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Abstract

Reducibility has been used to prove a number of properties in the
A-calculus and is well known to offer on one hand very general proofs
which can be applied to a number of instantiations, and on the other
hand, to be quite mysterious and inflexible. In this paper, we look at
two related but different results in A-calculi with intersection types. We
show that one such result (which aims at giving reducibility proofs of
Church-Rosser, standardisation and weak normalisation for the untyped
A-calculus) faces serious problems which break the reducibility method
and then we provide a proposal to partially repair the method. Then,
we consider a second result whose purpose is to use reducibility for typed
terms to show Church-Rosser of 3-developments for untyped terms (with-
out needing to use strong normalisation), from which Church-Rosser of
[B-reduction easily follows. We extend the second result to encompass both
BI- and fn-reduction rather than simply [-reduction.

1 Introduction

Based on realisability semantics [Kle45], the reducibility method has been devel-
oped by Tait [Tai67] in order to prove normalisation of some functional theories.
The idea is to interpret types by sets of A-terms closed under some properties.
Krivine [Kri90] uses reducibility to prove the strong normalisation of system D.
Koletsos [Kol85] proves that the set of simply typed A-terms has the Church-
Rosser property. Gallier [Gal97, Gal03] uses some aspects of Koletsos’s method
to prove a number of results such as the strong normalisation of the A-terms
that are typable in systems like D or DQ [Kri90]. In particular, Gallier states
some conditions a property needs to satisfy in order to be enjoyed by some
typable terms under some restrictions. Similarly, Ghilezan and Likavec [GLO02]
state some conditions a property on A-terms has to satisfy in order to be held
by all A-terms that are typable under some restriction on types in a type sys-
tem which is close to D2. Additionally Ghilezan and Likavec state a condition
that a property needs to satisfy in order to step from “a A-term typable under
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some restrictions on types holds the property” to “a A-term of the untyped A-
calculus holds the property”. If successful, the method designed by Ghilezan
and Likavec would provide an attractive method for establishing properties like
Church-Rosser for all the untyped A-terms, simply by showing easier conditions
on typed terms. However, we show in this paper that Ghilezan and Likavec’s
method fails for the typed terms, and that also the step of passing from typed to
untyped terms fails. We show why we also fail to entirely repair the first result
and how far we succeeded to get when trying to repair it (we reach a result
similar to one already obtained by Ghilezan and Likavec). The second result
seems unrepairable. Ghilezan and Likavec also present a weaker version of their
method for a type system similar to system D, which allows using reducibility
to prove properties of the term typable by this system, namely the strongly
normalisable terms. As far as we know, this portion of their result is correct.
(They do not actually apply this weaker method to any sets of terms.)

In addition to the method proposed by Ghilezan and Likavec (which does not
actually work for the full untyped A-calculus), other steps of establishing proper-
ties like Church-Rosser (also called confluence) for typed A-terms and concluding
the properties for all the untyped A-terms have been successfully exploited in the
literature. Koletsos and Stavrinos [KS08] use reducibility to state that A-terms
that are typable in system D hold the Church-Rosser property. Using this result
together with a method based on -developments [K1o80, Kri90], they show that
(-developments are Church-Rosser and this in turn will imply the confluence of
the untyped A-calculus. Although Klop proves the confluence of 3-developments
[BBKV76], his proof is based on strong normalisation whereas the Koletsos and
Stavrinos’s proof only uses an embedding of #-developments in the reduction of
typable A-terms. In this paper, we apply Koletsos and Stavrinos’s method to
GI-reduction and then generalise it to Sn-reduction.

In section 2 we introduce the formal machinery and establish the basic
needed lemmas. In section 3 we present the reducibility method used by Ghilezan
and Likavec and show that it fails at a number of important propositions which
makes it inapplicable to the full untyped A-calculus, although a version of their
method works for the strongly normalisable terms. We give counterexamples
which show that all the conditions stated in Ghilezan and Likavec’s paper are
satisfied, yet the claimed property does not hold. In section 4 we give some
indications on the limits of the method. We show how these limits affect the
salvation of the method, we partially salvage it and we show that this can now
be correctly used to establish confluence, standardisation and weak head normal
forms but only for restricted sets of lambda terms and types (that we believe
to be equal to the set of strongly normalisable terms). We also point out some
links between the work done by Ghilezan and Likavec and the work done by
Gallier. In section 5 we adapt the Church-Rosser proof of Koletsos and Stavri-
nos [KS08] to BI-reduction. In section 6 we non-trivially generalise Koletsos
and Stavrinos’s method to handle Bn-reduction. We conclude in section 7.



2 The Formal Machinery

In this section we provide some known formal machinery and introduce new
definitions and lemmas that are necessary for the paper. Let n,m be metavari-
ables which range over the set of natural numbers N = {0,1,2,...}. We take as
convention that if a metavariable v ranges over a set s then the metavariables
v; such that 4 > 0 and the metavariables v’,v", etc. also range over s.

A binary relation is a set of pairs. Let rel range over binary relations. Let
dom(rel) = {z | (z,y) € rel} and ran(rel) = {y | (z,y) € rel}. A function is a
binary relation fun such that if {(x,y), (z,z)} C fun then y = z. Let fun range
over functions. Let s — s’ = {fun | dom(fun) C s Aran(fun) C s'}.

Given n sets si,...,S,, where n > 2, s1 X ... X 8, stands for the set of all
the tuples built on the sets s1,...,8,. lf & € 81 X...X sy, then z = (z1,...,2,)
such that a; € s; for all i € {1,...,n}.

2.1 Familiar background on \-calculus

This section consists of one long definition of some familiar (mostly standard)
concepts of the A-calculus and one lemma which deals with the shape of reduc-
tions.

Definition 2.1.

1. let z,y, z, etc. range over V, a countable infinite set of A\-term variables.
The set of terms of the A-calculus is defined as follows:

MeA:=z| (M) | (M Ms)

We let M, N, P,Q, etc. range over A. We assume the usual definition of
subterms: we write N C M if N is a subterm of M. We also assume the
usual convention for parenthesis and omit these when no confusion arises.

In particular, we write M Nj...N,, instead of (...(M Ni) N3...N,_1) N,,.

We take terms modulo a-conversion and use the Barendregt convention
(BC) where the names of bound variables differ from the free ones. When
two terms M and N are equal (modulo «), we write M = N. We write
fv(M) for the set of the free variables of term M.

2. Let n > 0. We define M"™(N), by induction on n, as follows: M°(N) = N
and M"T1(N) = M(M™(N)).

3. The set of paths is defined as follows:
p €Path:=0|1.p|2.p

We define M|, as follows: M|o = M, (Ax.M)|1., = M|y, (MN)|1., = M|,
and (MN)|., = N|,. We define 2".p by induction on n > 0: 2°.p = p
and 2"t p = 27.2.p.



4. The set AI C A, of terms of the Al-calculus is defined by the following
rules:
(a) If x € V then = € AL
(b) If z € fv(M) and M € Al then Az.M € AL
(¢c) If M,N € Al then M N € AL
5. We define as usual the substitution M[z := N] of N for all free occur-

rences of z in M. We let M[z; := N;,...,xz, := N,] be the simultaneous
substitution of IV; for all free occurrences of x; in M for 1 <i¢ < n.

6. Let define the four common following relations:

Beta ::= ((Ax.M)N, M[x := NJ).

Betal ::= ((Ax.M)N, M[z := N]), where z € fv(M).
e Eta = (Az.Mxz, M), where x ¢ fv(M).

o BetaEta = Beta U Eta.

Let (r,s) € {(Beta, ), (Betal, 5I), (Eta,n), (BetaEta, fn)}. We define R®
to be {L | (L,R) € r}. If (L, R) € r then we call L a s-redex and R the
s-contractum of L (or the L s-contractum). We define the ternary relation
— 4 as follows:

o M2, M if (M, M) €.

o o.M B .M it M B, M
o MN 2, M'N if M B, M’

o NM 22, NM' if M B, M.

We define the binary relation — (we use the same name as for the just
defined ternary relation — to simplify the notations) as follows: M —,

M if there exists p such that M 2>, M’. We define RS, = {p | M|, € R*}.

7.Let MeAand FCA. F|M={N|NeFANC M)

8. —ppi= (Ax1....2p. (A Mo)My ... My, Ax1. ... 2. Moz := M1 My ... M,,),
where n > 0 and m > 1.

If (L, R) €—np then L = Azq....xpn.(Ax.Mo)M; ... My, where n > 0 and
m > 1 and (Az.My)M; is called the S-head redex of L.

We define the binary relation —;3 as —g \ —ng.

9. Let r € {—3, =, —py, =81, —hs, —i3}. We use — to denote the reflex-
ive transitive closure of —,. We let ~, denote the equivalence relation
induced by —,.. If the r-reduction from M to N is in k steps, we write



10.

11.
12.
13.

14.

Let r € {8I,06n} and n > 0. A term (Az.M')N{Nj...N/ is a direct r-
reduct of (Az.M)NoN; ... N, ifft M —* M' and Vi € {0,...,n}. N; —*
N

NFs = {Az1.... Azp.2oN1... Ny | n,m > 0, Nq,..., N, € NFg}.
WNg = {M € A | 3N € NFy, M —% N}.
Let r € {8, 81, Bn}.

o We say that M has the Church-Rosser property for r (has r-CR) if
whenever M —} M; and M —} M, then there is an Mj3 such that
M1 —>: M3 and M2 —>: Mg.

e CR" ={M | M has r-CR}.

e CRE={azM;... M, [ n>0ANzeVAN€e{l,...,n},M; € CR")}

e We use CR to denote CR? and CRy to denote CRg.

e A term is a weak head normal form if it is a A-abstraction (a term
of the form Az.M) or if it starts with a variable (a term of the form
xMi---M,). A term is weakly head normalising if it reduces to
a weak head normal form. Let W' = {M € A | 3In > 0,3z €
V,AP, Py,..., P, € A M — \x.Por M —* zP;,...P,}. We use W
to denote W7,

We say that M has the standardisation property if whenever M —3 N
then there is an M’ such that M —} M’ and M’ —} N. Let S ={M €
A | M has the standardisation property}. O

The next lemma deals with the shape of reductions.

Lemma 2.2.

1.
2.

M Lg, M iff (M Lg M or M 25, M).

Ifx € tv(My) then tv((Ax.My) M) = fv(Mi[x := Ms)) and if (Az.M;y)M; €
AT then M|z := My] € AL

If M —p, M’ then fv(M') C fv(M).

Af M =5 M then fv(M) = fv(M') and if M € Al then M’ € AL

Av. M ﬁ’ﬁn P iff either (p = 1.p', P =Xa.M' and M Lﬁ,, M’) or (p =0,
M = Pz and « ¢ tv(P)).

Let r € {BI,8n}, n > 0, P is not a direct r-reduct of (Az.M)Ny... N,
and (A\x.M)Ny ... N,, —k P. Then the following holds:
(a) k>1, and if k =1 then P = M[z := Ng|Ny ... N,.

(b) There exists a direct r-reduct (A\x.M')NYN{ ... N}, of Ax.M)Ny...N,
such that M'[z := N{]Ni...N] —} P.



7. Let v € {BI,0n}, n > 0 and (Ae.M)NoNy...N, —F P. There exists
P’ such that P —* P" and if (r = BI and x € tv(M)) or r = n then
Mz := NoJNy ... N, —* P'.

8. There exists M' such that M 2, M’ iff p € R},

9. If M %, My and M 5. M, then My = M, O

2.2 Formalising the background on developments

In this section we go through some needed background from [Kri90] on develop-
ments and we precisely formalise and establish all the necessary properties. In
order not to clutter the paper, we have put all the proofs of this section in an
appendix. Throughout the paper, we take ¢ to be a metavariable ranging over
V. As far as we know, this is the first precise formalisation of developments.

The next definition adapts A. of [Kri90] to deal with SI- and Bn-reduction.
Basically, Al is A. where in the abstraction construction rule (R1).2, we restrict
abstraction to AI. In An. we introduce the new rule (R4) and replace the
abstraction rule of A, by (R1).3 and (R1).4.

Definition 2.3 (A7, AL.).
1. We let M, range over An., Al. defined as follows (note that Al. C Al):

(R1) If z is a variable distinct from ¢ then

T € M.,.

If M € Al and z € fv(M) then Az.M € Al.

If M € An, then Az.M[z := c¢(cx)] € Ane.

. If Nz € An, such that « € fv(IN) and N # ¢ then Az.Nx € An..

(R2) If M,N € M, then cMN € M..
(R3) If M, N € M, and M is a A-abstraction then MN € M..
(R4) If M € An, then cM € An..

B o

Here is a lemma related to terms of M..
Lemma 2.4 (Generation).
1. M[z := c¢(cx)] # = and for any N, M|z := c¢(cx)] # Nz.

