
The Logic of Events, a framework
to reason about distributed systems

Mark Bickford Vincent Rahli Robert Constable
Cornell University

Protocol specification and verification. In response to the need
of ensuring correctness and security properties of distributed sys-
tems and system components in general, programming languages
have been developed, featuring rich types such as dependenttypes
or session types, expressive enough to specify such properties.
Also, some progress has been done towards automatically proving
that programs meet such specifications (often by type checking).
Following this line of work, we use constructive logic to synthe-
size protocols from specifications, and provide tools that facilitate
the use of formal methods to prove the correctness of distributed
protocols based on asynchronous message passing.

Constructive logic. Constructive logic is appropriate for speci-
fying and reasoning about distributed algorithms for two reasons.
The first is that theproofs-as-programscorrespondence holds for
constructive logic and we want to extractcorrect-by-construction
algorithms and protocols from our proofs. The second reasonis
subtler and equally important. A specification of a distributed algo-
rithm at a high level of abstraction concentrates on specifying the
information flowbetween the participating agents. This informa-
tion can be viewed as theevidence foror knowledge ofproperties
of the global system. Such evidence is precisely the semantics of
constructive logic, so there is a natural affinity between construc-
tive logic and specification of information flow. In reasoning about
information flow it is important to reason both about the acquisi-
tion and the loss of information. For example, when information
from different sources is aggregated it may be that knowledge of
the source of the information is lost. Constructive logic, and in par-
ticular constructive type theory, can account for precisely what an
agent may infer from evidence it has received.

The Logic of Events. We present a logical framework to reason
about distributed systems called the Logic of Events. This logic
has been formalized inNuprl [1, 2]. Nuprl’s logic is a constructive
type theory called Computational Type Theory (CTT). This logic
allows one to reason about events and how they relate to each other
via, among other things, a well-foundedcausal orderingon them.
The Logic of Events is based on a model of message passing.
An event is an abstract object corresponding to the receipt of a
message at a location; the message is calledprimitive information
of the event. A message is a triple of the following dependenttype:
Header×T : Type×T . For example,〈`̀ this is a header̀̀ ,Z, 1〉
is a message.Event orderingsprovide the basic structure to reason
about events. An event ordering consists of a set of events, a
function that associates a location with each event, a function that
associates a primitive information with each event, and a causal
ordering relation on events. An event ordering can be seen asa
formalization of themessage sequence diagramsused by protocol
designers. A fundamental method for reasoning about properties of
event orderings, originally pioneered by Lamport [3], is induction
on the causal order. With this method we can prove both safetyand
liveness properties of our specifications.

Event classes. A central concept in the Logic of Events is the one
of event classes, also called event observers. Event classes observe
how distributed systems agents “react” on receipt of messages.

Formally, an event class of typeT , for some typeT , is a function
that takes an event ordering and an event in that event ordering, and
returns a bag (or multiset) of elements of typeT . If the classX
associates the bag{v1 , . . . , vn} with the evente, we say thatX
observes the valuesvi ’s at e. Typically, one can observe complex
information by composing simple event classes. For example, a
class may observe that the receipt of a certain message means
that consensus has been reached. Note that different classes may
observe different values at a single event. Event classes can be
seen as having two facets: a logical one and a programming one.
By that we mean that, (1) each event classX can be described
by expressing the relation between the elements observed byX
and the elements observed byX ’s components (logical aspect); (2)
one can extract programs from those classes we call programmable
(programming aspect). Informally a classX is programmable iff
there exists a corresponding program that can produce all and
only the elements observed byX . Such extracted programs are
implementations of the corresponding classes.

Specifying and proving protocols. We developed a suite of tools
and tactics inNuprl to reason about event classes. We also devel-
oped a programming language calledEventML which allows pro-
grammers to write specifications of distributed protocols.Such a
specification is an event class describing the information flow of a
distributed program.EventML features an automatic program syn-
thesizer. In addition, it can dock toNuprl (EventML is interpreted
toNuprl) in order to formally prove protocol properties and gener-
ate (withinNuprl) correct-by-constructionprograms by extraction;
we say that these extracted programs arecorrect-by-docking.

