,∆ range over environments and let () be the empty environment.

2. If Γ = (xIi
i : Ui)n and xJ 6∈ dom(Γ), then we write Γ, xJ : U for the type environment xI1

1 :
U1, . . . , x

In
n : Un, xJ : U .

3. We say that Γ1 is joinable with Γ2 and write Γ1 � Γ2 iff
for all x ∈ V , if xI ∈ dom(Γ1) and xJ ∈ dom(Γ2), then I = J .

4. We say that a type environment Γ is OK (and write OK(Γ)) iff for all xI : U ∈ Γ, d(U) = I .

5. Let Γ1 = (xIi
i : Ui)n,Γ′1, Γ2 = (xIi

i : U ′
i)n,Γ′2 where dom(Γ′1) ∩ dom(Γ′2) = ∅ and ∀1 ≤ i ≤ n,

d(Ui) = d(U ′
i). We denote Γ1 u Γ2 the type environment

(xIi
i : UiuU ′

i)n,Γ′1,Γ
′
2. Note that dom(Γ1uΓ2) = dom(Γ1)∪dom(Γ2) and that, on environments,

u is commutative, associative and idempotent.

6. In λIN (i.e., on EnvU1 and EnvU2), we define for Γ = (xni
i : Ui)n:

• Γ is good iff , for every 1 ≤ i ≤ n, Ui is good.

• d(Γ) > 0 iff for every 1 ≤ i ≤ n, d(Ui) > 0 and ni > 0.

• eΓ = (xni+1
i : eUi)n. So e(Γ1 u Γ2) = eΓ1 u eΓ2.

7. In λLN (i.e., on EnvU3), we define:

• If M ∈M3 and FV(M) = {xL1
1 , . . . , xLn

n }, let envω
M be the type environment (xLi

i : ωLi)n.

• Let Γ = (xLi
i : Ui)n and ej ∈ E .

– We denote ejΓ = (xj::Li
i : ejUi)n. Note that e(Γ1 u Γ2) = eΓ1 u eΓ2.

– d(Γ) � L if and only if for all i ∈ {1, . . . , n}, d(Ui) � L.

As we did for terms, we decrease the indexes of types and environments.

1012 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

Definition 3.4. (Degree decreasing in λIN)
1. If d(U) > 0, we inductively define the type U− by:

• (U1 u U2)− = U−
1 u U−

2 •(eU)− = U
If d(U) ≥ n ≥ 0, we inductively define the type U−n by:

if n = 0 then U−n = U and if n ≥ 0 then U−(n+1) = (U−n)−.

2. If Γ = (xni
i : Ui)k and d(Γ) > 0, then we let Γ− = (xni−1

i : U−
i)k.

If d(Γ) ≥ n ≥ 0, then,
if n = 0 then Γ−n = Γ and if n ≥ 0 then Γ−(n+1) = (Γ−n)−.

Definition 3.5. (Degree decreasing in λLN)
1. If d(U) � L, then if L = � then U−L = U else L = i :: K and we inductively define the type

U−L as follows:
(U1 u U2)−i::K = U−i::K

1 u U−i::K
2 (eiU)−i::K = U−K

We write U−i instead of U−(i).

2. If Γ = (xLi
i : Ui)k and d(Γ) � L, then for all i ∈ {1, . . . , k}, Li = L :: L′

i and Γ−L denote
(xL′

i : U−L
i)k.

We write Γ−i instead of Γ−(i).

4. The type systems `1 and `2 for λIN and `3 for λLN

In this section we introduce our three type systems `i for i ∈ {1, 2, 3}, our intersection type systems with
expansion variables. The systems `1 (which uses types in Ui) and `2 (which uses types in U2) are for
λIN, `3 (which uses types in U3) is for λLN . In `1, types are not restricted and Subject Reduction (SR)
fails. In `2, the syntax of types is restricted (see U2), and in order to guarantee SR for this type system
(and hence completeness later on), we introduce a subtyping relation which will allow intersection type
elimination (something not available in the first type system). In `3, the syntax of types is restricted
further (see U3) so that completeness will hold with an arbitrary number of expansion variables.

We follow [3] and write type judgements as M : 〈Γ ` U〉 instead of Γ ` M : U .

Definition 4.1. (The type systems)
Let i ∈ {1, 2, 3}. The type system `i uses the set Ui of definitions 3.1 and 3.2. The typing rules of `1

and `2 are given on the left of Figure 1 (recall that when used for `1, U and T range over all of U1, and
when used for `2, U ranges over U2 and T ranges only over T2). The typing rules of `3 are given on the
left of Figure 2. In the last clause, the binary relation v is defined on U2 and U3 by the rules on the right
hand side of Figures 1 and 2 respectively. For j ∈ {2, 3}, we let Φ denote types in Uj , or environments
Γ or j-typings 〈Γ `j U〉. When Φ v Φ′, then Φ and Φ′ belong to the same set (Uj /EnvUj /j-typings).
• We say that Γ is `i-legal iff there are M,U such that M : 〈Γ `i U〉.
• Let k ∈ {1, 2}. We say that

• 〈Γ `k U〉 is good iff Γ and U are good.
• d(〈Γ `k U〉) > 0 iff d(Γ) > 0 and d(U) > 0.

• We say that d(〈Γ `3 U〉) � L if and only if d(Γ) � L and d(U) � L.

To illustrate how our indexed type system works, we give an example:

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1013

Let i ∈ {1, 2}
In `1, U and T range over all of U1.

In `2, U ranges over U2 and T ranges only over T2

T good d(T) = n

xn : 〈(xn : T) `1 T 〉
(ax)

T good
x0 : 〈(x0 : T) `2 T 〉

(ax)

M : 〈Γ, (xn : U) `i T 〉
λxn.M : 〈Γ `i U → T 〉

(→I)

M1 : 〈Γ1 `i U → T 〉 M2 : 〈Γ2 `i U〉 Γ1 � Γ2

M1M2 : 〈Γ1 u Γ2 `i T 〉
(→E)

M : 〈Γ1 `i U1〉 M : 〈Γ2 `i U2〉
M : 〈Γ1 u Γ2 `i U1 u U2〉

(uI)

M : 〈Γ `i U〉
M+ : 〈eΓ `i eU〉

(exp)

M : 〈Γ `2 U〉 〈Γ `2 U〉 v 〈Γ′ `2 U ′〉
M : 〈Γ′ `2 U ′〉

(v)

v is defined on:
U2, EnvU2 and 2-typings.