2. Letx & tv(M). Then, My := c(cx)] # x and for any N, M[y := c(cx)] #
Nz.

8. If M € M. then M # c.
4. If M, N € M, then M|z := N] # c.
5. Let MN € M.. Then N € M, and either



o M =cM' where M' € M, or
e M =c and M, = An, or
o M = \z.P is in M,
6. If (M) € M, then M € M,.
7. If Ax.P € An, then x # ¢ and either
e P = Nz where N, Nz € An. where x € fv(N) and N # ¢ or
e P = N[z :=c(cx))] where N € An,
8. If \x.P € AI. then x # ¢, x € fv(P) and P € Al.
9. If M, N € M. and x # c then M|z := N| € M,.
10. Lety & {x,c}. Then:
o if Mz :=c(cx)] =
o if M[x := c(cx)] = Py then M = Ny and P = N[z := c(cx)],
o if M[x : )] = Ay.P then M = A\y.N and P = Nz := ¢(cx)).
)

o if Mz := c(cx)] = PQ then either M = z, P = ¢ and Q = cx or
M =P'Q" and P = P'[x := ¢(cx)] and Q = Q'[x := ¢(cx)].

o if Mz := c(cx)] = (\y.P)Q then M = (A\y.P)Q' and P = P'[x :=
c(cx)] and Q = Q'[x = ¢(cx)].

11. Let M € An,.

y then M =y,

S
i
2
)
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(a) If M = \x.P then P € An,.
(b) If M = Ax.Px then Px,P € An., x € fv(P)U{c} and P # c.

12. (a) Let x # ¢. Mz := c(cx)] Lp, M' iff M' = N[z := c(cz)] and
M Lgs N.
(b) Letn > 0. If (M) Lo, M’ then p = 2™.p" and there exists N € A1,
such that M' = ¢"(N) and M p—;ﬁn N.
O
Here is a lemma about the paths of redexes in a term:
Lemma 2.5. Let r € {BI,(n}.
o [fM €V then Ry, =@
e If M = A\x.N then:
—if M € R" then Ry, ={0tU{l.p|p e Ry}
— else, Ry, ={lp|pe Ry}



o If M = PQ then:

— if M € R" then Ry, ={0}U{lp|p e Rp}U{2.p|p € R}
— else, Ry ={l.p|p e Rp}U{2.p|p € RG}.

Here is a lemma about the set of redexes in a term:
Lemma 2.6. Let r € {8I,0n} and F C RY,.

o [fM eV then F =0.

o If M =MXx.N then F' ={p| 1l.p € F} CRY and:

—if M € R" then F\ {0} ={1.p|p e F'}.
— else, F={l.p|pe F'}.

o If M =PQ then Fr ={p|lp e F} CRp, F2={p|2p€F} CRY
and:

—if M eR" then F\{0}={lp|peF}U{2p|peF}.
—else, F={lp|pe F}U{2p]|pe R}

The next lemma shows the role on redexes of substitutions involving c.
Lemma 2.7. Let r € {fn,B1}. and z # c.
1. M € RP" iff M[x = c(cx)] € RP".

IS

. Ifpe ’Rf/’] then Mz := c(cx)]|p, = M|,z = c(cx)].

o

B ; — B
-pe RAZ.M[x::c(cw)] Zﬁp - l.p/ and p/ € R]Wn[a::zc(cx)]'
B _ b
4- R]Mn[;czzc(cx)] - RJ\/?
5. Rl ={2"p | p € RETY. O
The next lemma shows that any element (Ax.P)Q of Al. (resp. An.) is a SI-

(resp. On-) redex.

Lemma 2.8. Let (M., r) € {(AL,BI),(An.,Bn)} and M € M.. If M =
(Ax.P)Q then M € R". O

The next lemma shows that Al. (resp. An.) contains all the 3I-redexes (resp.
On-redexes) of all its terms.

Lemma 2.9. Let (M., r) € {(AL,BI),(An.,Bn)} and M € M.. If p € Ry,
then M|, € M.. O



In order to deal with SI- and (n-reduction, the next lemma generalises a
lemma given in [Kri90] (and used in [KS08]). It states that An. and Al. are
closed under — g,- resp. — gr-reduction.

Lemma 2.10.
1. If M € An. and M —g, M’ then M' € An..
2. If M € AI. and M —g; M’ then M' € AL. O

The next definition again taken from [Kri90], erases all the ¢’s from a M.-
term. We extend it to paths.

Definition 2.11 (] — |¢). We define |M|¢ and [(M, p)|® inductively as follows:

o z]°=2x o |\z.N|¢ =Xz |N|¢, if z # ¢
o |cP|¢ =[P o [NP|®=|N[°|P|®if N # ¢

o [(M,0)]°=0 o |[(Ax. M, 1.p)|°=1|(M,p)|¢, if x #c
o [(cM,2.p)|° = (M, p)|° o (NM,2.p)|°=2,(M,p)|°if N #c
o [(MN,1.p)|°=1.|(M, p)|°

Let F C Path then we define [(M, F)|¢ = {|(M, p)|° | p € F}. O

Now, ¢" is indeed erased from |¢™(M)|°.
Lemma 2.12. Let n > 0 then |c"(M)|¢ = |M|°.
Lemma 2.13. [(c¢"(M), R]7 ) |° = [(M, RA7)|°.
Lemma 2.14. |[{(c"(M),2".p)|¢ = [(M, p)|°.
Also, ¢ is erased from |¢"(N)|¢ for any ¢"(N) subterm of M.
Lemma 2.15. Let |[M|¢ = P.
o If P €V then In > 0 such that M = c"(P).
o If P =)x.Q then In > 0 such that M = ¢"*(A\x.N) and |N|¢ = Q.

o If P= PP, then In > 0 such that M = " (M1 Ms), My # ¢, |M;1|° = P
and ‘M2|01P2. O

If the c-erasure of two paths of M are equal, then these paths are also equal:

Lemma 2.16. Let r € {8I,6n}. If p,p’ € Ry, and [(M, p)|° = [(M, p')|° then
p=yp. O
Inside a term, substituting « by ¢(cx) is undone by c-erasure.

Lemma 2.17. Let x # c¢. Then, |M[x := c(cx)]|¢ = |M]°. O

Lemma 2.18. Letz # candp € Rf}’ Then, |(M[z := c(cz)], p)|¢ = [(M, p)|°.
O



The next lemma shows that ¢ is definitely erased from the free variables of
| M.

Lemma 2.19. If M € M, then fv(M) \ {c} = fv(|M]°). O
Erasure propagates through substitutions.

Lemma 2.20. If M,\N € M, and © # ¢ then |M[z := NJ||° = |M|[z :=
[N N

Now, c-erasing an Al.-term returns an Al-term.
Lemma 2.21. If M € AL then |M|° € AL O
Lemma 2.22. Let (M., r) € {(AL,BI),(An.,0n)} and M € M.. If p € R},

and M 2, M’ then |M|¢ ir |M'|¢ such that p' = |(M, p)|°. O
Lemma 2.23. Let (M.,r) € {(AL,BI),(An., Bn)}, My, N1, My, Ny € M.,
z # ¢ [(Mi, Ry )l © [(Ma, Ry, )|, (N1 Ry, )| © (N2, Ry, )| [Ma] =
|M2|® and |[N1|® = [No|®. Then, [(Mi[z = N1, Ry mony)|® € [(Malz =
NQ]aR;WQ[x;:Nz]HC' O

Lemma 2.24. Let (M.,r) € {(AL,BI),(Ane,Bn)}, M1, My € M, such that
(M1, Ry e C (Mo, Ry, )¢ and [My|€ = (M|, If My 25, M{, My 53, Mj

such that |(My, p1)|® = [(Mz, p2)|* then |(M7, Ry )| € [(M5, Ry, )| 0

2.3 Background on Types and Type Systems

In this section we give the background necessary for the type systems used in
this paper.

Definition 2.25. Let i € {1,2}.

1. Let A be a denumerably infinite set of type variables, let o range over A
and let Q ¢ A be a constant type. The sets of types Type' C Type? are
defined as follows:

o € Type! n=al|op — o2 | o1 Noy
reType i=a|m =7 | N |Q

2. Welet I' € B' = {{&1 : o1, @y s 00} | Vi, 5 € {1,...,n}. 2 = 25 =
oi=oj}and DA € B2 ={{z1:7,...,2n 7} | Vi,j € {1,...,n}. z; =
zj = 7, = 7;}. We define dom(I') = {z |  : ¢ € T'}. When dom(I';) N
dom(T'3) = @, we write I'1, 'y for T'y UTy. We write I'yz : o for T', {z : o}
and z : o for {z : 0}. We denote I' = x,, : op,..., &, : 0 Where
n>m >0, by (x;:0;)0". If m =1, we simply denote I' by (x; : 0;)p.
Ty = (x5 Ti)n, (s 0 7)pand Lo = (2 2 T))n, (2 1 7}"")q where xq, ..., 2,
are the only shared variables, then Ty MTs = (z; : 7, N7 )n, (Y 77 )ps (25
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o
Let X CV. We define ' | X =TY C T where dom(I'") = dom(T") N X.
Let C be the reflexive transitive closure of the axioms 71 N 75 C 71 and
TN Cr IfT = (2;: 1), and IV = (z; : /)y, then T' C TV iff for all
ie{l,...,n}, n C 7.

3. e —Let Vi = {(ref), (tr),(inr), (ing), (— -N), (mon’), (mon), (—
-n)}-

— Let Vo =V U{(R), (Y —lazy)}.

— Let Vp = {(ing), (ing)}.

— Let Vp, = Vp U{(idem)}

°* — Typevl = TypevD = TypevDI = Typel.

— TypeVZ = Type2.

e — Let V be a set of axioms from Figure 1. The relation <V is
defined on types Typev and axioms V. We use <! instead of
<V1 and <2 instead of <Vz.

— The equivalence relation is defined by: 7 ~V 7 — 7 <V
To ATy <V 71. We use ~! instead of ~V! and ~? instead of ~V2.

e — Let AN! be the type system built on A, Type® and F! such that
H is the type derivability relation on B, A and Type® generated
using the following typing rules of Figure 2: (az), (—g), (—1),
(Ny) and (<h)).

— Let AN? be the type system built on A, Type? and F2 such that
F2 is type derivability relation on B2, A and Type® generated
using the following typing rules of Figure 2: (az), (—g), (—1),
(Ng), (<?) and ().

— Let D be the type system built on A, Type' and 77 where H°7
is the type derivability relation on B, A and Type' generated
using the following typing rules of Figure 2: (az), (—g), (—1),
(Nr), (NE1) and (Ng2).

— Let Dy be the type system built on A, Type' and H?! where 77 is
the type derivability relation on B, A and Type' generated using
the following typing rule of Figure 2: (az?!), (—gr), (—1), (N1)
, (Ng1) and (Ng2). Moreover, in this type system, we assume
that cNo =o.

O

3 Problems of Ghilezan and Likavec’s reducibil-
ity method [GLO2]

In this section we introduce the reducibility method of [GL02] and show where
exactly it fails. Throughout, we let ® = Ax.xz.

11



(ref) T<T Q) <0

(tr) (mM<mAn<mn)=>"m <T3 (V-lazy) 7T—-02<Q—-Q
(in) mNm<m7 (idem) T<TNT

(’L"I’LR) T1NTe <7y (Q-n) N<0-=0
(=-N) (n—=m)N(n—")<7— (2NT3) (Ulazy) 71 —71<0—Q
(mon') (M <mAT<13)=71<TNT3

(mon) (M<TATR<ST)=>mNT <71 NT,

(=) (METMARSH)=>1—-on<1—T

Figure 1: Ordering axioms on types

—_ P T
F,x:T}—x:T(am) x:T}—x:T(ax)
'-M:m—-m I'EN:7 (—p) IWFM:1p—m I'aFN:m (= pr)
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I'EM:mNmy I'EM:mNmy
TR (E) TFMor (22

TFM:n 7<Vmn
T'EM:m

(<V)

'M:Q (@)

Figure 2: Typing rules
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Definition 3.1 (Type systems and reducibility of [GL02]). Let i € {1,2}. Let
P range over 2%,

1. The type interpretation [~]* € Type" — 2% — 27 is defined by:

e [a]s =P.
o [r1 N7l = [m1]h N [2]b.
o [Q]% = A

o [o1 — 02]b ={M | VN € [o1]5.MN € [o2]5}.
o [ > 7m]:={MeP|VN€e[n]t MN € [r]35}

2. A valuation of term variables in A is a function v € V — A. We write
v(z := M) for the function v where v'(x) = M and v'(y) = v(y) if y # «.

3. let v be a valuation of term variables in A. Then [—], € A — A is defined
by:
[M], = M[z1 :=v(z1),..., 25 := v(xy,)], where FV(M) = {z1,...,z,}.
4. e vEL M:7iff [M], € [r]%
e vELTIfV(z: 7)€l v(z) € [r]s
e 'L M:TifVveY A vELT=vELM: T
5. Let X C A. Let us recall the variable, saturation, closure and invariance
under abstraction predicates defined by Ghilezan and Likavec:
e VAR/(P,X) <= VCUX.

e SATH(P,X) +—
(VM e A.Vz e V.YN € P. M[z:= N| € X = (A\z.M)N € X).

e SAT*(P,X) +—
(VM,N € A. Ve € V. Mz := N € X = (\e.M)N € X).

e CLOYP,X) <= (VM €A Ve eV. Mz € X = M € P).

e CLO*(P,X) <= CLO(P,X) <
(VM e A VxeV. M eX = \x.MeP).

e VAR(P,X) <— (Vz€V.VYneN.VNy,...,N, € P.zN;...N, €
X).

e SAT(P,X) «<— (VM,N e A VxeV.VneN.VNy,...,N, € P.
M[z := N]N,...N,, € X = (A\z.M)NN; ... N, € X).

¢ INV(P) <= (VM eA VzeV.MeP < \x.MeP).
For R € {VAR',SAT?,CLO'}, let R(P) <= Vr € Type'. R(P,[]5).
O

Lemma 3.2 (Basic lemmas proved in [GL02]).