We have specified several protocols such as a simple two-thirds
consensus protocol and Paxos, and we keep improving ourNuprl
tools and tactics as we prove properties of these protocols.

A simple example. Here is a toy example that we call the “ping-
pong” specification (written inEventML):

pa ra me te r p : Loc pa ra me te r l o c s : Loc Bag

i n t e r n a l p ing ‘ ‘ p ing ‘ ‘ Loc
i n t e r n a l pong ‘ ‘ pong ‘ ‘ Loc
i n p u t s t a r t ‘ ‘ s t a r t ‘ ‘ Loc
o u t p u t ou t ‘ ‘ ou t ‘ ‘ Loc

impo r t bag−map

c l a s s ReplyToPong c l i e n t l oc =
l e t F j = i f l oc = j t he n {o u t ’ s e n d c l i e n t l oc} e l s e {}
i n F o pong ’base ; ;

c l a s s SendPing loc = Output(\ s l f .{ p ing ’ s e nd loc s l f}) ; ;
c l a s s Hand le r (c l i e n t , l oc) = SendPing loc

| | ReplyToPong c l i e n t l oc ; ;

c l a s s ReplyToPing =
(\ s l f .\ l o c .{ pong ’send loc s l f}) o p i n g ’ b a s e ; ;

c l a s s De le ga te =
l e t F c l i e n t = bag−map (\ l o c . (c l i e n t , l oc)) l o c s
in F o s t a r t ’ b a s e ; ;

main (De le ga te>>= Hand le r) @{p} | | ReplyToPing @ l o c s

Figure 1 Inductive logical form of the ping protocol

∀[locs:bag(Id)]. ∀[p:Id]. ∀[es:EO’]. ∀[e:E]. ∀[i:Id]. ∀[m:Message].
{<i, m> ∈ ping-pong_main(locs;p)(e)
⇐⇒ ((loc(e) = p)

∧ (↓∃e’:{e’:E| e’ ≤loc e }
∃z:Id
(z ∈ Base([start];Id)(e’)
∧ (∃z1:Id

(((((i = z1) ∧ (m = make-Msg([ping];Id;loc(e)))) ∧ (e = e’))
↓∨ (((i = z) ∧ (m = make-Msg([out];Id;z1))) ∧ z1 ∈ Base([pong];Id)(e)))
∧ bag-member(Id;z1;locs))))))

↓∨ (bag-member(Id;loc(e);locs) ∧ (m = make-Msg([pong];Id;loc(e))) ∧ i ∈ Base([ping];Id)(e))}

Similar to IO-Automata [4] and other specification languages
we have declared the input, output, and internal events. Unlike IO-
Automata, there are no explicit state variables. Instead wehave de-
clared thebase classes(start’base , ping’base , andpong’base) that
observe the receipt of input and internal messages (with headers
`̀ start̀ `, `̀ ping̀ `, and `̀ pong̀` respectively) and we have de-
fined other classes (Delegate, Handler, SendPing, ReplyToPong, and
ReplyToPing) in terms of the base classes usingclass combinators.

The combinatorX || Y is a parallel composition of classes
X and Y. An expression like(cout s loc) o Pong is a function
composition, applying the function(cout s loc) to the information
observed by classPong.

The combinator(X >>= Y) is a delegation (or bind) operator
with which event classes form a monad. It has the effect of spawn-
ing a subprocess(Y v) whenever classX observes a valuev. We
typically use it to decompose a complex algorithm into subtasks
that are easier to define and reason about. One typical use is to
define subprocess(Y v) to be handler that sends some messages re-
lated to parameterv, gather the responses to those messages, reports
an answer (by sending a message), and then halts.