Φ v Φ
(ref)

Φ1 v Φ2 Φ2 v Φ3

Φ1 v Φ3
(tr)

U2 good d(U1) = d(U2)
U1 u U2 v U1

(uE)

U1 v V1 U2 v V2

U1 u U2 v V1 u V2
(u)

U2 v U1 T1 v T2

U1 → T1 v U2 → T2
(→)

U1 v U2

eU1 v eU2
(vexp)

U1 v U2 yn 6∈ dom(Γ)
Γ, (yn : U1) v Γ, (yn : U2)

(vc)

U1 v U2 Γ2 v Γ1

〈Γ1 `2 U1〉 v 〈Γ2 `2 U2〉
(v〈〉)

Figure 1. Typing rules / Subtyping rules for `1 and `2

Example 4.1. Let L1 = 3 :: � � L2 = 3 :: 2 :: � � L3 = 3 :: 2 :: 1 :: � � L4 = 3 :: 2 :: 1 :: 0 :: �
and let a, b, c, d ∈ A. Consider M,M ′, U as follows:
M = λxL2 .λyL1 .(yL1 (xL2 λuL3 .λvL4 .(uL3 (vL4 vL4)))) ∈M3.
M ′ = λx2.λy1.(y1 (x2 λu3.λv4.(u3 (v4 v4)))) ∈M2.
U = e3(e2(e1((e0b → c) → (e0(a u (a → b)) → c)) → d) → (((e2d → a) u b) → a)).

We invite the reader to check that M : 〈() `3 U〉 and M ′ : 〈() `2 U〉. We simply give some steps
in the derivation of M : 〈() `3 U〉 (note that the derivation of M ′ : 〈() `2 U〉 only differs from the
derivation of M : 〈() `3 U〉 by replacing everywhere `3 by `2 and any list n1 :: n2 · · · :: nk :: � by k
for any k ≥ 0):

• v�v� :< v� : a u (a → b) `3 b >

• v0::�v0::� :< v0::� : e0(a u (a → b)) `3 e0b >

• u� :< u� : e0b → c `3 e0b → c >

• u�(v0::�v0::�) :< u� : e0b → c, v0::� : e0(a u (a → b)) `3 c >

• λv0::�.u�(v0::�v0::�) :< u� : e0b → c `3 e0(a u (a → b)) → c >

1014 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

U ranges over U3 and T ranges only over T3

x� : 〈(x� : T) `3 T 〉
(ax)

M : 〈envω
M `3 ωd(M)〉

(ω)

M : 〈Γ, (xL : U) `3 T 〉
λxL.M : 〈Γ `3 U → T 〉

(→I)

M : 〈Γ `3 T 〉 xL 6∈ dom(Γ)

λxL.M : 〈Γ `3 ωL → T 〉
(→′

I)

M1 : 〈Γ1 `3 U → T 〉 M2 : 〈Γ2 `3 U〉 Γ1 � Γ2

M1M2 : 〈Γ1 u Γ2 `3 T 〉
(→E)

M : 〈Γ `3 U1〉 M : 〈Γ `3 U2〉
M : 〈Γ `3 U1 u U2〉

(uI)

M : 〈Γ `3 U〉
M+j : 〈ejΓ `3 ejU〉

(e)

M : 〈Γ `3 U〉 〈Γ `3 U〉 v 〈Γ′ `3 U ′〉
M : 〈Γ′ `3 U ′〉

(v)

v is defined on:
U3, EnvU3 and 3-typing.

Φ v Φ
(ref)

Φ1 v Φ2 Φ2 v Φ3

Φ1 v Φ3
(tr)

d(U1) = d(U2)

U1 u U2 v U1
(uE)

U1 v V1 U2 v V2 d(U1) = d(U2)

U1 u U2 v V1 u V2
(u)

U2 v U1 T1 v T2

U1 → T1 v U2 → T2
(→)

U1 v U2

eU1 v eU2
(ve)

U1 v U2 yL 6∈ dom(Γ)

Γ, yL : U1 v Γ, yL : U2

(vc)

U1 v U2 Γ2 v Γ1

〈Γ1 `3 U1〉 v 〈Γ2 `3 U2〉
(v〈〉)

Figure 2. Typing rules / Subtyping rules for `3

• λu�.λv0::�.u�(v0::�v0::�) :< () `3 (e0b → c) → (e0(a u (a → b)) → c) >

• λu1::�.λv1::0::�.u1::�(v1::0::�v1::0::�) :
< () `3 e1((e0b → c) → (e0(a u (a → b)) → c)) >

• x� :< x� : e1((e0b → c) → (e0(a u (a → b)) → c)) → d
`3 e1((e0b → c) → (e0(a u (a → b)) → c)) → d >

• x�(λu1::�.λv1::0::�.u1::�(v1::0::�v1::0::�)) :
< x� : e1((e0b → c) → (e0(a u (a → b)) → c)) → d `3 d >

• x2::�(λu2::1::�.λv2::1::0::�.u2::1::�(v2::1::0::�v2::1::0::�)) :
< x2::� : e2(e1((e0b → c) → (e0(a u (a → b)) → c)) → d) `3 e2d >

• y�(x2::�(λu2::1::�.λv2::1::0::�.u2::1::�(v2::1::0::�v2::1::0::�))) :
< x2::� : e2(e1((e0b → c) → (e0(a u (a → b)) → c)) → d),

y� : (e2d → a) u b `3 a >

• λy�.(y�(x2::�(λu2::1::�.λv2::1::0::�.u2::1::�(v2::1::0::�v2::1::0::�)))) :
< x2::� : e2(e1((e0b → c) → (e0(a u (a → b)) → c)) → d),

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1015

`3 ((e2d → a) u b) → a >

• λx2::�.λy�.(y�(x2::�(λu2::1::�.λv2::1::0::�.u2::1::�(v2::1::0::�v2::1::0::�)))) :
< () `3 e2(e1((e0b → c) → (e0(a u (a → b)) → c)) → d),

→ (((e2d → a) u b) → a) >

• λxL2 .λyL1 .(yL1(xL2(λuL3 .λvL4 .uL3(vL4vL4)))) :
< () `3 e3(e2(e1((e0b → c) → (e0(a u (a → b)) → c)) → d),

→ (((e2d → a) u b) → a)) >

Definition 4.2. 1. In λIN, if U ∈ U2 and Γ ∈ EnvU2 such that d(Γ) > 0 and d(U) > 0, then we let
(〈Γ `2 U〉)− = (〈Γ− `2 U−〉).

2. In λLN , if U ∈ U3 and Γ ∈ EnvU3 such that d(Γ) � K and d(U) � K, then we denote
(〈Γ `3 U〉)−K = 〈Γ−K `3 U−K〉.

Next we show how ordering propagates to environments and relates degrees:

Lemma 4.1. 1. If Γ v Γ′, U v U ′ and xI 6∈ dom(Γ) then Γ, (xI : U) v Γ′, (xI : U ′).

2. Γ v Γ′ iff Γ = (xIi
i : Ui)n, Γ′ = (xIi

i : U ′
i)n and for all i ∈ {1, . . . , n}, Ui v U ′

i .

3. Let j ∈ {2, 3}. 〈Γ `j U〉 v 〈Γ′ `j U ′〉 iff Γ′ v Γ and U v U ′.

4. v is well defined on Uj , EnvUj and on j-typings, for j ∈ {2, 3, }.