L (@) [MLymn) = [M]ygremey [z = N]
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(b) [MN], = [M].[N].
(c) Me.M], = Av.[M]y(z:=a)

2. If VAR'(P) and CLO'(P) then

(a) for all o € Type', o] C P.
(b) if SAT*(P) and T F* M : o then T |=5 M : 0 and M € P

3. For all T € Type?, if T £2 Q then 713 CP

4. If 11 <% 7y then [11]% C [n]%.

5. If VAR?*(P), SAT?*(P) and CLO*(P) thenT 2 M : 7 impliesT =% M : T

6. If VAR?*(P), SAT?*(P) and CLO?*(P) then for all T € Type®, if 7 % Q
and T'F2 M : 7 then M € P

7. CLO(P,P) = Vr € Type®. 7 £ Q = CLO?*(P, [7]%). O

Proof. We only prove 5. By induction on I' 2 M : 7. (az) and (Q) are easy.
(Ng) (resp. (—g) resp. (<?)) is by IH (resp. IH and 1, resp. IH and 4).

(=) ByIH, Iz : 7y 5 M : 7. Let v % T and N € [ri]%. Then
v(z :== N) 3 T since z ¢ dom(T") and v(z := N) =3 z : 7y since
N € [n]%. Therefore v(z := N) =3 M : 1, ie. [M],(z.on) € [T2]5.
Hence, by lemma 3.2.1, [M], (;.—)[z := N] € [r2]%. By SAT*(P), we get
(Az.[N]y(z:=a))N € [12]%. Again by lemma 3.2.1, ([Az.M],)N € [r]%.
Hence [Az.M], € {M |VN € [r1]%. MN € [r]%.

By VAR?*(P), = € [r1]%, hence by the same argument as above we ob-
tain [M], (z—a) € [m2]%. So by CLO*(P), Az [M]y(z:=z) € P and by
lemma 3.2.1, [Az.M], € P. Hence, we conclude that [Az.M], € [ —
TQ]]?P. D

Ghilezan and Likavec claim that if CLO(P), VAR}(P) and SAT'(P) are
true then SNg C P (note that this result does not make any use of the type
system ANY).

After giving the above definitions and lemmas, [GL02] states that since the
predicates (VAR'(P), SAT*(P) and CLO*(P) for i € {1,2} have been shown
to be sufficient to develop the reducibility method, and since in order to prove
these predicates one needs stronger induction hypotheses which are easier to
prove, the paper sets out to show that these stronger conditions when ¢ = 2
are the three predicates VAR(P, P), SAT(P,P) and CLO(P,P). However, as
we show below, this attempt fails. They do not develop the necessary stronger
induction hypotheses for the case when i = 1, and AN! can only anyway type
strongly normalisable terms, so we will not consider the case ¢ = 1 further.

Commutativity, associativity and idempotence w.r.t. the preorder relation
are given by the axioms (ing), (ing), (mon’), (tr) and (ref):
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Commutativity: by (ing), 71 N7 <% 7 and by (ing), 11 N7 <% 71 so
by (mon), m N <% m N 7. By (ing), m N7 <% 7 and by (ing),
T N7 <% 7 50 by (mon’), N1y < 7 N7y, Hence, 71 NTo ~2 1o N7y

Associativity: by (ing), (11 N72) N7 <P 73, by (ing), (11 N72) N1y <
T1 N 7o, by (ing), 11 N 12 <% 1, by (ing), 71 N2 <P 711, so by (tr),
(NN <P 7 and (1 Nw) N1 < . By (mon), (rp N w)N
13 <% 75 N 73 and again by (mon’), (11 N ) N 73 <% 71N (2 N73). By
(ing), 71 N (12 N73) <2 71, by (ing), 71 N (e N73) < N 73, by (ing),
T N3 <1y, by (ing), 2 N3 <P 713, 80 by (tr), 71 N (2 N 73) <@ 75 and
7 N (1 N73) <% 75, By (mon/), 71N (12 N73) <% 7y N7 and again by
(mon’), Tlﬂ(TgﬂTg) SQ (TlﬂTg)ﬂTg. Hence, (TlmTQ)ﬁTg ~2 710(72073).

Idempotence: by (ing), 7N 7 <% 7 and by (ref) and (mon’), 7 < 7N,
hence, 7 ~% TN 7.

Let to € TypeOmega ::= Q | tog N tos.

Let inInter(7,7) be true iff 7 = 7/ or 7/ = 74 N 7» and (inInter(r, ;) or
inInter(r, 12)).

By commutativity and associativity we write 71 N --- N 7,, where n > 1,
for any type 7 such that (inInter(ro, 7) iff there exists ¢ € {1,...,n} such that
T0 = 7'7;).

Lemma 3.3. If 7y <% o and 7, € TypeOmega then 7o € TypeOmega. O

Proof. We prove the lemma by induction on the size derivation of 7 < 7 and
then by case on the last rule of the derivation.

ref): 7 < 7. Then it is done since 7 € TypeOmega.
tr): (11 <9 AT <P 1) =7 <P 73, By IH twice, 73 € TypeOmega.

(
(
(ing): 7 N7 <% 7. By definition 7, € TypeOmega.
(ing): 71 N 7o <% 7. By definition 7 € TypeOmega.
(

—-N): (1 — )N (n — 73) <27 - (roN73). I (1 — )N (11 —
73) € TypeOmega then by definition 71 — 79,71 — 73 € TypeOmega which
is false.

(mon'): (11 < AT <) = 71 <% N3, By IH 72, 73 € TypeOmega.
Hence, 75 N 73 € TypeOmega.

(mon): (11 < 7 AT < 7)) = nnmn < 7/ N7 By definition
71,72 € TypeOmega. By IH, 7{, 75 € TypeOmega. So 7{ N74 € TypeOmega.

(—-n): (1 <7 ATy <) =71 — 75 <7 — 7. It is done because
71 — 74 & TypeOmega.

(): 7 <® Q. By definition Q € TypeOmega.
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o (-lazy): 7 — Q<% Q — Q. It is done since 7 — Q ¢ TypeOmega. [
Lemma 3.4. If 7 <@ 7/ and 7' £ Q then 7 42 Q.

Proof. Let 7 <2 7/. Assume 7 ~2 Q. Then Q < 7 and by transitivity Q <% 7.
Moreover, by (Q), 7/ <? Q. So 7/ ~2 Q.

O

O

Lemma 3.5. If TN 7' 42 Q then 7 42 Q or 7/ 4% Q.

Proof. By (), 7N7' <2 Q. let 7 ~2 Qand 7/ ~2 Q, 50 2 <? 7 and Q <@ 7/
and by (mon'), Q <% 7n7'.

O

O

Lemma 3.6. If 7/ ~2 Q then 7 <% 7N 7

Proof. By (22), 7 <% Q and by transitivity, 7 < 7/ because Q < 7/. By (ref),
7 <% 71 and by (mon’), 7 <® 7N 7. O

O

Lemma 3.7. If 7 <% 7/ and inlnter(r, — 7o, 7') and 75 % Q then there exist
n>1and 1,14 ..., 7,7y such that for all i € {1,...,n}, inlnter(r] — 7/, 7)

and 7" %% Q and ' N --- N7l <P 1. Moreover, if 11 ~? Q then for all
i€{l,...,n}, 7/ ~2 Q. O

Proof. We prove the lemma by induction on the size derivation of 7 < 7/ and
then by case on the last rule of the derivation.

o (ref): 7 <. Then it is done with n =1, 7/ = 75 and 7 = 7.

o (tr): (11 < AT <% 13) = 1 <? 73. Let 7,7/ such that inInter(r —

7/,73) and 7' #? Q. By IH there exist n > 1 and 7{,7/,...,7., 7" such
that for all i € {1,...,n}, inlnter(r] — 7/,72) and 7 £ Q and 77’ N

Nl <% 7. Again by IH, for all i € {1,...,n}, there exist m; > 1

and 71, T, T T € Type? such that for all j € {1,...,m;},

mi,t gyt
3 " " " 2 1" " Q 1" 3
inInter (7"} — 7/, 1) and 7]’} Qand 7" N---N7)" <o’ Using
3 L L " " "
rule (mon), a;somatlwty and commutativity, 717N -- 07,7 N---N7 N
" !/
N, ST

Let 7 ~2 Q. Then by IH, for all i € {1,...,n}, 7/ ~? Q. Again by IH, for
alli € {1,...,n}, forall j € {1,...,m;}, 7} ~* Q.

o (ing): N7 <2 7. Let 7,7 such that inlnter(r — 7/,7) and 7/ #£2 Q
then it is done with n =1, 7{ = 7" and 7{ = 7.

e (ing): 7 N7y < 7. Let 7,7 such that inlnter(r — 7/,7) and 7/ %2 Q
then it is done with n =1, 7/ = 7’ and 7| = 7.

o (—-N): (n —»m)N(n — m) <71 — (mNm3). Let 7,7 such that
inlnter(r — 7,71 — (72N 73)) and 7/ #£2 Q then 7 =7 and 7/ = 7 N 73.
Ty 42 Q or 13 £? Q because 7 %2  and using lemma 3.5. If 75 #2 Q and
73 42 Q then it is done with n =2, 7{ = 75 = 7y and 7/ = 7 and 79 = 73.
If 75 #2 Q and 73 ~2 € then it is done with n = 1, 7{ = 7y and 7/ = 7
because 75 < 7 N 73 by lemma 3.6. If 75 ~2 Q and 73 £2 Q then it is
done with n =1, 7{ = 7; and 7{' = 73 because 73 <’ 75 N 73 by lemma 3.6
and commutativity.
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(mon'): (11 <P A <P 73) =7 <® mN73. Let 7,7 such that
inlnter(r — 7/, 72 N 73) and 7/ %% Q. Either inlnter(r — 7/, 72) and we
conclude by TH. Or inlnter(r — 7/, 73) and we conclude by TH.

o (mon): (m < AR <) =nnnrn <Nz Let 7,7 such that
inInter(r — 7/, 7 N 74). Either inInter(r — 7’,77) and it is done by IH.
Or inlnter(r — 7/, 74) and it is done by IH.

o (—-n): (M <CTAT <) =7 — 15 <% 7 — 1. Let 7,7/ such that
inlnter(r — 7/,71 — ) and 7/ %% Q then 7 = 7y and 7/ = 7 and it is
done with n = 1 and 7{' = 74 because 75 %2 Q by lemma 3.4 and because
if 71 ~2 Q then 1 ~? Q.

(): 7o < Q. There is no 7,7’ such that inInter(r — 7/, ).

(V-lazy): 70 — Q<P Q — Q. there is no 7/ %2 Q such that inInter(r —
70— Q). O

Lemma 3.8. For all 7,7 € Type?, a = Q — 7/ #2Q — 1 O

Proof. let 7' € Type®.

First we prove that Q — 7/ %2 Q. Assume Q — 7/ 42 Q then Q <? Q — 7/,
By lemma 3.3, Q@ — 7/ € TypeOmega which is false.

Let 7 ~2 Q. Assumea - Q -7 ~2Q > 7then Q 57 <%a - Q — 7.
By lemma 3.7, 7 < Q — 7/ which is false.

Let 7 2 Q. Assumea — Q —» 7/ ~2Q - 7thena - Q -7 <% Q — 7.
By lemma 3.7, a ~2 Q because 2 ~2 ), which is false. O

Lemma 3.9 (Lemma 3.16 of [GL02] is false). Lemma 3.16 of [GL02] stated
below is false: VAR(P,P) = Vr € Type®. (V7' € Type. (1 2 Q — 1) =
VAR(P, [7]%)). 0O

Proof. To show that the above statement is false, we give the following coun-
terexample. Note that VAR(P, [7]%) = V C [7]%. Letz € V, Tbe a — Q2 — «
and P be WNg. By lemma 3.8, for all 7/ € Type?, 7 4% Q — 7’/ and VAR(P, P) is
true. Assume VAR(P, [7]%), then = € [r]%. Then z € [a — Q — a]% = [7]%
because z € P = [a]%, and zz(®®) € [a]% = P because ®® € A = [Q]3. But
zz(®®) € P is false, so VAR(P, [r]%) is false. O O

The proof for Lemma 3.18 of [GL02] does not work (because of a misused of
an induction hypothesis) but we have not yet proved or disproved that lemma:

REMARK 3.10 (It is not clear that Lemma 3.18 of [GLO02] holds). It is not
clear whether this lemma of [GL02] holds: SAT(P,P) = Vr € Type®. (Vr' €
Type®. (1 %% Q — 1) = SAT(P, [7]%)).

The proof given in [GL02] does not go through and we have neither been
able to prove nor disprove this lemma. It remains that this lemma is not yet
proved and hence cannot be used in further proofs. O
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Then, Ghilezan and Likavec give a proposition (Proposition 3.21) which is
the reducibility method for typable terms. However, the proof of that proposi-
tion depends on two problematic lemmas (lemma 3.16 which we showed to fail
in our lemma 3.9, and lemma 3.18 which according to remark 3.10 has not been
proved).

First, here is a lemma:

Lemma 3.11. VAR(WN3, WN;), CLO(WNg, WN3), INV(WN3) and SAT(WN 3, WNp)
hold. O

Proof.

e VAR(WNg, WNg) holds because Vz € V, ¥n > 0, VNy,...,N,, € WNg,
zNy...N, GWN@.

