The Logic of Events, a framework
to reason about distributed systems

Mark Bickford

Vincent Rahli

Robert Constable

Cornell University

Protocol specification and verification. In response to the need
of ensuring correctness and security properties of diggib sys-
tems and system components in general, programming laaguag
have been developed, featuring rich types such as depetypest
or session types, expressive enough to specify such piegert
Also, some progress has been done towards automaticailingro
that programs meet such specifications (often by type chggki
Following this line of work, we use constructive logic to sye-
size protocols from specifications, and provide tools thailitate
the use of formal methods to prove the correctness of dig&b
protocols based on asynchronous message passing.

Constructive logic. Constructive logic is appropriate for speci-
fying and reasoning about distributed algorithms for twasa@ns.
The first is that theproofs-as-programgorrespondence holds for
constructive logic and we want to extraairrect-by-construction
algorithms and protocols from our proofs. The second reason
subtler and equally important. A specification of a distréalialgo-
rithm at a high level of abstraction concentrates on spejfthe
information flowbetween the participating agents. This informa-
tion can be viewed as thevidence foior knowledge ofproperties
of the global system. Such evidence is precisely the seosaafi
constructive logic, so there is a natural affinity betweenstaic-
tive logic and specification of information flow. In reasamiabout
information flow it is important to reason both about the asigu
tion and the loss of information. For example, when inforiorat
from different sources is aggregated it may be that knovéeafy
the source of the information is lost. Constructive logiwg & par-
ticular constructive type theory, can account for pregisghat an
agent may infer from evidence it has received.

The Logic of Events. We present a logical framework to reason
about distributed systems called the Logic of Events. Todscl
has been formalized iNuprl [1, 2]. Nuprl’s logic is a constructive
type theory called Computational Type Theo/T(T). This logic
allows one to reason about events and how they relate to ¢laeh o
via, among other things, a well-foundedusal orderingon them.

The Logic of Events is based on a model of message passing.

An event is an abstract object corresponding to the recdipt o
message at a location; the message is calieditive information
of the event. A message is a triple of the following depentigue:
Header x T : Type X T. For example{ " this is a header ,Z, 1)
is a messagdzvent orderingprovide the basic structure to reason

Formally, an event class of typg, for some typeT’, is a function
that takes an event ordering and an event in that event agjennd
returns a bag (or multiset) of elements of tyfe If the classX
associates the bagy;, ..., v, } with the evente, we say thatX
observes the values’s at e. Typically, one can observe complex
information by composing simple event classes. For exangple
class may observe that the receipt of a certain message means
that consensus has been reached. Note that different €lasse
observe different values at a single event. Event classedea
seen as having two facets: a logical one and a programming one
By that we mean that, (1) each event clagscan be described

by expressing the relation between the elements observell by
and the elements observed Bys components (logical aspect); (2)
one can extract programs from those classes we call progaem
(programming aspect). Informally a clags is programmable iff
there exists a corresponding program that can produce dll an
only the elements observed by. Such extracted programs are
implementations of the corresponding classes.

Specifying and proving protocols. We developed a suite of tools
and tactics inNuprl to reason about event classes. We also devel-
oped a programming language calleéentML which allows pro-
grammers to write specifications of distributed protoc&sch a
specification is an event class describing the informatiow f a
distributed programEventML features an automatic program syn-
thesizer. In addition, it can dock téuprl (EventML is interpreted
to Nuprl) in order to formally prove protocol properties and gener-
ate (withinNuprl) correct-by-constructioprograms by extraction;
we say that these extracted programscaneect-by-docking

We have specified several protocols such as a simple twasthir
consensus protocol and Paxos, and we keep improvindNoprl
tools and tactics as we prove properties of these protocols.

A simple example. Here is a toy example that we call the “ping-
pong” specification (written ifEventML):

parameterp : Loc parameterlocs : Loc Bag
internal ping ‘‘ping‘‘ Loc
internal pong ‘‘pong‘‘ Loc
input start ‘‘start‘* Loc
output out “out't Loc

import bag-map

about events. An event ordering consists of a set of events, aclass ReplyToPong client loc =

function that associates a location with each event, a fum¢hat
associates a primitive information with each event, and usaa
ordering relation on events. An event ordering can be seem as
formalization of themessage sequence diagransed by protocol
designers. A fundamental method for reasoning about ptiepef
event orderings, originally pioneered by Lamport [3], idtiation

on the causal order. With this method we can prove both safety
liveness properties of our specifications.

Event classes. A central concept in the Logic of Events is the one

of event classeslso called event observers. Event classes observe

how distributed systems agents “react” on receipt of messag

let F - j = if loc=j then {out’send client log else {}

in F o pong’base ;;
class SendPing loc =Output(\ slf.{ping’send
class Handler (client ,loc) = SendPing loc
|| ReplyToPong client loc;;

loc slf});;

class ReplyToPing =
(\sIf.\loc.{pong’send loc slIff) o ping'base;;

class Delegate =
let F . client = bag-map (\loc.(client ,loc)) locs
in F o start’base ;;

main (Delegate>>= Handler) @{p} || ReplyToPing @ locs

Figure 1 Inductive logical form of the ping protocol

V[locs:bag(Id)]. V[p:Id]. V[es:E0’].
{<i, m> € ping-pong_main(locs;p) (e)
<= ((loc(e) = p)

A (Fe’:{e’:E| e’ <loc e }
Jz:1d
(z € Base([start];Id)(e’)
A (3z1:1d

V[e:E]l. V[i:1d]. V[m:Messagel.