5. If U1 v U2 then d(U1) = d(U2) and U1 is good iff U2 is good.

6. If Γ1 v Γ2 then d(Γ1) � L iff d(Γ2) � L.

Proof:
1. and 2. By induction on the derivation Γ v Γ′.
3. By induction on the derivation 〈Γ `j U〉 v 〈Γ′ `j U ′〉.
4. By induction on the derivation Φ1 v Φ2

5. By induction on the derivation U1 v U2.
6. By induction on the derivation Γ1 v Γ2. ut

The next theorem states that typings are well defined, that within a typing, degrees are well behaved
and that we do not allow weakening.

Theorem 4.1. Let j ∈ {1, 2, 3}. We have:

1. `j is well defined on Mj × EnvUj × Uj .

2. Let Γ = (xIi
i : Ui)n and M : 〈Γ `j U〉. Then:

(a) d(M) = d(U) and ∀1 ≤ i ≤ n, d(Ui) = Ii.

(b) If j = 3 then d(Γ) � d(U).

1016 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

(c) If j 6= 3 then U and M are good and ∀ 1 ≤ i ≤ n, d(Ui) ≥ d(M) and Ui is good.

3. Let M : 〈Γ `j U〉. Then:

(a) dom(Γ) = FV(M).

(b) If j 6= 3 and d(U) ≥ k then M−k : 〈Γ−k `j U−k〉.
(c) If j = 3 and d(U) � K then M−K : 〈Γ−K `3 U−K〉.

Proof:
We prove 1 and 2 simultaneously by induction on the derivation M : 〈Γ `j U〉 using Lemma 4.1. We
prove 3 by induction on the derivation M : 〈Γ `j U〉. ut

Here are some derivable typing rules.

Remark 4.1. Let j ∈ {2, 3}.

1. The rule
M : 〈Γ1 `j U1〉 M : 〈Γ2 `j U2〉

M : 〈Γ1 u Γ2 `j U1 u U2〉
u′I is derivable.

2. The rule
U is good d(U) = n

xn : 〈(xn : U) `2 U〉
ax′ is derivable.

3. The rule
xd(U) : 〈(xd(U) : U) `3 U〉

ax′′ is derivable.

4. The rule
U v ωd(U)

ω is derivable.

Lemma 4.2. Let i ∈ {1, 2, 3}.

1. If M : 〈Γ `3 U〉 then Γ v envω
M

2. If dom(Γ) = FV(M), and ∀xL : U ∈ Γ, d(U) = L then M : 〈Γ `3 ωd(M)〉.

3. If M1 : 〈Γ1 `i U〉 and M2 : 〈Γ2 `i U〉 then Γ1 � Γ2 iff M1 �M2.

Proof:

1. Let Γ = (xLi
i : Ui)n where FV(M) = {xL1

1 , xL2
2 , . . . , xLn

n } by Theorem 4.1.3a. Since by Re-
mark 4.1.4 resp. Theorem 4.1.2, ∀1 ≤ i ≤ n, Ui v ωd(Ui) resp. d(Ui) = Li, then by Lemma 4.1.2,
Γ v envω

M .

2. Let Γ = (xLi
i : Ui)n where FV(M) = {xL1

1 , xL2
2 , . . . , xLn

n } and ∀1 ≤ i ≤ n, d(Ui) = Li.
By Remark 4.1.4, Ui v ωLi . By Lemma 4.1.1, Γ v envω

M = (xLi : ωLi)n. Since by ω,
M : 〈envω

M `3 ωd(M)〉, we have by v and v〈〉, M : 〈Γ `3 ωd(M)〉.

3. If) Let xI ∈ dom(Γ1) and xJ ∈ dom(Γ2) then by Theorem 4.1.3a, xI ∈ FV(M1) and xJ ∈
FV(M2) so Γ1 � Γ2. Only if) Let xI ∈ FV(M1) and xJ ∈ FV(M2) then by Theorem 4.1.3a,
xI ∈ dom(Γ1) and xJ ∈ dom(Γ2) so M1 �M2.

ut

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1017

5. Subject reduction and expansion properties

Now we list the generation lemmas for the three type systems (for proofs see [13]).

Lemma 5.1. (Generation for `1)
1. If xn : 〈Γ `1 T 〉, then Γ = (xn : T).

2. If λxn.M : 〈Γ `1 T1 → T2〉, then M : 〈Γ, xn : T1 `1 T2〉.

3. If MN : 〈Γ `1 T 〉 then Γ = Γ1 u Γ2, T = un
i=1~ei(1:mi)Ti, n ≥ 1,mi ≥ 0, M : 〈Γ1 `1

un
i=1~ei(1:mi)(T

′
i → Ti)〉 and N : 〈Γ2 `1 un

i=1~ei(1:mi)T
′
i 〉.

Lemma 5.2. (Generation for `2)
1. If xn : 〈Γ `2 U〉, then Γ = (xn : V) where V v U .

2. If λxn.M : 〈Γ `2 U〉 and d(U) = m, then U = uk
i=1~ei(1:m)(Vi → Ti) where k ≥ 1 and

∀1 ≤ i ≤ k, M : 〈Γ, xn : ~ei(1:m)Vi `2 ~ei(1:m)Ti〉.

Lemma 5.3. (Generation for `3)
1. If xL : 〈Γ `3 U〉, then Γ = (xL : V) and V v U .

2. If λxL.M : 〈Γ `3 U〉, xL ∈ FV(M) and d(U) = K, then U = ωK or U = up
i=1~eK(Vi → Ti)

where p ≥ 1 and for all i ∈ {1, . . . , p}, M : 〈Γ, xL : ~eKVi `3 ~eKTi〉.

3. If λxL.M : 〈Γ `3 U〉, xL 6∈ FV(M) and d(U) = K, then U = ωK or U = up
i=1~eK(Vi → Ti)

where p ≥ 1 and for all i ∈ {1, . . . , p}, M : 〈Γ `3 ~eKTi〉.

4. If M xL : 〈Γ, (xL : U) `3 T 〉 and xL 6∈ FV(M), then M : 〈Γ `3 U → T 〉.

Proof:
1. By induction on the derivation xL : 〈Γ `3 U〉. 2. By induction on the derivation λxL.M : 〈Γ `3 U〉.
3. Same proof as that of 2. 4. By induction on the derivation M xL : 〈Γ, xL : U `3 T 〉. ut

We also show that no β-redexes are blocked in a typable term.

Lemma 5.4. (No β-redexes are blocked in typable terms)
Let i ∈ {1, 2} and M : 〈Γ `i U〉. If (λxn.M1)M2 is a subterm of M , then d(M2) = n and hence
(λxn.M1)M2 �β M1[xn := M2].

Lemma 5.5. (Substitution for `2 and `3)
Let i ∈ {2, 3}. If M : 〈Γ, xI : U `i V 〉, N : 〈∆ `i U〉 and M �N then M [xI := N] : 〈Γ u∆ `i V 〉.