¢ CLO(WNg,WNg) holds, because if In,m > 0, 3zg € V, INy,..., N, €
NFg such that M -5 AT1.... \xp. 29Ny ... Ny, then Vy € V, \y.M —%
AYAZL. . ATy 20Ny ... Ny, € NFg.

INV(WNg) holds, because if In,m > 0, 3xo € V, INy,..., N, € NFg
such that Ae. M —% Axy.... A \z,.xoN1 ... Ny, then 1 = y and M —7

B B
)\132. ce Al‘n.IoNl [N Nm .

o SAT(WNg, WNg) holds, since if M[z := N]Ny...N,, € WNg where n >0
and Ni,...,N, € WNg then 3P € NFg such that
M[z := N|N;y...N, —3 P.
Hence, (Ax.M)NN;...N,, —g M[z := N|N;...N, —5 P. O

Lemma 3.12 (Proposition 3.21 of [GL02] fails). Assume VAR(P,P), SAT(P,P)
and CLO(P,P). It is not the case that: V1 € Type’. (1 #* QAVT €
Type?. (142 Q=7 )ATHF2 M : 7= M€ P). O

Proof. Let P be WNg. Note that A\y.\z.@® & WNg and @ 2 \y.\2.0® : a —
Q — Q is derivable, where o — Q — Q 2 Q and by lemma 3.8, « — Q —
Q %2 Q — 7/, for all 7/ € Type®. Since VAR(WNg, WNg), CLO(WNg, WNg)
and SAT(WNg, WNg) hold, we get a counterexample for Proposition 3.21 of
[GL02]. O O

Finally, also Ghilezan and Likavec’s proof method for untyped terms fails.

Lemma 3.13 (Proposition 3.23 of [GL02] fails).  Proposition 3.23 of [GL02]
which states that “If P C A is invariant under abstraction (i.e., INV(P)),
VAR(P,P) and SAT(P,P) then P = A" fails. O

Proof. The proof given in [GL02] depends on Proposition 3.21 which fails. As
VAR(WNg, WNg), SAT(WNg, WNg) and INV(WNg), we get a counterexample
for Proposition 3.23. O O
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4 How much of the reducibility method of [GLO02]
can we salvage 7

Because we proved that the Proposition 3.23 of [GL02] is false, we know that
the given set of properties (INV(P), VAR(P,P) and SAT(P,P)) that a set of
terms P has to fulfil to be equal to the set of terms of the untyped A-calculus is
not the right one. So even if one works on the soundness result or on the type
interpretation (the set of realisers), to obtain the same result as the one claimed
by Ghilezan and Likavec, one should come up with a new set of properties.

Proposition 3.23 of [GL02] states a set of properties characterising the set
of terms of the untyped A-calculus. The predicate VAR(A, A) states that the
variables (and the terms of the form zNMj --- M,, ) belong to the untyped A-
calculus. The predicate INV(A) states among other things that if a term is a
A-term then the abstraction of a variable over this term is a A-term too. To
get a full characterisation of the set of terms of the untyped A-calculus, we
need a predicate, let us call it APP(P), stating that (A\e.M)NM;--- M, € P
if M,N,M,...,M, € P, to be true. Is this predicate true if VAR(P,P),
SAT(P,P) and INV(P) are true? No, because we saw that we can find a set of
terms (WNg) which satisfies these properties but is not equal to the A-calculus.
For example, we cannot get the non strongly normalisable terms to be in WNg.
So, these properties are not enough to characterise the A-calculus.

The problem with these properties is that if one tries to salvage Ghilezan
and Likavec’s reducibility method, the properties VAR(P,P) and CLO(P,P)
are going to impose a restriction on the arrow types for which the interpretation
is in P (the realisers of arrow types), as we can see in the arrow type case of the
proof of the following lemma 4.4.5 and in the arrow type case of the proof of the
following lemma 4.5. As shown at the end of this section, even if the obtained
result when considering these restrictions is different from (in some sens, is an
improvement of) the one given by Ghilezan and Likavec using the type system
AN', we do not succeed in salvaging their method.

The use of the non-trivial types (we recall the definition below) introduced
by Gallier [Gal03] are not much of a help in this case, because of the precise
restriction imposed by VAR(P,P). One might also want to consider the sets of
properties (we do not recall them in this paper for lack of space) stated in his
work [Gal03], but which are unfortunately not easy to prove for CR, because
a proof of xM € CR for all M € A is required. Moreover, if one succeeds in
proving that the variables are included in the interpretation of a defined set of
types containing ) — «, where (2 is interpreted as A and « as P, then one has
proved that xM € P, so that in the case P = CR, M € CR.

It is worth pointing out that a part of the work done by Gallier [Gal03] would
still be valid if adapted to the type system AN?. Gallier defines the non-trivial
types as follows:

¢ € NonTrivial i=a |T =Y |7NY |YNT

Types in Type? are then interpreted as follows: [e]p =P, [vnt]p = [TNyY]p =
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[7]1» N [¥]p, [r]» = A if 7 &€ NonTrivial and [r — ]p = {M € P | VN €
[r]p- MN € [¥]p}. We can easily prove that if 71 <? 75 then [r1]p C [r2]p.
Hence, considering the type system AN? instead of the type system DS), the
method of Gallier gets a set of predicates which when satisfied by a set of terms
P implies that the set of terms typable in the system AN? by a non-trivial type is
a subset of P. Gallier proved that the set of head-normalising A-terms satisfies
each of the given predicates.

Using a method similar to Ghilezan and Likavec’s method, Gallier proved
also that the set of weakly head-normalising terms (W) is equal to the set of
terms typable by a weakly non-trivial types in the type system D). The set of
weakly non-trivial types is defined as follows:

1 € WeaklyNonTrivial =« |7 = ¢ | Q= Q| 7Ny |YvNT

As explain above, we can try and salvage Ghilezan and Likavec’s method by
first restricting the set of realisers when defining the interpretation of the set of
types in Type?. The different restrictions lead us to the definition of Type® and
the following type interpretation:

Definition 4.1. p € Type® :=a |7 —p|pN7|7Np.
o [a]} =P.
o [N 7'2]]% = [71]]?7’, N [[7'2]]%, if 7 Ny € Types.
o [7]5 =Aif7 ¢ Type®.

o[ > )b ={M e P|VN € [n]d MN € [n]dt}, ifn — m €
Type®. O

In order to prove the relation between the stronger induction hypotheses
(VAR, SAT and CLO, and particularly the variable one) and the ones depending
on type interpretations (VAR?, SAT? and CLO?), and in order to be able to use
these stronger induction hypotheses in the soundness lemma, we have to impose
other restrictions.

Definition 4.2. We let p € Type* :i=a | Q| p— | @oN7T|TNe.

Welet I' € B3 = {{z1:01,...,xn 0n} | Vi,j €{1,...,n}. 2, =2 = ¢; =
@i}

Let 2 be the relation -2 where (ax) is replaced by (az’) and B2 is replaced
by B3. Let AN be the type system AN? where (az) is replaced by (az’) and
B? is replaced by B®. Let =% be the relation =% where [7]% is replaced by
1. .

Due to the saturation predicates and its uses, we could have to impose some
other restrictions on the type system. Another alternative is to slightly modify
this predicate (in order to not have to burden ourselves with another notation
for the saturation predicate, we call it as the previous one):
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Definition 4.3. SAT(P,X) < (VM,N € A.Vz €V.Yn e N.VNy,...,.N, €

A.

Mz

.= N]N;...N, € X = (Az.M)NN; ... N, € X). O

We can prove that if P € {CR,S, W} then SAT(P,P) holds.

Lemma 4.4.

1.

S v o e

[ N7l = [nlp 0 [l

[l € P.

Ifr <31 and m € Type3 then T € Type3.

If 71 <% 15 then [11]% C [r2].

If VAR(P, P) then for all ¢ € Type*, VAR(P, lel).

If SAT(P, P) then for all T € Type?, SAT(P, [7]3). O

Proof.

1.

If 71 N7 € Type® then it is done by definition. Otherwise 71,7 & Type®,
so[riNm]d=A=ANA=[n]}n[r]3.

We prove this result by induction on the structure of 7.

e Let p =« then [p]% = P.

e Let p =7 — o/, then by definition, [p]} C P.

e Let p=70Np, then by IH, [p']% CP. So [p]% = [7]% N [p]35 € P.
e Let p=p' N, then by IH, [p']% C P. So [p]3 = [7]5 N[5 C P.

We prove this lemma by induction on the size of the derivation of 7y <2 75
and then by case on the last step.

e (ref): 7 < 7. This case is trivial.

(
e (Q): 7 < Q. This case is trivial since Q ¢ Type®.
(tr): 1 < AT <73 =7 <73. We conclude using TH twice.
o (V-lazy): 7 — Q < Q — Q. This case is trivial since Q — Q ¢ Type®.
(ing): 71 N2 < 7. This case is trivial.

(

ing): 71 N7Te < 79. This case is trivial.

(—-N): (rm—m)N(n—1m3) <1 —(rNn).ifr = (NT3)E
Type® then 7 € Type3 or 73 € Type®. Hence 1y — 7 € Type3 or
1 — 13 € Type®, so (1 —m)N (1 — 713) € Type®.

(mon'): M <A <m=>7m <mNmn HfrnNmec Type3 then
Ty € Type3 or T3 € Type?’7 so by IH, 7y € Type3.
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e (mon): 1 ST AT < Th =T N7 < 71N If 7{ N7y € Type® then
7] € Type® or 74 € Type®. So by IH, 7 € Type® or 75 € Type®, hence
T NT2 € Type?’.

e (—-n): M <THATR<T =7 —>T1<1 —7 I > € Type®
then 7, € Type®, so by IH, 74 € Type®, hence 7] — 75 € Type®.

4. We prove this lemma by induction on the size of the derivation of 7 <2
and then by case on the last step.

e (ref): 7 < 7. This case is trivial.
e (€): 7 <. This case is trivial since [Q]% = A.
o (tr): m <A™ <7 =7 <75 BylH [nn]% C [r]3 and
[l C [73]%, so [1i]$ C [m:]p-
(Q-lazy): 7 — Q2 < Q — Q. This case is trivial since [T — Q3 =
[Q — Q% = A.

(ing): N7 <71. By 1, [ N7]d = [1]d N [r]s C 1.
o (ing): N7 <. By 1, [mnNn]d =[nPn[r]d C [r]d.
(—-N): (n—>m)N(n—713) <11 — (12NT73).

—Ifrnn - o, — 13 € Type3 then 7,73, 70 N73 € Type?’, SO
[[(Tl — ) N (7'1 — T3)]]?7’; = [[Tl — 7'2]]% N [[7’1 — Tg]]?;; = {M S
P|VN € [n]%b. MN € [R]L}n{M € P |VN € [n]%. MN €
[3]5} ={M € P|VN € [n]}:. MN € [n]bn[r]h} ={M €
P|VN e HT]]% MN € [y 073]]?7’)} =[n — (r2 073)]]?7’3.

—Ifr —>m € Type3 and 1y — 73 & Type?’7 then 7, o N73 € Type3
and 73 & Type®, so [(11 — T)N(11 — 73)]% = [11 — w]bN[n —
)5 ={M € P |VN € [n]%. MN € [r2]%} ={M € P|VN €
[11]%. MN € [N73]d} = [r — (2N 73)]3.

—Ifr—>nd Type3 and 3 — 13 € Type3, then 73, N73 € Type3
and 15 ¢ Type?, so [(r1 = m)N(m — 7'3)]]% =[n— TQH%Q[[Tl —
)b ={M € P|VN € [n]d. MN € [r3]5} ={M € P|VN €
[[Tlﬂz;’;. MN € [[7'2 ﬂTgﬂ%} = [[Tl — (T2 07'3)]]%.

-Ifn — 1 — 13 & Type3, then 7o, 73,79 N 713 & Type37 SO
[(i = )N (1 = 7)]p =[n — (N7)]p = A

o (mon'): < AT <13=7 <7N73. By IH, [11]} C [r]3 and
[ € [l S0 by 1, [l [l 0 [l = [72 A 7l

e (mon): 11 < T{AT2 < 75 = TN < 7{N75. By IH, [11]3 C [7{]% and
[l € [ So by 1, [ N7l = [Nl € [0 [ =
[ N 73]

o (— -n): 7'1<7'1/\'rz§72é7'1%72§71%7'2 By IH, [[71]]7D C

[m{]% and [#]3 C [[72]]73 If o € Type® then 7 € Type® and

by 3, 75 € Type®, so 71 — 75 € Type® and [r] — 7]% = {M €

P | VN € [r{]%. MN € [73]:} C {M € P | VYN € [n]%. MN €

[2]%} = [11 — ]}, Otherwise, [r{ — 73]% C [11 — w]% = A.
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5. Assume VAR(P,P). Let n >0,z € V and for all i € {1,...,n}, M; € P.
By the hypothesis, M --- M, € P. We prove that xM; --- M, € [¢]3
by induction on the structure of ¢.

o If o = then xM; - - M, € P = [a]3.
° Ifcp:chean1~~~MnEA:[[Q]]%.
o If o =7nN¢. By IH, aM;--- M, € [¢']5, so by 1, zM;--- M, €
7T N I = bl
o If p=¢'N7. By IH, 2M;--- M, € [¢']%, so by 1, zM;--- M, €
[l N I71p = [¥' N 7]3.
Ifo=p—y.
— If ¢ € Type® then ¢’ € Type®. Let N € [p]3, so by 2, N € P.
By IH, zM; --- M, N € [¢']%. So aMy--- M, € [p— ¢']3.
— If ¢ ¢ Type® then oM, --- M,, € [p— ¢']% = A.