(((((i = z1) A (m = make-Msg([ping];Id;loc(e)))) A (e = e’))
IV (((i = z) A (m = make-Msg([out];Id;z1))) A zl € Base([pong];Id)(e)))

A bag-member(Id;z1;locs))))))

4V (bag-member (Id;loc(e);locs) A (m = make-Msg([pongl;Id;loc(e))) A i € Base([ping];Id)(e))}

Similar to 10-Automata [4] and other specification language
we have declared the input, output, and internal eventsk&iD-
Automata, there are no explicit state variables. Insteatiave de-
clared thebase classestart’'base , ping’base, andpong’base) that
observe the receipt of input and internal messages (witddrea
“start™, “ping, and ' pong” respectively) and we have de-
fined other classe®Elegate, Handler, SendPing, ReplyToPong, and
ReplyToPing) in terms of the base classes usaigss combinators

The combinatorX || Y is a parallel composition of classes
X and Y. An expression like(cout s loc) o Pong is a function
composition, applying the functioftout s loc) to the information
observed by clasBong.

The combinator(X >>=Y) is a delegation (or bind) operator
with which event classes form a monad. It has the effect ofvapa
ing a subprocessy v) whenever clasX observes a value. We
typically use it to decompose a complex algorithm into sskda

For each of the event class combinat6rsnentioned above, we
have proved ifNuprl an equivalence relation that expresses when
an elementv is observed byC. We use these lemmas to prove
properties of protocols.

Inductive logical forms. The inductive logical form of a spec-
ification is a first order formula that characterizes conmgilethe
observations (the responses) made by the main class ofehiisp
cation. The formula is inductive because it typically cluteazes
the responses at eventin terms of observations made by a sub-
component at a prior eveat < e. Such inductive logical forms are
automatically generated iNuprl from event class definitions, and
simplified using various rewritings. With an inductive logi form
we can easily prove invariants of the specification by iniducon
causal order. For example, fig. 1 presents the inductivedbfprm
automatically generated for the “ping-pong” specificatitafined
above. Our “ping-pong” specification can either observe ssage

that are easier to define and reason about. One typical use is t yroduced by thedandler class (corresponding to the violet part)
define subprocesy v) to be handler that sends some messages re- or py theReply ToPing (corresponding to the blue part). Handler
lated to parameter, gather the responses to those messages, reportsppserves the sending of a messagédt means that & start™® mes-

an answer (by sending a message), and then halts.

Message Automata. A classX declaredmain in an EventML
specification must be a class of typec * Msg. A run of the

sage has been received at locatian the past and that is either
a''ping" message sent to one of the locations from the lbag
ora' out” message sentin response to pong" message.

program implementing will consist of a set of processes. Whena Conclusion. Our EventML tool provides a language for ele-

process has a message in its in-box, it computes in respoasadg
of location-message pairs specified by clasnd these responses
are added to its out-box. A message-passing layer movesagess
from out-boxes to the addressed in-boxes.

Programmability and class relation. As mentioned above, event

classes can be seen as having two facets: a programming dne an

a logical one. We have proved Muprl that all the event classes

mentioned above are programmable, and we have extracted (di

tributed) programs from these proofs. Using these basidtsesn

programmabilityNuprl can automatically prove that the main class
of anEventML specification is programmable and then extract the

implementation (the set of processes that implement thesdfes
Automaton) from the proof. ThEventML tools can mimic the tac-

tic thatNuprl uses and synthesize code from specifications directly

in EventML without usingNuprl. If further assurance is needed

Nuprl can check that the synthesized code agrees with the code

extracted from a proof.

Event classes also have a logical aspect. Given an event
some event structure, a class of type 7', and a element in
T, we writev € X(e) if X observesv at evente, i.e., v is
in the bag of observations that the cla&s makes at event.
This relation between observed elements, events, andeslass

called theclass relation One can then express the class relation

of combinators in terms of their components. For example,aam
expresw € (X >>= Y)(e) interms ofz € X (e) for observations
z made byX and in terms ofy € (Y z)(e) for observationsy
made by(Y z).

gant, abstract specification of distributed algorithmg tisz asyn-
chronous message passing. It is not yet suited for reasaiiogt
concurrent shared memory systems.

It provides automated code synthesis that is correct-Imgtcoction.
It also automates major parts of the reasoning about hiighet-
safety and liveness properties of the specified systemsjtoyrat-
ically generating the inductive logical form. We are woikion
methods for automatic verification of invariants.

The theory underlying these tools is quite mature and this too
have already been used to carry out the verification of skmera
trivial consensus algorithms. We have specified and gestbcatde
for a complete version of Lamport’'s Paxos algorithm (veaificn
of its high-level requirements is on-going, but should bmpkete
before 2012).

References

[1] Stuart F. Allen, Mark Bickford, Robert L. Constable, Rard Eaton,
Christoph Kreitz, Lori Lorigo, and E. Moran. Innovationsdaomputa-
tional type theory using nuprl. Applied Logic 4(4):428-469, 2006.

[2] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveta J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler
P. Panangaden, J. T. Sasaki, and S. F. Simithlementing mathematics
with the Nuprl proof development systerRrentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1986.

[3] Leslie Lamport. Time, clocks, and the ordering of eventa distributed
system.Commun. ACM21(7):558-565, 1978.

[4] Nancy A. Lynch. Distributed Algorithms Morgan Kaufmann, 1996.