Proof:
By induction on the derivation M : 〈Γ, xI : U `i V 〉. ut

Lemma 5.6. (Substitution and Subject β-reduction fails for `1)
Let a, b, c be different elements of A. We have:

1. (λx0.x0x0)(y0z0) �β (y0z0)(y0z0)

1018 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

2. (λx0.x0x0)(y0z0) : 〈y0 : b → ((a → c) u a), z0 : b `1 c〉.

3. x0x0 : 〈x0 : (a → c) u a `1 c〉.

4. It is not possible that

(y0z0)(y0z0) : 〈y0 : b → ((a → c) u a), z0 : b `1 c〉.
Hence, the substitution and subject β-reduction lemmas fail for `1.

Proof:
1..3 are easy. For 4, assume (y0z0)(y0z0) : 〈y0 : b → ((a → c)u a), z0 : b `1 c〉. By lemma 5.1.3 twice
using lemmas 4.1 and 5.1.1:

• y0z0 : 〈y0 : b → ((a → c) u a), z0 : b `1 un
i=1(Ti → c)〉.

• y0 : 〈y0 : b → ((a → c) u a) `1 b → (a → c) u a〉.

• z0 : 〈z0 : b `1 b〉.

• un
i=1(Ti → c) = (a → c) u a.

Hence a = Ti → c for some Ti. Absurd. ut

Nevertheless, we show that SR and subject expansion for β using `2 holds. This will be used in the
proof of completeness (more specifically in lemma 7.2 which is basic for the completeness theorem 7.1).

Lemma 5.7. (Subject reduction and expansion for β and `2)
1. If M : 〈Γ `2 U〉 and M �∗

β N , then N : 〈Γ `2 U〉.

2. If N : 〈Γ `2 U〉 and M �∗
β N then M : 〈Γ `2 U〉.

Since `3 does not allow weakening, we need the next definition since when a term is reduced, it may
lose some of its free variables and hence will need to be typed in a smaller environment.

Definition 5.1. If Γ is a type environment and U ⊆ dom(Γ), then we write Γ �U for the restriction of Γ
on the variables of U . If U = FV(M) for a term M , we write Γ �M instead of Γ �FV(M).

Now we are ready to prove the main result of this section:

Theorem 5.1. (Subject reduction for `3)
If M : 〈Γ `3 U〉 and M �∗

βη N , then N : 〈Γ �N`3 U〉.

Proof:
By induction on the derivation M : 〈Γ `3 U〉. ut

Corollary 5.1. 1. If M : 〈Γ `3 U〉 and M �∗
β N , then N : 〈Γ �N`3 U〉.

2. If M : 〈Γ `3 U〉 and M �∗
h N , then N : 〈Γ �N`3 U〉.

The next lemma is needed for expansion.

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1019

Lemma 5.8. If M [xL := N] : 〈Γ `3 U〉, d(N) = L and xL ∈ FV(M) then there exist a type V and
two type environments Γ1,Γ2 such that d(V) = L and:
M : 〈Γ1, x

L : V `3 U〉 N : 〈Γ2 `3 V 〉 Γ = Γ1 u Γ2

Proof:
By induction on the derivation M [xL := N] : 〈Γ `3 U〉. ut

Since more free variables might appear in the β-expansion of a term, the next definition gives a
possible enlargement of an environment.

Definition 5.2. Let m ≥ n, Γ = (xLi
i : Ui)n and U = {xL1

1 , . . . , xLm
m }. We write Γ↑U for xL1

1 :
U1, . . . , x

Ln
n : Un, x

Ln+1

n+1 : ωLn+1 , . . . , xLm
m : ωLm . If dom(Γ) ⊆ FV(M), we write Γ↑M instead of

Γ↑FV(M).

We are now ready to establish that subject expansion holds for β (next theorem) and that it fails for
η (Lemma 5.9).

Theorem 5.2. (Subject expansion for β)
If N : 〈Γ `3 U〉 and M �∗

β N , then M : 〈Γ↑M `3 U〉.

Proof:
By induction on the length of the derivation M �∗

β N using the fact that if FV(P) ⊆ FV(Q), then
(Γ↑P)↑Q = Γ↑Q. ut

Corollary 5.2. If N : 〈Γ `3 U〉 and M �∗
h N , then M : 〈Γ↑M `3 U〉.

Lemma 5.9. (Subject expansion fails for η)
Let a be an element of A. We have:

1. λy�.λx�.y�x� �η λy�.y�

2. λy�.y� : 〈() `3 a → a〉.

3. It is not possible that: λy�.λx�.y�x� : 〈() `3 a → a〉.
Hence, the subject η-expansion lemmas fail for `3.

Proof:
1. and 2. are easy. For 3., assume λy�.λx�.y�x� : 〈() `3 a → a〉.
By Lemma 5.3.2, λx�.y�x� : 〈(y : a) `3→ a〉. Again, by Lemma 5.3.2, a = ω� or there exists n ≥ 1
such that a = un

i=1(Ui → Ti), absurd. ut

6. Realisability

Crucial to a realisability semantics is the notion of a saturated set:

Definition 6.1. (Saturated sets)
Let i ∈ {1, 2, 3} and X ,Y ⊆Mi.

1020 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

1. We use P(X) to denote the powerset of X , i.e. {Y | Y ⊆ X}.

2. We define X ; Y = {M ∈Mi | ∀N ∈ X . M �N ⇒ MN ∈ Y}.

3. We say that X o Y iff for all M ∈ X ; Y , there exist N ∈ X such that M �N .

4. For r ∈ {β, βη, h}, we say that X is r-saturated if whenever M �∗
r N and N ∈ X , then M ∈ X .

Saturation is closed under intersection, lifting and arrows:

Lemma 6.1. 1. If X ,Y are r-saturated sets, then X ∩ Y is r-saturated.

2. If X ⊆M3 is r-saturated, then X+i is r-saturated.

3. If X ⊆M2 is r-saturated, then X+ is r-saturated.

4. Let X ,Y ⊆M2 (resp. M3). If Y is r-saturated, then, for every set X , X ; Y is r-saturated.

5. If X ,Y ⊆M2 then (X ; Y)+ ⊆ X+ ; Y+.

6. If X ,Y ⊆M3 then (X ; Y)+i ⊆ X+i ; Y+i.

7. Let X ,Y ⊆M2. If X+ o Y+, then X+ ; Y+ ⊆ (X ; Y)+.

8. Let X ,Y ⊆M3. If X+i o Y+i, then X+i ; Y+i ⊆ (X ; Y)+i.

9. For every n ∈ N, the set Mn is saturated.

The interpretations and meanings of types are crucial to a realisability semantics:

Definition 6.2. (Interpretations and meaning of types)
Let V = V1 ∪ V2 where V1 ∩ V2 = ∅ and V1,V2 are both countably infinite. Let i ∈ {1, 2, 3}.