Message Automata. A classX declaredmain in an EventML
specification must be a class of typeLoc ∗ Msg. A run of the
program implementingX will consist of a set of processes. When a
process has a message in its in-box, it computes in response the bag
of location-message pairs specified by classX and these responses
are added to its out-box. A message-passing layer moves messages
from out-boxes to the addressed in-boxes.

Programmability and class relation. As mentioned above, event
classes can be seen as having two facets: a programming one and
a logical one. We have proved inNuprl that all the event classes
mentioned above are programmable, and we have extracted (dis-
tributed) programs from these proofs. Using these basic results on
programmability,Nuprl can automatically prove that the main class
of anEventML specification is programmable and then extract the
implementation (the set of processes that implement the Message
Automaton) from the proof. TheEventML tools can mimic the tac-
tic thatNuprl uses and synthesize code from specifications directly
in EventML without usingNuprl. If further assurance is needed
Nuprl can check that the synthesized code agrees with the code
extracted from a proof.

Event classes also have a logical aspect. Given an evente in
some event structure, a classX of type T , and a elementv in
T , we write v ∈ X (e) if X observesv at evente, i.e., v is
in the bag of observations that the classX makes at evente.
This relation between observed elements, events, and classes is
called theclass relation. One can then express the class relation
of combinators in terms of their components. For example, one can
expressv ∈ (X >>= Y)(e) in terms ofx ∈ X (e) for observations
x made byX and in terms ofy ∈ (Y x)(e) for observationsy
made by(Y x).

For each of the event class combinatorsC mentioned above, we
have proved inNuprl an equivalence relation that expresses when
an elementv is observed byC . We use these lemmas to prove
properties of protocols.

Inductive logical forms. The inductive logical form of a spec-
ification is a first order formula that characterizes completely the
observations (the responses) made by the main class of the specifi-
cation. The formula is inductive because it typically characterizes
the responses at evente in terms of observations made by a sub-
component at a prior evente′ < e. Such inductive logical forms are
automatically generated inNuprl from event class definitions, and
simplified using various rewritings. With an inductive logical form
we can easily prove invariants of the specification by induction on
causal order. For example, fig. 1 presents the inductive logical form
automatically generated for the “ping-pong” specificationdefined
above. Our “ping-pong” specification can either observe a message
produced by theHandler class (corresponding to the violet part)
or by theReplyToPing (corresponding to the blue part). IfHandler
observes the sending of a messagem, it means that à̀ start̀ ` mes-
sage has been received at locationp in the past and thatm is either
a `̀ ping̀ ` message sent to one of the locations from the baglocs ,
or a `̀ out̀ ` message sent in response to a`̀ pong̀` message.

Conclusion. Our EventML tool provides a language for ele-
gant, abstract specification of distributed algorithms that use asyn-
chronous message passing. It is not yet suited for reasoningabout
concurrent shared memory systems.

It provides automated code synthesis that is correct-by-construction.
It also automates major parts of the reasoning about higher-level
safety and liveness properties of the specified systems, by automat-
ically generating the inductive logical form. We are working on
methods for automatic verification of invariants.

The theory underlying these tools is quite mature and the tools
have already been used to carry out the verification of several non-
trivial consensus algorithms. We have specified and generated code
for a complete version of Lamport’s Paxos algorithm (verification
of its high-level requirements is on-going, but should be complete
before 2012).

References
[1] Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton,

Christoph Kreitz, Lori Lorigo, and E. Moran. Innovations incomputa-
tional type theory using nuprl.J. Applied Logic, 4(4):428–469, 2006.

[2] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith.Implementing mathematics
with the Nuprl proof development system. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1986.

[3] Leslie Lamport. Time, clocks, and the ordering of eventsin a distributed
system.Commun. ACM, 21(7):558–565, 1978.

[4] Nancy A. Lynch.Distributed Algorithms. Morgan Kaufmann, 1996.