6. Assume SAT(P,P). Let n > 0, z € V, M,N € A and for all ¢ €
{1,...,n},N; € A. We prove that if M[z := N]N;---N, € [r]% then
(Az.M)NN; -+ N, € [7]% by induction on the structure of 7.

o If 7 = o then [a]} = P and we conclude using the hypothesis
SAT(P,P).

o If 7 = then (\e.M)NN;---N, € A =[Q]3.

o If 7 =7 N7 Assume Mz := N|Ny--- N, € [7]% =! [1]® N [r2]?,
then by IH, (A\z.M)NNy --- N, € [1]? N [r]? =t [7]3.

o If 7= ™ — T2.

— If 7 € Type® then 7, € Type®. Let P ¢ [11]% and Mz =
N]N; -+ N, € [7]% then by 2, M|z := N|N; --- N,, € P. By hy-
pothesis, (Ax.M)NNj --- N,, € P. Moreover, M[x := N|Ny---N,P €
[r2]%. By IH, (Ax.M)NN; -+ N, P € [1]%, s0 (Az.M)NN;y ---N,, €
[71%-

— Let 7 ¢ Type® then (\x.M)NN; --- N, € [7]% = A.

O

Lemma 4.5. If VAR(P,P), SAT(P,P), CLO(P,P) and T > M : 7 then
FELM: 7 O

Proof. We prove this lemma by induction on the size of the derivation of I' 3
M : 7 and then by case on the last rule used in the derivation. In each case,
if 7 ¢ Type®, it is trivial since [7]% = A. So let us consider in each case that
T € Type®.

o (az): Let v =4 T,z : ¢ then v(z) € [¢]5.

e (—p): ByI, T E* M : 7y - mand I' =2 N : 71, so by lemma 3.2.1,
' =L MN : 75 (because if 75 € Type® then 71 — 75 € Type®).
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e (—7): ByIH, T,z : 7 5 M : 7. Let v % T'and N € [r1]3. Then
v(z == N) 5 T since ¢ ¢ dom(T') and v(z := N) % z : 7 since
N € [n1]3. Therefore v(z := N) =5 M : 75, ie. [M]y=n) € [72]3-
Hence, by lemma 3.2.1, [M], (. := N] € [r]}. Hence by ap-
plying SAT(P,P) and 4.4.6, we get (Az.[M],(3.=2))N € [r2]%. Again
by lemma 3.2.1, ([\z.M],)N € [r]%. Hence [Ax.M], € {M | VN €
[n]3- MN €[]}
Since 7 € Type?, by VAR(P, P) and 4.4.5, = € [m1]%, hence by the same
argument as above we obtain [M], (z.—s) € [2]. Since 71 — m € Type®
then 7, € Type®, so by CLO(P,P) and 4.4.2, Az.[M],(z:=2) € P and by
lemma 3.2.1, [Az.M], € P. Hence, we conclude that [A\x.M], € [r1 —
7'2]]%.

e (<3): We conclude by IH and 4.4.4

e (Q): This case is trivial because Q ¢ Type®. O

The next lemma states that the set of terms satisfying the Church-Rosser, the
weak head normalisation or the standardisation properties satisfies the variable,
saturation and closure predicates.

Lemma 4.6. Let P € {CR,S,W}. Then VAR(P,P), SAT(P,P) and CLO(P,P).
O

We obtain the following proof method. However, we strongly believe that
the set of terms typable in our type system with a type p is no more than the
set of strongly normalisable terms.

Proposition 4.7. IfT' -3 M : p then M € CR, M €S, and M € W. O

Proof. By lemma 4.6, lemma 4.4.2 and lemma 4.5 O

5 Adapting the CR proof of Koletsos and Stavri-
nos [KS08] to fI-reduction

[KS08] gave a proof of Church-Rosser for 3-reduction for the intersection type
system D of Definition 2.25 (studied in detail in [Kri90]) and showed that this
can be used to establish confluence of (-developments without using strong
normalisation. In this section, we adapt his proof to I and at the same time,
set the formal ground for generalising the method for 7 in the next section.
First, we adapt and formalise a number of definitions and lemmas given in
[Kri90] in order to make them applicable to 3I-developments. Then, we define
type interpretations for both I and (7, establish the soundness and Church-
Rosser of both systems D and Dy (for 8n- resp. B1-reduction), and finally, adapt
[KS08] to establish the confluence of FI-developments.
All proofs from this section are located in appendix B.
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5.1 Formalising f/-developments

The next definition, taken from [Kri90] (and used in [KS08]) uses the variable
c to destroy the gI-redexes of M which are not in the set F of fI-redex occur-
rences in M, and to neutralise applications so that they cannot be transformed

into redexes after fI-reduction. For example, in c¢(Az.x)y, ¢ is used to destroy
the BI-redex (\x.x)y.

Definition 5.1 (®°(—,—)). Let M € Al such that ¢ & fv(M) and F C Rfj
1. If M = x then F = & and ®¢(z,F) = x

2. If M = \z.N such that © # ¢ and F' = {p | 1.p € F} € RS then
°(\z.N, F) = \.d(N, F')

3.UM=NP,Fi={p|lpeF}CR and Fo = {p|2.p € F} CRY
then
c®°(N, F)O(P, Fy) if0&F

(NP, F) = { OC(N, F1)P¢(P,F2)  otherwise

O

The next lemma is an adapted version of a lemma which appears in [KS08]
and which in turns adapts a lemma from [Kri90].

Lemma 5.2.
1. If M e AL ¢ & tv(M), and F C REL then
(a) tv(M) = tv(®(M, F)) \ {c}.
(b) ®¢(M,F) € AL.
(c) |®¢(M,F)|c = M.
(d) [(®°(M, F), ey 2)° = F.

2. Let M € AI.
(@) |(M, R C Ry and M = &M<, |(M, RE])|°).

(b) (|M|°, (M, R?\/}HC) is the one and only pair (N, F) such that N € Al
c g tv(N), F CRE and ®(N,F) = M.

O

The next lemma is needed to define GI-developments.

Lemma 5.3. Let M € Al such that ¢ & fv(M), F C RIBV}, p € F and

M 250 M'. Then, there exists a unique set F' C R’JG\}, such that ®¢(M, F) ig[
@°(M', ') and |(@°(M, F), p')|° = p. ¥
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We follow [Kri90] and define the set of SI-residuals of a set of SI-redexes F
relative to a sequence of GI-redexes. First, we give the definition relative to one
redex.

Definition 5.4. Let M € Al, such that ¢ & tv(M), F C R%, p € F and
M Agl M'. By lemma 5.3, there exists a unique F' C R%/ such that

(M, F) L/M (M’ F') and |(®°(M,F),p")|¢ = p. We call F’ the set of
BI-residuals in M’ of the set of SI-redexes F in M relative to p. O

Definition 5.5 (5I-development). Let M € Al where ¢ ¢ fv(M) and F C R[Ifj
A one-step BI-development of (M, F), denoted (M, F) —grq (M',F'), is a BI-
reduction M &m M’ where p € F and F’ is the set of BI-residuals in M’ of the
set of BI-redexes F in M relative to p. A fI-development is the transitive

closure of a one-step GI-development. We write also M 55 14 M,, for the BI-
development (M, F) =57y (Mn, Fp). O

The next two lemmas are informative about developments.

Lemma 5.6. Let M € Al such that ¢ ¢ tv(M) and F C R’]B\/} Then:
(M,F) =hq (M, F') = ©(M,F) =5 ®(M', F'). O

Lemma 5.7. Let M € Al such that ¢ € fv(M) and F1 C Fo C Rf/[I If
(M, F1) —gra (M',F7) then there exists Fb C ’R?WI, such that F; C Fb and
<M, f2> —pId <M/,fé> L]
5.2 Confluence of fI-developments, hence of F/-reduction

Definition 5.8. 1. Let r € {B1,0n}. We define the type interpretation
[-]" : Type' — 2% by:

e [a]" = CR", where o € A.
o [ont]" =[o]" N[r]".
o [o—=7]"={M e CR"|VN € [o]". MN € [7]"}.

2. A set X C A is saturated iff Vn > 0. VM, N, My,...,M, € A. Vz € V.

Mz :=N|M;y...M, € X = (Ae.M)NM; ... M, € X

3. A set X C Al is I-saturated iff Vn > 0. VM, N, My,..., M, € A. Vx € V.
zetv(M)= M[z:=N|M;.. M, € X = (Ae.M)NM,...M, € X
O
Here is a background lemma:

Lemma 5.9.

1. IfTHPL M 2 o then M € AT and fv(M) = dom(T').
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2. LetT'FP" M : 0. Then fv(M) C dom(T") and if T C TV then T' F°" M : o.
3. Letr e {BI,0n}. ITH M:0,0Co" andl" CT thenT'F" M :0'. O

The next lemma states that the interpretations of types are saturated and
only contain terms that are Church-Rosser. Krivine [Kri90] proved a similar
result for r = § and where CR{; and CR" were replaced by the corresponding sets
of strongly normalising terms. Koletsos and Stavrinos [KS08] adapted Krivine’s
lemma for Church-Rosser w.r.t. S-reduction instead of strong normalisation.
Here, we adapt the result to §I and (7.

Lemma 5.10. Let r € {31, 8n}.
1. Yo € Type'. CR}, C [o]" C CR".
2. CRP! is Lsaturated.
8. CRP" is saturated.
4. Vo € Type'. [0]°! is I-saturated.
5. Yo € Type'. [0]°" is saturated. O
Next we adapt the soundness lemma of [Kri90] to both +°1 and 7.

Lemma 5.11. Let r € {BI,0n}. If x1 : 01,...,2p : 0y F" M : 0 and Vi €
{1,...,n}, N; € [o;]" then M[(z; := N;)}] € [o]". O

Finally, we adapt a corollary from [KS08] to show that every term of A
typable in system D has the #n Church-Rosser property and every term of A
typable in system Dj has the SI Church-Rosser property.

Corollary 5.12. Letr € {BI,8n}. IfTF" M : o then M € CR". O

Proof. Let I' = (z; : 0;)n. By lemma 5.10, Vi € {1,...,n},2z; € [o;]", so by
lemma 5.11 and again by lemma 5.10, M € [o]" C CR". O

In order to accommodate BI- and Sn-reduction, the next lemma generalises
a lemma given in [Kri90] (and used in [KS08]). Basically this lemma states that
every term of Al. is typable in system D and every term of An, is typable in
Dy.

Lemma 5.13. Let fv(M)\ {c} = {z1,...,2,} C dom(T") where ¢ € dom(T").

1. If M € AL, then for I =T | fv(M), 30,7 € Type' such that
ifc € ftv(M) then T, c: o FPT M : 7, and if ¢ ¢ tv(M) then T/ FPT M : 7.

2. If M € A, then 3o, 7 € Type' such that T,c: o F9 M : 7. O

The next lemma is an adaptation of the main theorem in [KS08] where as
far as we know appears for the first time.
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Lemma 5.14 (confluence of the BI-developments). Let M € Al such that
c & tv(M). If M ﬂg;d M, and M Emd My, then there exist F| C R%l,

Fy CREL and My € AT such that My 2514 My and My 23574 Ms. O
We follow [Bar84] and [KS08] and define one reduction as follows:

Notation 5.15. Let M, M’ € Al such that ¢ & fv(M). We define one reduction
by: M —11 M' <= 3F, F',(M,F) =514 (M',F'). O

Lemma 5.16. Let ¢ & fv(M). Then, Rgﬁ(M,g) = 0. O

BI —
Lemma 5.17. Let ¢ ¢ fv(MN) and x # c. Then, Repe (M, 0)[mmde(N,2)] =
J.

Lemma 5.18. Let ¢ ¢ tv(M). If p € R?V[I and ®¢(M,{p}) —pr M’ then
RYL = 2. O

Lemma 5.19. Let M € Al such that ¢ & tv(M). If M 251 M’ then (M, {p}) —s14
(M', @). O

Lemma 5.20. —>;H:—>*1‘I. O]

Finally, we achieve what we started to do: the confluence of gI-reduction
on AL

Lemma 5.21. ATC CR?!, O

6 Generalisation of the method to (n-reduction

In this section, we generalise the method of [KS08] to handle Sn-reduction. This
generalisation is not trivial since we needed to develop developments involving 7-
reduction and to establish the important result of the closure under n-reduction
of a defined set of frozen terms. It is for reasons like this that we extended
the various definitions related to developments. For example, clause (R4) of the
definition of A7, in Definition 2.3 aims to ensure closure under n-reduction. The
definition of A, in [Kri90] exluded such a rule and hence we lose closure under
n-reduction as can be seen in the following example: Let M = Ax.cNz € A,
where z € fv(N) and N € A., then M —, cN & A..

Again here, the proofs are moved to appendix C.