1. Let x ∈ V1 and I an index. We define N I
x = {xI N1...Nk ∈Mi | k ≥ 0}.

2. In λIN, let r = β and I0 = 0. In λLN , let r ∈ {β, βη, h} and I0 = �.

(a) An ri-interpretation I : A → P(MI0
i) is a function such that for all a ∈ A:

• I(a) is r-saturated • In λIN, I(a) ⊆ M0 • ∀x ∈ V1, N I0
x ⊆ I(a).

(b) Let an ri-interpretation I : A → P(MI0
i). We extend I (to U1 in case of λIN and to U3 in

case of λLN) as follows:
• I(U1 u U2) = I(U1) ∩ I(U2) • I(U → T) = I(U) ; I(T)
In λIN: • I(eU) = I(U)+

In λLN : • I(ωL) = ML
3 • I(eiU) = I(U)+i

Because ∩ is commutative, associative, idempotent, (X ∩Y)+ = X+∩Y+ and (X ∩Y)+i =
X+i ∩ Y+i, I is well defined.
Let ri-int = {I | I is an ri-interpretation}.

(c) Let U ∈ Ui. Let r ∈ {β, βη, h}. Define [U]ri , the ri-interpretation of U by:
[U]ri = {M ∈Mi | M is closed and M ∈

⋂
I∈ri-int I(U)}

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1021

It is easy to show that in λIN, if xn N1...Nk ∈ N n
x then ∀ 1 ≤ i ≤ k, d(Ni) ≥ n. Hence, in λIN,

we have N n
x = {xn N1...Nk ∈ M | k ≥ 0}.

Type interpretations are saturated and interpretations of good types contain only good terms.

Lemma 6.2. Let r ∈ {β, βη, h}. Let i ∈ {2, 3}.

1. (a) For any U ∈ Ui and I ∈ ri-int, we have I(U) is r-saturated.

(b) If d(U) = L and I ∈ r3-int, then for all x ∈ V1,NL
x ⊆ I(U) ⊆ML

3 .

(c) If U is a good type such that d(U) = n and I is an r2-interpretation, then ∀x ∈ V1, xn ∈
N n

x ⊆ I(U) ⊆ Mn.

2. Let r ∈ {β, βη, h}. If I ∈ ri-int and U v V , then I(U) ⊆ I(V).

Proof:
1a . By induction on U using lemma 6.1.
1b. We prove ∀x ∈ V1. NL

x ⊆ I(U) ⊆ML
3 by induction on U .

1c. Obviously, xn ∈ N n
x . We prove N n

x ⊆ I(U) ⊆ Mn by induction on U good.
2. By induction of the derivation U v V . ut

Corollary 6.1. (Meanings of good types consist of good terms)
On U1 (hence also on U2) we have: If U is a good type such that d(U) = n then [U]β2 ⊆ Mn.

Proof:
Simply note that by lemma 6.2, for any interpretation I, I(U) ⊆ Mn. ut

Lemma 6.3. (Soundness of `1/`2/`3)
Let i ∈ {1, 2, 3}, r ∈ {β, βη, h}, I ∈ ri-int. Let M : 〈(xIj

j : Uj)n `i U〉 and ∀1 ≤ j ≤ n, Nj ∈ I(Uj).

If �{M,N1, N2, . . . , Nn}, then M [(xIj

j := Nj)n] ∈ I(U).

Proof:
By induction on the derivation M : 〈(xIj

j : Uj)n `i U〉. ut

Corollary 6.2. Let r ∈ {β, βη, h} and i ∈ {1, 2, 3}. If M : 〈() `i U〉, then M ∈ [U]ri .

Proof:
By Lemma 6.3, M ∈ I(U) for any ri-interpretation I. By Lemma 4.2, FV(M) = dom(()) = ∅ and
hence M is closed. Therefore, M ∈ [U]ri . ut

Lemma 6.4. (The meaning of types is closed under type operations)
Let r ∈ {β, βη, h} and j ∈ {1, 2, 3}. The following hold:

1. [eiU]r3 = [U]+i
r3

and if k ∈ {1, 2} then [eU]rk
= [U]+rk

2. [U u V]rj = [U]rj ∩ [V]rj

3. If U → T ∈ U3 then for any interpretation I, I(U) o I(T).

1022 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

4. If U → T is good then for any interpretation I, I(U) o I(T).

5. On U1 only (since eU → eT 6∈ U2), we have:
If U → T is good, then [e(U → T)]β2 = [eU → eT]β2 .

Proof:
1. and 2. are easy.

3. Let d(U) = L, M ∈ I(U) ; I(T) and x ∈ V1 such that for all K, xK 6∈ FV(M), hence M �xL

and by lemma 6.2, xL ∈ I(U).

4. Let d(U) = n and M ∈ I(U) ; I(T). Take x ∈ V1 such that ∀p ∈ N, xp 6∈ FV (M). Hence,
M � xn. By lemma 3.1, U is good and by lemma 6.2, xn ∈ I(U).

5. Since U → T is good, then, by lemma 3.1, U, T are good and d(U) ≥ d(T). Again by lemma 3.1,
eU , eT are good, d(eU) ≥ d(eT) and eU → eT is good. Hence by 3. above, I(U)+ o I(T)+.
Thus, by lemma 6.1.5, for any interpretation I we have I(e(U → T)) = I(eU → eT).

ut

The next definition and lemma put the realisability semantics in use.

Definition 6.3. (Examples)
Let a, b ∈ A where a 6= b. We define:

• Id0 = a → a, Id1 = e1(a → a) and Id′1 = e1a → e1a.

• D = (a u (a → b)) → b.

• Nat0 = (a → a) → (a → a), Nat1 = e1((a → a) → (a → a)),
and Nat′0 = (e1a → a) → (e1a → a).

Moreover, if M,N are terms and n ∈ N, we define (M)n N by induction on n: (M)0 N = N and
(M)m+1 N = M ((M)m N).

Lemma 6.5. 1. [(a u b) → a]β1 = {M ∈ M0 | M �∗
β λy0.y0}.

2. It is not possible that λy0.y0 : 〈() `1 (a u b) → a〉.

3. λy0.y0 : 〈() `2 (a u b) → a〉.

4. [Id0]β3 = {M ∈M�
3 | M �∗

β λy�y�}.

5. [Id1]β3 = [Id′1]β = {M ∈M(1)
3 | M �∗

β λy(1).y(1)}. (Note that Id′1 6∈ U3.)

6. [D]β3 = {M ∈M�
3 | M �∗

β λy�.y�y�}.

7. [Nat0]β3 = {M ∈M�
3 | M �∗

β λf�.f� or M �∗
β λf�.λy�.(f�)ny� where n ≥ 1}.

8. [Nat1]β3 = {M ∈M(1)
3 | M �∗

β λf (1).f (1) or M �∗
β λf (1).λx(1).(f (1))ny(1) where n ≥ 1}.

9. [Nat′0]β3 = {M ∈M�
3 | M �∗

β λf�.f� or M �∗
β λf�.λy(1).f�y(1)}.

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1023

7. The challenges of completeness in λIN

In this paper we are concerned with two realisability semantics of E-variables. These semantics are
based on a hierarchy of types and terms. Considering how expansions can introduce new substitutions,
new expansions and an unbounded number of new variables (even E-variables), it became clear that to
give meanings to expansions, we needed to use a hierarchy on types and terms. At first, one thinks of
labeling types and terms with a natural number and this is the hierarchy we used in λIN. When assigning
meanings to types, we ensured that each use of E-variables simply changes the labels and that each E-
variable acted as a kind of capsule that isolates parts of the λ-term being analyzed by the typing. This
captured accurately the intuition behind E-variables. However, this indexing poses two problems: it
imposes that the type ω should have all possible indexes (which is impossible and hence we eliminated
ω from the type systems for M2) and it implies that the realisability semantics can only be complete
when a unique E-variable is used (as we will see in this section). In order to understand the challenges
of the semantics of E-variables with ω and to understand the idea behind the hierarchy, we first studied
the λI-calculus typed with two representative intersection type systems. The restriction to λI (where in
every (λx.M) the variable x must appear free in M) was motivated by not knowing how to support the
ω type while preserving the intuitive levels made of single natural numbers. For `1, the first of these
type systems (the most natural), we showed that subject reduction and hence completeness do not hold.

Remark 7.1. (Failure of completeness for `1)
Items 1, 2 and 3 of Lemma 6.5 show that we can not have a completeness result (a converse of lemma 6.3
for closed terms) for `1. To type the term λy0.y0 by the type (a u b) → a, we need an elimination rule
for u which we do not have in `1.

Note that failure of completeness for `1 is related to the failure of its subject reduction. So, one might
think that since `2, the second type system for λIN, has subject reduction, its semantics is complete. This
is not the case.

Remark 7.2. (Failure of completeness of `2 if more than one E-variable is used)
Let a ∈ A, e1, e2 ∈ E , e1 6= e2 and Nat′′0 = (e1a → a) → (e2a → a). Then:
1) λf0.f0 ∈ [Nat′′0] and 2) It is not possible that λf0.f0 : 〈() `2 Nat′′0〉.

Hence λf0.f0 ∈ [Nat′′0] but λf0.f0 is not typable by Nat′′0 and we do not have completeness in the
presence of more than one expansion variable.

However, we will see that we have completeness for `2 if only one expansion variable is used.

7.1. Completeness of `2 with one expansion variable

The problem shown in remark 7.2 comes from the fact that for the realisability semantics that we consid-
ered for `2, we identify all expansion variables. In order to give a completeness theorem for `2, we will
in what follows restrict our system to only one expansion variable. In the rest of this section, we assume
that the set E contains only one expansion variable e1.

The need of one single expansion variable is clear in part 2) of lemma 7.1 which would fail if we use
more than one expansion variable. For example, if e1 6= e2 then (e1a)− = a = (e2a)− but e1a 6= e2a.
This lemma is crucial for the rest of this section and hence, a single expansion variable is also crucial.

1024 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

Lemma 7.1. Let U, V ∈ U2 and d(U) = d(V) > 0. 1) e1U
− = U and 2) If U− = V −, then U = V .

Despite the difference of the number of expansion variables used in this completeness proof and
that of the next section, there are a number of similarities of both proofs. We still write these two
proofs independently to illustrate the method and especially since the proof for this section is far simpler.
Furthermore, we only show the semantics in this section for β-reduction (although the semantics works
for all our notions of reductions as we show in the next section).

The first step of the proof is to divide {yn | y ∈ V2} disjointly amongst types of order n.

Definition 7.1. Let U ∈ U2. We define the set of variables VU by induction on d(U). If d(U) = 0,
then: VU is an infinite set of variables of degree 0; if y0 ∈ VU , then y ∈ V2; and if U 6= V and
d(U) = d(V) = 0, then VU ∩ VV = ∅. If d(U) = n + 1, then we put VU = {yn+1 | yn ∈ VU−}.

Our partition of V2 allows useful infinite sets which contain type environments that will play a crucial
role in one particular type interpretation. These sets and environments are given in the next definition.

Definition 7.2. 1. Let n ∈ N. We let Gn = {(yn : U) | U ∈ U2, d(U) = n and yn ∈ VU} and
Hn =

⋃
m≥n Gm. Note that Gn and Hn are not type environments because they are infinite sets.

2. Let n ∈ N, M ∈ M2 and U ∈ U2, we write M : 〈Hn `2 U〉 iff there is a type environment
Γ ⊂ Hn where M : 〈Γ `2 U〉

Now, for every n, we define the set of the good terms of order n which contain some free variable xi

where x ∈ V1 and i ≥ n.

Definition 7.3. Let n ∈ N and On = {M ∈ Mn | xi ∈ FV(M) where x ∈ V1 and i ≥ n}. Obviously,
if n ∈ N and x ∈ V1, then N n

x ⊆ On.

Here is the crucial β2-interpretation I for the proof of completeness:

Definition 7.4. Let I be the β2-interpretation defined by:
for all type variables a, I(a) = O0 ∪ {M ∈M0

2 | M : 〈H0 `2 a〉}.

I is indeed a β2-interpretation and the interpretation of a type of order n contains the good terms of
order n which are typable in the special environments which are parts of the infinite sets of definition 7.2:

Lemma 7.2. 1. I is a β2-interpretation. I.e., ∀a ∈ A, I(a) is β-saturated and ∀x ∈ V1, N 0
x ⊆ I(a) ⊆

M0.

2. If U ∈ U2 is good and d(U) = n, then I(U) = On ∪ {M ∈ Mn | M : 〈Hn `2 U〉}.

I is used to prove completeness (the proof is on the authors web pages).

Theorem 7.1. (Completeness)
Let U ∈ U2 be good such that d(U) = n. The following hold:

1. [U]β2 = {M ∈ Mn | M : 〈() `2 U〉}.

2. [U]β2 is stable by reduction: i.e., if M ∈ [U]β2 and M �∗
β N , then N ∈ [U]β2 .

3. [U]β2 is stable by expansion: i.e., if N ∈ [U]β2 and M �∗
β N , then M ∈ [U]β2 .

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1025

8. Completeness in λLN

Having understood the challenges of E-variables and the difficulty of representing the type ω using
natural numbers as indices for the hierarchy, we moved to the presentation of indices as sequences of
natural numbers and we provided our third type system `3. We developed a realizability semantics where
we allow the full λ-calculus, an arbitrary (possibly infinite) number of expansion variables and where ω
is present, and we showed its soundness. Now, we show its completeness.

We need the following partition of the set of variables {yL | y ∈ V2}.

Definition 8.1. 1. Let L ∈ LN. We define UL
3 = {U ∈ U3 | d(U) = L} and VL = {xL | x ∈ V2}.