A full common definition of a fn-residual is given by Curry and Feys [CF58]
(p. 117, 118). Another definition of Sn-residual (called A-residual) is presented
by Klop [Klo80] (definition 2.4, p. 254). Klop [Klo80] shows that both def-
initions enable to prove different properties of developments. Following the
definition of a fn-residual given by Curry and Feys [CF58] (and as pointed out
in [CF58, Klo80, BBKV76]), if the n-redex Az.(Ay.M)x, where z & fv(A\y.M),
is reduced in the term P = (Az.(A\y.M)x)N to give the term Q = (\y.M)N,
then @ is not a Bn-residual of P in P (note that following the definition of a
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A-residual given by Klop [Klo80], @ is a A-residual of the redex (Ay.M)x in
P since the A of the redex @Q is the same than the A of the redex (\y.M)z
in P). Moreover, if the S-redex (\y.My)z, where y ¢ fv(M), is reduced in
the term P = Az.(Ay.My)x to give the term @ = Az.Mz, then @ is not a
Bn-residual of P in P (note that following the definition of a A-residual given
by Klop [Klo80], @ is a A-residual of the redex P in P since the A of the
redex @ is the same than the A of the redex P in P). Our definition 6.5 dif-
fers from the common one stated by Curry and Feys [CF58] by these cases
as we illustrate in the following example: U°((Az.(Ay.M)z)N,{1,1.0,1.1.0}) =
{"(Azx.(MNy.Ply == cley)])x)Q) | n > 0OANP € U(M,0) AN Q € U°(N,2)},
where 2 ¢ fv(\y.M). Let p = 1.0 then (A\z.(\y.M)z)N L5, (\y.M)N. More-
over, Py = ¢"((A\z.(A\y.Ply = c(cy)])2)Q) L5, ¢"((M\y.Ply := c(cy)])Q) such
that n > 0, P € U¢(M, ), Q € V¢(N,2), (P, p)|¢ = |{P,2".1.0)|° = p
(using a lemma stated and proved in the long version of this article) and
e (Ay-Ply = c(cy)])Q) € B((Ay.M)N, {0}).

The next two definitions adapt definition 5.1 to deal with Bn-reduction. The
variable ¢ enables to destroy the On-redexes of M which are not in the set F
of Bn-redex occurrences in M; to neutralise applications so that they cannot be
transformed into redexes after Sn-reduction; and to neutralise bound variables
so A-abstraction cannot be transformed into redexes after gn-reduction. For
example, in Az.y(c(cx)) (z # ), c is used to destroy the n-redex Az.yz.

Definition 6.1 (U¢(—, —), U5(—, —)). Let ¢ & fv(M) and F C RS/
(P1) If M € V\ {c} then F =2 g and
UM, F) = {*(M) | n > 0}
G(M, F) ={M}
(P2) If M = Az.N and 2 # cand F' = {p | 1.p € F} C*6 RO -

We(M, F) = {"(Az.Plz:=c(cx)]) | n>0AP € U¢(N,F)} if0¢&F
T A Da N | n > 0AN € U§(N,F)} otherwise
. [ {M.N'[z:=c(cx)] | N € U¢(N,F')} if0¢F
Wo(M, F) = { (N | N’ € W5(N, F')} otherwise
(P3) If M = NP, Fy = {p | L.p € F} C*S Ry and Fp = {p | 2.p € F} 26
R then:
Ue(M,F) =
["(eN'P') | n>0AN € U(N,F) AP € U(P, )} if0gdF
{"(N'P") | n>0AN € U§(N,F1) NP € U¢(P,F3)} otherwise

{¢cN'P' | N' € US(N, F)) AP € W§(P, F)} if0¢&F

c _
\IJO(M,]:) = { {N/P/ | N’ € \IJE(N,]'—l) NP € \118(P7f2) otherwise

O
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Lemma 6.2. If M € An. and n > 0 then c¢*(M) € An,.
Proof. By induction on n > 0 using (R4). O
Lemma 6.3.

1. Let c ¢ tv(M) and F C R[IZ’ We have:

(a) WG(M,F) C ¥(M,F).
(b) VN € O¢(M,F). tv(M) = tv(N) \ {c}.
(c) ¥¢(M,F) C An,.
(d) Let M = Nz such that x ¢ tv(N) U {c} and P € U5(M,F). Then,
Ry p={0}U{Llp|p e RY).
(e) Let M = Nzx. If Px € V¢(Nx,F) then Pz € U§(Nz,F).
(f) VN € U¢(M,F). ¥n > 0. ¢"(N) € U¢(M,F).
(9) VN € U¢(M,F). |[N|c= M.
(h) VN € U¢(M,F). F = |(N,R"|.
2. Let M € An.. We have:

(a) (M REDIE S REL. and M € We(IMIe, | (M, REDIE).

(b) (IMe,[(M,RENV|¢) is the one and only pair (N,F) such that ¢ &
fv(N), F C R and M € (N, F).

O

Lemma 6.4. Let M € A, such that ¢ & tv(M), F C Rg}, peF and M ﬂ’ﬁn
M'. Then, there exists a unique set F' C Rg}, such that for all N € We(M,F)
there exists N' € W¢(M', F') and p’ € R’?V" such that N %5, N' and |(N, p')|® =
p. O

Definition 6.5. Let M € A, F C R%], p € F and M &577 M’'. By lemma 6.4,
there exists a unique F’' C Rzﬁv?'v such that for all N € ¥¢(M,F), there exist
N e U¢(M',F') and p’ € RIBV" such that N %5, N” and |(N,p')|¢ = p. We call
F' the set of Bn-residuals in M’ of the set of 3n-redexes F in M relative
to p. O

Definition 6.6 (5n-development). Let M € A, where ¢ & fv(M), and F C R?V?
A one-step (n-development of (M, F), denoted (M, F) —gnq (M',F'), is a On-
reduction M ﬂ’ﬁn M’ where p € F and F’ is the set of Bn-residuals in M’
of the set of fBn-redexes F in M relative to p. A (n-development is the

transitive closure of a one-step #n-development. We write also M iﬁnd M’ for
the fn-development (M, F) —5, ; (M', F'). O
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REMARK 6.7. Let us now compare our definition of Gn-residuals to the one
given by Klop [Klo80] (A-residuals). We believe that we accept more redexes as
residuals of a set of redexes than Curry and Feys [CF58] (as our examples given
at the beginning of section 6, tend to prove) and less than Klop.

In order to do so, let us introduce the two calculus A and An, which are
labelled versions of the two calculus A and A#n:

t e A = | Anx.t | tito

v € ABS. = AZ.WT | A\Z.u[T := c(cT)], where T & fv(w)
w € APP., = wvlcu

u € An. n= T|v|wu|cu

where Z,7 € V \ {c}. Note that ABS. C APP. C An. C A.

The labels enable to distinguish two different occurrences of a .

Since these two calculus are only labelled versions of A and A7, let us assume
in this remark that the work done so far is true when A ans A7, are replaced
by A and A7..

Klop [Klo80] defines his A-residuals as follows:

“Let R =My — M; — ... = My — ... be a fn-reduction, Ry
a redex in My and Ry a redex in M} such that the head-\ of Ry
descends from that of Ry.

Then, regardless whether Ry, Ry are (3- or n-redexes, Ry, is called
a A-residual of Ry via R.”

We are now going to our own definition of the head-\ of a #n-redex, slightly
different from Klop’s ones, as we intend to prove below.

Let us define the head-A of a On-redex as follows: headlam((\,z.t1)t2) =
(1,n) and headlam(A,z.tox) = (2,n), if = & fv(ty). If F C RY" we define
headlamred(¢, ) to be {(i,n) | 3p € F. headlam(t|,) = (i,n)}. We define
hir(¢) to be headlamred(t, RP").

Let ¢ ¢ fv(t), F C RY" and ¢ %5, t' then by definition 6.5, there exists a
unique F’' C T\’,tﬁ,”, such that for all u € U¢(¢,F) (by lemma 6.3.1c, u € An,),
there exist v/ € (¢, F') and p’ € RI" such that u %4, v and |(u, p')|° = p.
The set F' is the set of On-residuals in ¢’ of the set of redexes F in t relative
to p. By lemma 2.2.3, ¢ ¢ fv(¢'). By definition ¥¢(¢,F) is not empty. Let
u € W(t, F) then there exist w' € We(t', F') and p’ € RI" such that u g,
u’ and |(u,p")|° = p. By lemma 6.10, hlr(v’) C hlr(u). So, by lemma 6.8,
headlamred(t', F') C headlamred(t, F).

However we can find ¢ and F such that, following Klop’s definition [Klo80],
po € R’f," and pg is a A-residual of F via p but pg & F'.

For example: Let t = (Aoz.2y)(\12.y2) ggn (Mzyz)y = t'. Let F =
{0,2.0}. Then ¥¢(t, F) = {c™ ((Aoz.c™2(c3(z)y))(c" (A\12.c™FL(y)2))) | n1,n2,n3,n4 >
0}. Let u € W¢(t, F), then u = c™ ((Aox.c™2(c3(x)y))(c™ (A12.c™ T (y)2))) such
that ny, ng, n3,n4 > 0. We obtain u = ¢™ ((Aoz.c™* (¢ (2)y)) (™ (M\12.c" 1 (y)2))) Bs,
cmtnz(enst3(\;2.c™H 1 (y)2)y) = o’ such that py = 2.0. Then F’ = {1.0} is
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the set of Bn-residuals in ¢’ of the set of redexes F in ¢ relative to p. But 0 is a
A-residual of F via 0 and 0 & F'.

We could think that our definition of Brn-redexes capture the Klop’s defini-
tion without the condition: “regardless whether Ry, Ry are - or n-redexes”,

But it is not the case . For example: ¢ = A\,Z.(Any.29)T 1—'9,3 AT.2T =
' and 0 € RO, but u = A\Z.(Ami.cz(c(cy)))z € (£, {0,1.0}) and u =
M. (Am.cz(c(cy))E =2y AnZ.cz(c(cz)) = u’ and 0 & R

So, we believe that our Sn-residuals are only a subset of Klop’s A-residuals (in
its definition and without “regardless whether Ry, Ry are 8- or n-redexes”). [

Let now show that our definition of Sn-residuals corresponds to a restriction
(in the sense that we believe we accept more redexes as residuals of a set of re-
dexes than Curry and Feys [CF58] and less than Klop [K1o80] ) of the definition
of A-residuals given by Klop [Klo80].

In order to do so, let us introduce the two calculus A and An, which are
labelled versions of the two calculus A and A#n.:

t e A = | Anx.t | tito

v € ABS. = AZ.WT | A\Z.u[T := c(cT)], where T & fv(w)
w € APP., = wvlcu

u € An. n= T|v|wu|cu

where Z,7 € V \ {c}. Note that ABS. C APP. C An. C A.

The labels enable to distinguish two different occurrences of a .

Since these two calculus are only labelled versions of A and A7, let us assume
here that the work done so far is true when A ans A7, are replaced by A and
A7e.

Klop [Klo80] defines his A-residuals as follows:

“Let R =My — M; — ... = My — ... be a Bn-reduction, Ry
a redex in My and Ry a redex in M} such that the head-\ of Ry
descends from that of Ry.

Then, regardless whether Ry, Ry are - or n-redexes, Ry is called
a A-residual of Ry via R.”

Let us define the head-A of a fBn-redex as follows: headlam((A,z.t1)t2) =
(1,n) and headlam(Mpz.tox) = (2,n), if @ & fv(ty). If F C RP" we define
headlamred(¢, F) to be {(i,n) | 3p € F. headlam(t|,) = (i,n)}. We define
hir(t) to be headlamred(t, R?").

Lemma 6.8. Let ¢ & fv(t) and F C RY". If u € We(t,F) then hlr(u) =
headlamred(t, F). O

Proof. We prove this lemma by induction on the structure of ¢.

e Let t = x # ¢ then by lemma 2.5, F = @ and u = ¢"(x) such that n > 0.
Then, hlr(u) =512 @ = headlamred(t, F).

e Let t = A\,x.ty such that x Zcand Fy =p|1l.p € F.
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— If 0 € F then ¢; = t{z such that = & fv(t]), and u = " (A,x.u1) such
that n > 0 and uq € U§(t1,F1). By IH and lemma 6.3.1a, hlr(u;) =
headlamred(ty, F1). Then, hlr(u) =6314613 hir(u;) U {(2,n)} =
headlamred(ty, F1) U {(2,n)} =513 headlamred(t, F).

— Else, u = ¢"(Apx.u1 [z := c(cx)]) such that n > 0 and uy € Ue(ty, Fy).
By IH, hlr(u;) = headlamred(t1, ;). Then, hlr(u) =13 hlr(u;) =
headlamred(t;, F;) =513 headlamred(t, F).

o Lett =tito, Fi={p|lpeF}tand Fo={p|2.p € F}.

— If 0 € F then t; = A\yy.ti, and v = ¢"(ujug) such that n > 0,
uy € U5(t1,F1) and ug € ¥¢(te, F2). By definition, uy = A,y.uj. By
IH and lemma 6.3.1a, hlr(u;) = headlamred(¢;, F1) and hlr(ug) =
headlamred(ta, F2). Then, hlr(u) =%13 hlr(u;) Uhlr(uz) U {(1,n)} =
headlamred(t;, F; )Uheadlamred (t2, F2)U{(1,n)} =513 headlamred(t, F).

— Else, u = ¢"(cujug) such that n > 0, uy € V(t1,F;) and uy €
Ue(ty, Fa). By IH, hlr(uy) = headlamred(ty, F1) and hlr(ug) =
headlamred(ta, F3). Then, hlr(u) =%13 hlr(u; )Uhlr(us) = headlamred (¢, F; )U
headlamred(tg, Fa) =513 headlamred(t, F).