2. Let U ∈ U3. We inductively define a set of variables VU as follows:

• If d(U) = � then:

– VU is an infinite set of variables of degree �.
– If U 6= V and d(U) = d(V) = �, then VU ∩ VV = ∅.
–

⋃
U∈U�

3
VU = V�.

• If d(U) = L, then we put VU = {yL | y� ∈ VU−L}.

Lemma 8.1. 1. If d(U), d(V) � L and U−L = V −L, then U = V .

2. If d(U) = L, then VU is an infinite subset of VL.

3. If U 6= V and d(U) = d(V) = L, then VU ∩ VV = ∅.

4.
⋃

U∈UL
3

VU = VL.

5. If yL ∈ VU , then yi::L ∈ VeiU .

6. If yi::L ∈ VU , then yL ∈ VU−i .

Proof:
1. If L = (ni)m, we have U = en1 . . . enmU ′ and V = en1 . . . enmV ′. Then U−L = U ′, V −L = V ′ and
U ′ = V ′. Thus U = V .
2., 3. and 4. By induction on L and using 1.
5. Because (eiU)−i = U .
6. By definition. ut

Our partition of the set V2 as above will enable us to give in the next definition useful infinite sets
which will contain type environments that will play a crucial role in one particular type interpretation.

Definition 8.2. 1. Let L ∈ LN. We denote GL = {(yL : U) | U ∈ UL
3 and yL ∈ VU} and

HL =
⋃

K�L GK . Note that GL and HL are not type environments because they are infinite sets.

2. Let L ∈ LN, M ∈M3 and U ∈ U3, we write:

• M : 〈HL `3 U〉 if there is a type environment Γ ⊂ HL where M : 〈Γ `3 U〉

1026 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

• M : 〈HL `∗3 U〉 if M �∗
βη N and N : 〈HL `3 U〉

Lemma 8.2. 1. If Γ ⊂ HL then OK(Γ).

2. If Γ ⊂ HL then eiΓ ⊂ Hi::L.

3. If Γ ⊂ Hi::L then Γ−i ⊂ HL.

4. If Γ1 ⊂ HL, Γ2 ⊂ HK and L � K then Γ1 u Γ2 ⊂ HL.

Proof:
1. Let xK : U ∈ Γ then U ∈ UK and so d(U) = K. 2. and 3. are by lemma 8.1. 4. First note that by 1.,
Γ1 u Γ2 is well defined. HK ⊆ HL. Let (xR : U1 u U2) ∈ Γ1 u Γ2 where (xR : U1) ∈ Γ1 ⊂ HL and
(xR : U2) ∈ Γ2 ⊂ HK ⊆ HL, then d(U1) = d(U2) = R and xR ∈ VU1 ∩ VU2 . Hence, by lemma 8.1,
U1 = U2 and Γ1 u Γ2 = Γ1 ∪ Γ2 ⊂ HL. ut

For every L ∈ LN, we define the set of terms of degree L which contain some free variable xK where
x ∈ V1 and K � L.

Definition 8.3. For every L ∈ LN, let OL = {M ∈ ML
3 | xK ∈ FV(M), x ∈ V1 and K � L}. It is

easy to see that, for every L ∈ LN and x ∈ V1, NL
x ⊆ OL.

Lemma 8.3. 1. (OL)+i = Oi::L.

2. If y ∈ V2 and (MyK) ∈ OL, then M ∈ OL

3. If M ∈ OL, M �N and L � K = d(N), then MN ∈ OL.

4. If d(M) = L, L � K, M �N and N ∈ OK , then MN ∈ OL.

The crucial interpretation I for the proof of completeness is given as follows:

Definition 8.4. 1. Let Iβη be the βη-interpretation defined by: for all type variables a, Iβη(a) =
O� ∪ {M ∈M�

3 | M : 〈H� `∗3 a〉}.

2. Let Iβ be the β-interpretation defined by: for all type variables a, Iβ(a) = O�∪{M ∈M�
3 | M :

〈H� `3 a〉}.

3. Let Ieh be the h-interpretation defined by: for all type variables a, Ih(a) = O� ∪ {M ∈ M�
3 |

M : 〈H� `3 a〉}.

The next crucial lemma shows that I is an interpretation and that the interpretation of a type of order
L contains terms of order L which are typable in these special environments which are parts of the infinite
sets of Definition 8.2.

Lemma 8.4. Let r ∈ {βη, β, h} and r′ ∈ {β, h}

1. If Ir ∈ r-int and a ∈ A then Ir(a) is r-saturated and for all x ∈ V1,N�
x ⊆ Ir(a).

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1027

2. If U ∈ U3 and d(U) = L, then Iβη(U) = OL ∪ {M ∈ML
3 | M : 〈HL `∗3 U〉}.

3. If U ∈ U3 and d(U) = L, then Ir′(U) = OL ∪ {M ∈ML
3 | M : 〈HL `3 U〉}.

Now, we use this crucial I to establish completeness of our semantics.

Theorem 8.1. (Completeness of `3)
Let U ∈ U3 such that d(U) = L.

1. [U]βη3 = {M ∈ML
3 | M closed, M �∗

βη N and N : 〈() `3 U〉}.

2. [U]β3 = [U]h3 = {M ∈ML
3 | M : 〈() `3 U〉}.

3. [U]βη3 is stable by reduction. I.e., If M ∈ [U]βη3 and M �∗
βη N then N ∈ [U]βη3 .

Proof:
Let r ∈ {β, h, βη}.

1. Let M ∈ [U]βη3 . Then M is a closed term and M ∈ Iβη(U). Hence, by Lemma 8.4, M ∈
OL ∪ {M ∈ ML

3 | M : 〈HL `∗3 U〉}. Since M is closed, M 6∈ OL. Hence, M ∈ {M ∈ ML
3 |

M : 〈HL `∗3 U〉 and so, M �∗
βη N and N : 〈Γ `3 U〉 where Γ ⊂ HL. By Theorem 2.1, N is

closed and, by Lemma 4.1.3a, N : 〈() `3 U〉.
Conversely, take M closed such that M �∗

β N and N : 〈() `3 U〉. Let I ∈ β-int. By Lemma 6.3,
N ∈ I(U). By Lemma 6.2.1, I(U) is βη-saturated. Hence, M ∈ I(U). Thus M ∈ [U]βη3 .

2. Let M ∈ [U]β3 . Then M is a closed term and M ∈ Iβ(U). Hence, by Lemma 8.4, M ∈
OL ∪ {M ∈ ML

3 | M : 〈HL `3 U〉}. Since M is closed, M 6∈ OL. Hence, M ∈ {M ∈ ML
3 |

M : 〈HL `3 U〉} and so, M : 〈Γ `3 U〉 where Γ ⊂ HL. By Lemma 4.1.3a, N : 〈() `3 U〉.
Conversely, take M such that M : 〈() `3 U〉. By Lemma 4.1.3a, M is closed. Let I ∈ β-int. By
Lemma 6.3, M ∈ I(U). Thus M ∈ [U]β3 .