O
Lemma 6.9. If [ul° =t, p € RE, p' € RY" and |(u, p)|° = p’ then headlam(t|,/) =
headlam (ul,). O
Lemma 6.10. If u € An, and u 2, u' then hlr(u') C hir(u). O

Proof. We prove this lemma by induction on the size of u and then by case on
the structure of w.

e Let u = 7 then it is done because ¥ does not reduce by —g,,.

o Let u = \Zuy[Z := c(cZ)]. Because u >4, v/, then by lemma 2.2.8,
lemma 2.7.3 and lemma 2.4.12a, p = 1.p/, v = A\, Z.u}[Z := c(cT)] and

Uy gﬁn uj. By IH, hlr(vf) C hlr(ui). So, by lemma 6.13, hlr(vw') =
hlr(w}) C hlr(uy) = hir(uw).

e Let u = \,z.wZ and = ¢ fv(w). Because u ﬁ)ﬁn u’, by lemma 2.2.8 and
lemma 2.5:

— Either p = 0 and v’ = w. So hlr(u') C%14 hir(u).

— Orp =1y, wz Bpy u, and o/ = Az By IH, hlr(u}) C hlr(wz).
So, hlr(u’) €513 hir(u}) U {(2,n)} C hlr(wz) U {(2,n)} =513 hir(t).

e Let u = (\,#.wZ)u; such that Z ¢ fv(w). Because u g, u’, by lemma 2.2.8
and lemma 2.5:

— Either p = 0. So v/ = wu;. By case on w:
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* Either w is a v and so v’ € R, Let (1,m) = headlam(u’) then
hir(w') =513 hir(w) U hlr(ug) U {(1,m)} €513 hir(u).

* Or w = cuy and so v € RP7. Then hlr(v) =%13 hir(w) U

hlr(u;) €13 hir(u).

—Orp = 1. p’ such that p’ € RO

AnZT. wWT"
AnZ.wz L _’ﬁn uwj. By IH, hlr(u}) C hlr(A,Z.wZ). By lemma 2.5:
* Either p’ = 0 and v} = w, so v/ = wuy. By case on w:
- Either w is a v and so ' € R7". Let (1,m) = headlam(u')
then hlr(w/) =513 hir(w) U hlr(uy) U {(1,m)} C513 hlr(u).
- Or w = cug and so v’ & RP". Then hlr(u') =513 hir(w) U
hlr(uy) €513 hir(u).

So w' = wju; such that

x Or p/ = 1.p", v} = \,T.uy and wz p—>”577 ug. Then, hlr(u’) =613
hlr(u} )Uhlr(ug ) U{(1,n)} C hlr(\,Z.wZ)Uhlr(u; )U{(1,n)} =513
hlr(t).

— Or p = 2.p/ such that p’ € RE". So v = (A, Z.wx)uj such that

Uy ﬂl’ﬁn uy. By IH, hir(u}) C hlr(ug). So, hir(u') =13 hir(\,z.wz)U
hir(u)) U{(1,n)} C hlr(\,Z.wZ) Uhlr(u;) U {{1,n)} =513 hlr(u).

o Let u = (\Z.uy [T := c(cZ)])ug. Because u 25, v/, by lemma 2.2.8 and
lemma 2.5:

— Either p = 0. So v/ = u1[% := ¢(cug)]. By lemma 6.11, hlr(u’) C
hlr(w).

— Or p = 1.p’ such that p e R So v’ = ujuy such

AnZ.u [Z:=c(cT)]”

that \,Z.u) [T = ¢(cT)] 2 —>577 uj. By IH, hlr(v}) C hlr(A\,Z.uy[Z =

¢(cz)]). By lemma 2.2.8, lemma 2.7.3, lemma 2.7.4 and lemma 2.4.12a,
p' =1.p", v} = \z.u[Z := c(cz)] and uy —>5,7 . Then, hlr(u') =513
hir(u)) U hlr(ug) U {(1,n)} C hlr(A,Z.uq[Z = c( Z)]) U hlr(ug) U

{(1,n)} =513 hlr(u).

— Or p = 2.p’ such that p’ € RE". So v/ = (N, Z.ua[Z := c(cf)])u'2
such that uz %4, 1. By IH, hir(ub) C hir(us). So, bis(u)
hlr(ApZ.uy [T = c(c:f)])Uhlr(uZ)U{ﬂ n)} C hlr(\,Z.u1[Z := ¢(c E)])U
hlr(ug) U {(1,n)} =512 hlr(u).

e Let u = cujus. Because u gﬁn v/, by lemma 2.2.8 and lemma 2.5:
— Either p = 1.2.p" such that p’ € ng So ' = cujug such that

Uy iﬁn wy. By IH, hlr(u}) C hlr(u1). So, hilr(uw’) =513 hlr(u}) U
hlr(ug) C hlr(ug) Uhlr(ug) =513 hir(u).

— Or p = 2.p’ such that p’ € Rg;’ So u' = cujufy such that ug ﬂl’ﬁn
uh. By IH, hlr(ub) C hlr(ug). So, hlr(w’) =%13 hir(u;) U hlr(uh) C
hlr(uy) U hlr(ug) =%13 hir(u).
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e Let u = cuy. Because u &5,7 v/, by lemma 2.2.8 and lemma 2.5 p = 2.p’

such that p’ € R, So v/ = cu} such that u gﬂn u}. By IH, hlr(u}) C
hir(uy). So, hir(u’) =513 hlr(u}) C hlr(uy) =513 hlr(u). O

Lemma 6.11. hlr(u;[Z := c¢(cuz)]) C hlr((AnZ.uq1 [T := c(eT)])ug). O

Proof. We prove the lemma by induction on the size of u; and then by case on
the structure of u;.

e Let u; € V. Either uy = # then hlr(u;[Z := c(cug)]) = hlr(c(cug)) =413
hir(ug) C814 hir((A,Z.u1[Z := c(cZ)])ua). Or u; =y # Z then hlr(u;[Z :=
c(cuz)]) = hlr(ug) C814613 hir((\,z.u1 [T = c(cT)])uz).

o Let up = A\pgu)[g := ¢(cg)]. Then hlr(uq[Z := ¢(cusg)]) = hlr((A,g.ui[y ==
c(cg)))[@ = ccun)]) = hlr(Ap v [7 = c(cug)][g := c(cg)]) =012 hir(uj[z :=
c(cuz)]) CH hir((\, 2.4 [Z = c(cZ)])uz) =513 hir(u} )Uhlr (ug)U{(1,n)} =513
hlr(\,g.u} [y = c(cg)])uhlr(ug)u{<l n)} =513 hir((\,Z.u1 [Z == c(cT)])uz)
such that g ¢ fv(uz) U

e Let uy = A\pg.wy such that § ¢ fv(w). Then, hir(ui[Z = c(cug)]) =
hir(Apg.(wg) [z = c(cuz)]) =513 hlr((wy)[Z = c(cug)]) U {(2,m)} CIH
hlr(()\ngf.(ng)[ﬁc = c(cz)])ug)U{(2,m)} =513 hir(wy)Uhlr(ug)U{{1,n), (2,m)} =613
hir((AnZ.(Am§.w) [T := c(cZ)])ug) such that § & fv(uz) U {Z}.

o Let uy = cujul. Then, hir(ui [T := c(cug)]) = hlr(cuf[Z := c(cu)|uf [z =
c(cuz)]) =513 hir(u}[Z := c(cug)])Uhlr (uf [z := c(cuz)]) CHH hlr(()\ T[T =
c(ex)))u )Uhlr(()\nx uf [z = c(c®)])ug) =413 hir(u}) Uhlr(uf) Uhlr(ug) U
{{(1,n)} =513 hlr((\,Z.(cujuy)[Z := c(cz)])us).

o Let u; = vuf (such that v = A\, g.wg and § & fv(w) or v = A\, g.u}[y :=
c(cy)]). Then, hlr(us [z := c(cuz)]) = hlr(v[Z := c(cug)|u[Z = c(cuz)]) =51

hlr(v[Z := c(cug)]) U hlr(uf[Z := c(cuz)]) U {(1,m)} CIH hilr((\,z.0[7F :
c(cz)])ug) Uhlr((\ 2y [Z = c(cZ)])uz) U{(1,m)} =513 hir(v) Uhlr(u ’)
hir(uz) U {(1,n), (1,m)} =513 hir((\,z.(vu))[Z := c(cZ)])us).

e Let u; = cujf. Then, hlr(u1[Z := ug]) = hlr(cuj[z = c(cug)]) =513
hir(u} [z = c(cug))) CIH hir((A,Z.ui[Z = c(cx)])ug) =513 hir(u)) U
hlr(uz) U {(L, )} =12 hir((Anz.(cui) [z := c(cT)])us). O

Lemma 6.12. If p € RY" then headlam(t|,[Z := ¢(cZ)]) = headlam(¢[,). O
Proof. We prove this lemma by induction on the structure of ¢.

e Let t € V then by lemma 2.5, Rf” =0

e Let t = A\, y.t’ then by lemma 2.5:

— Either p = 0if ¢ = t"y and y & fv(t”). Then headlam(t|,[Z
¢(cz)]) = headlam(t[Z := ¢(cZ)]) = headlam(A,y.t"[Z = c(cT)]y) =
(2,n) = headlam(t) such that y & {c,Z}.
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— Or p = 1.p’ such that p’ € Rf,". Then headlam(¢|,[Z = ¢(cZ)]) =
headlam(#'|,/[Z := c(cz)]) ='# headlam(t'|,/) = headlam(¢|,).

o Let t = t1t9 then by lemma 2.5:

— Either p = 0 if t; = A\yy.to. Then headlam(t|,[Z := c(cZ)]) =
c

=
@
o
=
o
g8
=~
Kl
Il
o
—~
o
S]]
=
Il
=
o
&
=
o
=
—
—~
>
3
<@
~
[=)
Kl
I
o
—
o
s
=
=
(V)
S]]
I
2
Kl
=

(1,n) = headlam(t) such that y ¢ {c,z}.

— Or p = 1.p’ such that p’ € RZ". Then headlam(¢|,[Z = c(cZ)]) =
headlam(t;], [ := c¢(c¥)]) = headlam(t;],/) = headlam(t|,).

— Or p = 2.p’ such that p’ € Rg". Then headlam(¢|, [z = ¢(cZ)]) =
headlam(t2|, [ := ¢(cZ)]) = headlam(ts|,) = headlam(t|,).

Lemma 6.13. Lett € A and F C Rtﬁn.
o Ift =x then headlamred (¢, F) = hlr(t) = @.

o Ift = \,x.ty then if t € RP" then hlr(t) = hlr(ty) U {(2,n)} else hlr(t) =
hlr(tl).

o Ift =MNx.t1 andF1 ={p | l.p € F} thenif0 € F then headlamred(t, F) =
headlamred(t1, F1)U{(2,n)} else headlamred(t, F) = headlamred (¢, F7).

o Ift = tity then if t € RP" then hlr(t) = hlr(t;) U hlr(t2) U {headlam(t)}
else hlr(t) = hlr(t1) U hlr(¢a).

o Ift =tite, F1 = {p | lp € F} and Fo = {p | 2.p € F} then if
0 € F then headlamred(t, F) = headlamred (¢, F; ) Uheadlamred(to, Fo) U
{headlam(t)} else headlamred(t, F) = headlamred(¢;, F;)Uheadlamred(t2, F2).

o Ift = \ZT.t1[T := c(c)] then hlr(¢) = hlr(¢y).
o Ift=c"(t1), then hlr(¢) = hlr(¢y). O

Proof. By definition hlr(t) = {(i,n) | 3p € R". headlam(t|,) = (i,n)} and
headlamred(t, F) = {(i,n) | Ip € F. headlam(¢|,) = (i,n)}. We prove the frist
three items of this lemma by induction on the size of ¢ and then by case on the
structure of ¢.

o Let t =
hlr(x)

By lemma 2.5, F = RP" = &, then headlamred(z,F) =

xZ.
.
e Lett= )\nl'tl

— Let t € RP" then t; = tox such that = ¢ fv(tg).

% Let (j,m) € hlr(t) then there exists p € R such that headlam(t|,) =
(j,m). By lemma 2.5:
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- Either p = 0, so (j,m) = headlam(t|y) = headlam(t) =
(2,n).
- Orp =1.p’ such that p’ € Rfln. Then, (j, m) = headlam(t|,) =
headlam(¢1],/). So (j, m) € hlr(¢1).
x Let (j,m) € hlr(t1) U {(2,n)}.
- Either (j,m) € hlr(¢t;). Then there exists p € Rf:’ such
that headlam(t;|,) = (j,m). By lemma 2.5, 1.p € RY" and
(4, m) = headlam(t1],) = headlam(t|; ). So (j,m) € hlr(¢).
- Or (j,m) = (2,n). Bylemma 2.5, 0 € R/ and headlam(t|) =
headlam(t) = (2,n). So (j,m) € hlr(¥).
~ Let t ¢ RP.
% Let (j,m) € hlr(t) then there exists p € R such that headlam(¢|,) =
(j,m). By lemma 2.5, p = 1.p’ such that p’ € R'fln. Then,
(4, m) = headlam(t|,) = headlam(t1],/). So (j,m) € hlr(t1).
x Let (j,m) € hlr(¢;) then there exists p € Rtﬁl" such that headlam(t1],) =
(j,m). By lemma 2.5, 1.p € RY" and (j,m) = headlam(t1,) =
headlam(¢[1.,). So (j,m) € hlr(¢).

o Let t =Ayzty and Fy ={p | 1.p € F}.