It is easy to see that [U]β3 = [U]h3 .

3. Let M ∈ [U]βη3 such that M �∗
βη N . By 1, M is closed, M �∗

βη P and P : 〈() `3 U〉. By
confluence Theorem 2.2, there is Q such that P �∗

βη Q and N �∗
βη Q. By subject reduction

Theorem 5.1, Q : 〈() `3 U〉. By Theorem 2.1, N is closed and, by 1, N ∈ [U]βη3 .
ut

9. Conclusion

Expansion may be viewed to work like a multi-layered simultaneous substitution. Moreover, expansion
is a crucial part of a procedure for calculating principal typings and helps support compositional type in-
ference. Because the early definitions of expansion were complicated, expansion variables (E-variables)
were introduced to simplify and mechanize expansion. The aim of this paper is to give a complete
semantics for intersection type systems with expansion variables.

We studied first the λIN-calculus, an indexed version of the λI-calculus. This indexed version was
typed using first a basic intersection type system with expansion variables but without an intersection

1028 Kamareddine, Nour, Rahli, Wells / semantics of expansion variables

elimination rule, and then using an intersection type system with expansion variables and an elimination
rule.

We gave a realisability semantics for both type systems showing that the first type system is not
complete in the sense that there are types whose semantic meaning is not the set of λIN-terms having
this type. In particular, we showed that λy0.y0 is in the semantic meaning of (a u b) → a but it is
not possible to give λy0.y0 the type (a u b) → a. The main reason for the failure of completeness
in the first system is associated with the failure of the subject reduction property for this first system.
Hence, we moved to the second system which we showed to have the desirable properties of subject
reduction and expansion and strong normalisation. However, for this second system, we showed again
that completeness fails if we use more than one expansion variable but that completeness succeeds if we
restrict the system to one single expansion variable.

In order to overcome the problems of completeness, we changed our realisability semantics from
one which uses indices as natural number to one that uses the indices as lists of natural numbers. The
new semantics is more complex and we lose the elegance of the first (especially in being able to define
the so-called good terms and good types). However, we show that this second semantics has all the
desirable properties of a type systems and it handles all of the lambda calculus (not simply the λI-
calculus). We also show that this second semantics is complete when any number (including infinite)
of expansion variables is used. As far as we know, our work constitutes the first study of a denotational
semantics of intersection type systems with E-variables (using realizability or any other approach) and
of the difficulties involved.

In this article we are not interested in a denotational semantics or at least we are not interested in
an extensional lambda model interpreting the terms of the untyped lambda-calculus. Instead, we are
interested in building a realisability semantics by defining sets of realisers (functions/programs satisfy-
ing the requirements of some specification) of types. Such a model would help to highlight the relation
between typable terms of the untyped lambda-calculus and types w.r.t. a type system. Moreover, inter-
preting types in a model helps to understand the meaning of a type (w.r.t. the model) which is defined
as a purely syntactic form and is clearly used as a meaningful expression (as the integer type, whatever
its notation is, which is always used as the type of each integer). An arrow type expresses functionality.
In that way, models based on lambda-models have been built for intersection type systems [8]. In these
works, intersection types (introduced to be able to type more terms than in the Simply Typed Lambda
Calculus) are interpreted by set-theoretical intersection of meanings. Even if expansion variables have
been introduced to give a simple formalisation of the expansion mechanism, i.e. as a syntactic object,
we are interested in the meaning of such a syntactic object. We are particularly interested in answering a
number of questions which include:

1. What does an expansion variable applied to a type stand for?

2. What are the realisers of such a type?

3. How can the relation between terms and types be described w.r.t. a type system?

4. How can we extend models such as the one given in [12] to a type system with expansion?

Kamareddine, Nour, Rahli, Wells / semantics of expansion variables 1029

References
[1] Barendregt, H. P.: The Lambda Calculus: Its Syntax and Semantics, Revised edition, North-Holland, 1984,

ISBN 0-444-86748-1 (hardback).

[2] Carlier, S., Polakow, J., Wells, J. B., Kfoury, A. J.: System E: Expansion Variables for Flexible Typing with
Linear and Non-linear Types and Intersection Types, Programming Languages & Systems, 13th European
Symp. Programming, 2986, Springer-Verlag, 2004, ISBN 3-540-21313-9.

[3] Carlier, S., Wells, J. B.: Expansion: the Crucial Mechanism for Type Inference with Intersection Types: A
Survey and Explanation, Proc. 3rd Int’l Workshop Intersection Types & Related Systems (ITRS 2004), 2005,
The ITRS ’04 proceedings appears as vol. 136 (2005-07-19) of Elec. Notes in Theoret. Comp. Sci.

[4] Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Principal Type Schemes and λ-Calculus Semantics, in: To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism (J. R. Hindley, J. P. Seldin,
Eds.), Academic Press, 1980, ISBN 0-12-349050-2, 535–560.

[5] Coquand, T.: Completeness Theorems and lambda-Calculus, TLCA (P. Urzyczyn, Ed.), 3461, Springer, 2005,
ISBN 3-540-25593-1.

[6] Farkh, S., Nour, K.: Résultats de complétude pour des classes de types du système AF2, Theoretical Infor-
matics and Applications, 31(6), 1998, 513–537.

[7] Goos, G., Hartmanis, J., Eds.: λ-Calculus and Computer Science Theory, Proceedings of the Symposium
Held in Rome, March 15-27, 1975, vol. 37 of Lecture Notes in Computer Science, Springer-Verlag, 1975.

[8] Hindley, J. R.: The Simple Semantics for Coppo-Dezani-Sallé Types, International Symposium on Pro-
gramming, 5th Colloquium (M. Dezani-Ciancaglini, U. Montanari, Eds.), 137, Springer-Verlag, Turin, April
1982.

[9] Hindley, J. R.: The Completeness Theorem for Typing λ-terms, Theoretical Computer Science, 22, 1983,
1–17.

[10] Hindley, J. R.: Curry’s Types Are Complete with Respect to F-semantics Too, Theoretical Computer Science,
22, 1983, 127–133.

[11] Hindley, J. R.: Basic Simple Type Theory, vol. 42 of Cambridge Tracts in Theoretical Computer Science,
Cambridge University Press, 1997.

[12] Kamareddine, F., Nour, K.: A completeness result for a realisability semantics for an intersection type system,
Ann. Pure Appl. Logic, 146(2-3), 2007, 180–198.

[13] Kamareddine, F., Nour, K., Rahli, V., Wells, J. B.: A complete Realisability Semantics for Intersection Types
and Infinite Expansion Variables, 2008, Located at http://www.macs.hw.ac.uk/~fairouz/papers/
drafts/long-fund-inf-sem.pdf.

[14] Krivine, J.: Lambda-Calcul : Types et Modèles, Etudes et Recherches en Informatique, Masson, 1990.

[15] Labib-Sami, R.: Typer avec (ou sans) types auxilières.