— Let 0 € F then t € RP".

* Let (j,m) € headlamred(¢, F) then there exists p € F such that
headlam(¢|,) = (j,m). By lemma 2.6:
- Either p = 0, so (j,m) = headlam(t|p) = headlam(t) =
(2,n).
- Or p = 1.p’ such that p’ € F;. Then, (j, m) = headlam(t|,) =
headlam(t1]p/). So (j, m) € headlamred(t;, F1).
x Let (j,m) € headlamred(t;, F1) U {(2,n)}.
- Either (j,m) € headlamred(t;, ;). Then there exists p €
F1 such that headlam(ti]|,) = (j,m). So, 1.p € F and
(4, m) = headlam(t1],) = headlam(t|; ,). Hence, (j,m) €
headlamred(t, F).
- Or (j,m) = (2,n). Because 0 € F and headlam(t|y) =
headlam(t) = (2,n) then (j,m) € headlamred(¢, F).
— Let 0 € F.

x Let (j,m) € headlamred(t, F) then there exists p € F such that
headlam(¢|,) = (j,m). By lemma 2.6, p = 1.p’ such that p’ €
Fi. Then, (j,m) = headlam(t|,) = headlam(¢1],/). So (j,m) €
headlamred(t1, F1).

* Let (j,m) € headlamred(t;,F1) then there exists p € F; such
that headlam(t1],) = (j,m). By lemma 2.6, 1.p € F and
(4, m) = headlam(t1|,) = headlam(t|; ). So (j,m) € headlamred(t, F).
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o Let t = tqts.

— Let t € RP" then t; = A\,x.to. So (1,n) = headlam(t).
* Let (j,m) € hlr(t) then there exists p € R such that headlam(t|,) =
m. By lemma 2.5:

- Either p = 0, so (j,m) = headlam(t|y) = headlam(t) =
(1,n).

- Orp =1.p’ such that p’ € Rfln. Then, (j, m) = headlam(t|,) =
headlam(¢1],/). So (j, m) € hlr(¢1).

- Orp = 2.p’ such that p’ € Rtﬁ:. Moreover, (j,m) = headlam(t|,) =
headlam(¢2],/). So (j, m) € hlr(¢z).

* Let (j,m) € hlr(t1) Uhlr(t2) U {(1,n)}.

- Either (j,m) € hlr(¢t;). Then there exists p € Rfln such
that headlam(t,|,) = (j,m). By lemma 2.5, 1.p € RY" and
(4, m) = headlam(t;|,) = headlam(t|; ,). So (j,m) € hlr(¢).

- Or (j,m) € hlr(tz). Then there exists p € Rtﬁ;’ such that
headlam(ts|,) = (j,m). By lemma 2.5, 2.p € RY" and
(4, m) = headlam(t2|,) = headlam(t|2 ). So (j, m) € hlr(?).

. Or (j,m) = (1,n). By lemma 2.5,0 € R?" and headlam(t|y) =
headlam(t) = (1,n). So (j,m) € hlr(¢).

— Let t ¢ RP".
% Let (j,m) € hlr(t) then there exists p € R?" such that headlam(¢|,) =
(j,m). By lemma 2.5:

- Either p = 1.p’ such that p’ € Rfln. Moreover, (j,m)
headlam(t|,) = headlam(t|,/). So (j,m) € hlr(¢;).

- Or p = 2.p’ such that p’ € Rfj. Moreover, (j,m) = headlam(t|,) =
headlam(¢2],/). So (j, m) € hlr(ts).

* Let (j,m) € hlr(t1) Uhlr(ts).

- Either (j,m) € hlr(t;). Then there exists p € Rfln such
that headlam(t1|,) = (j,m). By lemma 2.5, 1.p € R and
(4, m) = headlam(¢1|,) = headlam(t|; ,). So (j,m) € hlr(¢).

- Or (j,m) € hlr(tz). Then there exists p € Rf;’ such that
headlam(tz],) = (j,m). By lemma 2.5, 2.p € RY7 and

(4, m) = headlam(ts|,) = headlam(t|2.,). So (j,m) € hlr(¢).
o Let t =t1to, Fy ={p|lpe F}and Fo ={p|2.p e F}.
— Let 0 € F then t € RP",

* Let (j,m) € headlamred(¢, F) then there exists p € F such that
headlam(¢|,) = m. By lemma 2.6:

- Either p =0, so (j, m) = headlam(t|p) = headlam(t).
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- Or p = 1.p’ such that p’ € F;. Then, (j, m) = headlam(t|,) =
headlam(t1],/). So (j, m) € headlamred(¢1, F1).

- Or p = 2.p’ such that p’ € Fy. Then, (j, m) = headlam(t|,) =
headlam(t2],/). So (j, m) € headlamred(ta, F3).

* Let (j,m) € headlamred (¢, F; )Uheadlamred(te, F2)U{headlam(t)}.

- Either (j,m) € headlamred(¢;, 7). Then there exists p €
F1 such that headlam(t1],) = (j,m). So, 1.p € F and
(j,m) = headlam(t;|,) = headlam(t|;,). Hence, (j,m) €
headlamred(t, F).

- Or (j,m) € headlamred(tz, F2). Then there exists p € F;
such that headlam(ts|,) = (j,m). So, 2.p € F and (j,m) =
headlam(¢2],) = headlam(¢|2.,). Hence, (j,m) € headlamred(t, F).

- Or (j,m) = headlam(t). Because 0 € F and headlam(t|o) =
headlam(t), then (j,m) € headlamred(¢, F).

— Let 0 & F.
* Let (j,m) € headlamred(¢, F) then there exists p € F such that
headlam(¢|,) = (j,m). By lemma 2.6:

- Either p = 1.p" such that p’ € F,. Moreover, (j,m) =
headlam(¢|,) = headlam(t|,/). So (j,m) € headlamred(t1, F1).

- Or p = 2.p’ such that p’ € F». Moreover, (j, m) = headlam(t|,) =
headlam(t2]p/). So (j, m) € headlamred(ts, F2).

* Let (j,m) € headlamred (1, F1) U headlamred(te, F2).

- Either (j,m) € headlamred(¢;,F7). Then there exists p €
F1 such that headlam(t41],) = (j,m). So, 1.p € F and
(j,m) = headlam(t|,) = headlam(t|;,). Hence, (j,m) €
headlamred(t, F).

- Or (j,m) € headlamred(ts, F2). Then there exists p € Fa
such that headlam(ts|,) = (j, m). So, 2.p € F and (j,m) =
headlam(¢2],) = headlam(¢|2.,,). Hence, (j, m) € headlamred(t, F).

Let t = A\p@.11 [T := ¢(cT)).

Let (j,m) € hlr(t) then there exists p € RY" such that headlam(t|,) =
(j,m). By lemma 2.7.3 and lemma 2.7.4, p = 1.p’ such that p’ € Rfln.
Moreover, (j,m) = headlam(t|,) = headlam(t;[z := c(cz)]|,/) =*72
headlam(t1 |, [Z := c(cz)]) =%12 headlam(¢1],/). So (j,m) € hlr(t1).

Let (j,m) € hlr(¢;) then there exists p € R?l" such that headlam(t1|,) =
(j,m). By lemma 2.7.3 and lemma 2.7.4, 1.p € RY". Moreover, (j,m)
headlam(t1],) =%!? headlam(t1|,[Z := c(cz)]) =272 headlam(t;[z =
c(cz)]|p) = headlam(t|1.,). So (j, m) € hlr(¢).

Let t = ¢™(t1). We prove that hlr(¢) = hlr(¢;) by induction on n.

Let n = 0 then it is done.
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e Let n = m + 1 such that m > 0 then hlr(¢) =513 hlr(¢™(¢;)) =" hlr(t;).

O
Lemma 6.14. Ift; Cto then hlr(t1) C hlr(ts). O
Proof. We prove the lemma by induction on the structure of ¢s.
e Let t5 = z, then it is done because by definition t; = x.
e Let to = \,x.tg then by definition:
— Either t; = t5 so it is done.
— Or t; Ctg. Then hlr(t;) CH hlr(tg) €413 hlr(ts).
e Let ty = t3ty then by definition:
— Either t1 = t9 so it is done.
— Or t; C t3. Then hlr(t;) CHH hlr(t3) €613 hir(t).
— Or t; C ty4. Then hlr(t;) €T hir(ty) €512 hir(t).
O

Lemma 6.15. Let M € A, where ¢ ¢ tv(M), and F C R’]B\;’ Then:

(M, F) =50 (M',F') < 3N € V(M,F). 3N € ¥¢(M', F'). N =5, N’
and

(M,F) —=%,q (M',F) < YN € W(M,F). IN' € W(M', F'). N -5 N’

O

Lemma 6.16. Let M € A, such that ¢ & fv(M) and F; C Fo C Rﬁ;] If
(M, F1) —pna (M',F]) then there exists Fy C R%’/ such that Fy C F4 and
(M, Fa) —pna (M', F3). 0
Lemma 6.17 (confluence of the fn-developments). Let M € A such that ¢ &
tv(M). If M D0 My and M B0 My, then there exist | C RYY, Fy C RAT
and Mz € A such that M, ﬂﬁnd Ms3 and My ﬁgnd Ms. O]

Notation 6.18. Let ¢ ¢ fv(M). M —y M' <= 3F,F (M, F) =%,
(M, F). 0

Lemma 6.19. Let ¢ & fv(M). YP € U¢(M, ). RS = 2. O
Lemma 6.20. Let ¢ ¢ fv(M)Uv(N) and © # c¢. VP € ¥¢(M,@). VQ €
V(N,2). Rpl,_o = 2- O

Lemma 6.21. Letc & fv(M). Ifp € R?]], P e ve(M,{p}) and P —p, Q then
Ry =@ O

Lemma 6.22. Let ¢ & fv(M). If M L5, M’ then (M, {p}) —pna (M',@). O
Lemma 6.23. —3 =—7. O
Lemma 6.24. A C CR?", O
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7 Conclusion

Reducibility is a powerful method and has been applied to prove using a single
method, a number of properties of the A-calculus (Church-Rosser, strong nor-
malisation, etc.). This paper studied two reducibility methods which exploit
the passage from typed (in an intersection type system) to untyped terms. We
showed that a first method given by Ghilezan and Likavec [GL02] fails in its
aim and we have only been able to provide a partial solution. We adapted a
second method given by Koletsos and Stavrinos [KS08] from 3 to SI-reduction
and we generalised it to Sn-reduction. There are differences in the type systems
chosen and the methods of reducibility used by Ghilezan and Likavec on one
side and by Koletsos and Stavrinos on the other. Koletsos and Stavrinos use
system D [Kri90], which has elimination rules for intersection types whereas
Ghilezan and Likavec use AN and AN with subtyping. Moreover, Koletsos and
Stavrinos’s method depends on the inclusion of typable A-terms in the set of
A-terms possessing the Church-Rosser property, whereas Ghilezan and Likavec’s
method (the working part of their method) is to prove the inclusion of typable
terms in an arbitrary subset of the untyped A-calculus closed by some properties.
Moreover, Ghilezan and Likavec consider the VAR(P), SAT(P) and CLO(P)
predicates whereas Koletsos and Stavrinos use standard reducibility methods
through saturated sets. Koletsos and Stavrinos prove the confluence of develop-
ments using the confluence of typable A-terms in system D (the authors prove
that even a simple type system is sufficient). The advantage of Koletsos and
Stavrinos’s proof of confluence of developments is that strong normalisation is
not needed.
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A Proofs of section 2

Lemma 2.2 . 1 We prove the lemma by induction on p.

— Let p =0.
Let M 25, M’ then either M = (Az.P)Q and M’ = Plz := Q)]
and so M gg M’'. Or M = Ax.M’z such that © ¢ fv(M’) and so
M, M
Let M —, OM’ then M = Xx.M'z such that = ¢ fv(M’) and so
M2 M.
Let M —3 OM’ then M = (Az.P)Q and M’ = Pz := Q)] and so
ML M.

— Let p=1.p".
Let M %5, M’ then either M = \z.N, M’ = Az.N" and N %5, N'.
By IH, N %g N or N %, N'. So M Lsg M or M 2, M'. Or
M =PQ, M'=P'Qand P %, P'. By IH, P %5 P' or P %, P
So M Lg M or M L5, M'.
Let M %, M’ then either M = A\z.N, M’ = Az.N’ and N %, N'.
By IH, N %5, N, so M Ls, M'. Or M = PQ, M’ = P'Q and
P, P.ByIH, P 2gs, P so M Lpg, M.
Let M 25 M’ then either M = Az.N, M’ = \z.N" and N %5 N'.
By IH, N %5, N, so M 25, M. Or M = PQ, M’ = P'Q and
PLsP. By, Py, P so M L, M.

— Let p=2.p/.
Let M L, M’ then M = PQ, M’ = PQ' and Q Y s Q. By IH,
QLsQ orQ%, Q. SoM Ly M or M5, M.
Let M %, M’ then M = PQ, M’ = PQ' and Q %, Q'. By IH,
Qs Q' so M Lg, M.
Let M %5 M’ then M = PQ, M' = PQ' and Q %5 @'. By IH,
Q gﬂn Q/, so M ABU M/.

2 We prove this lemma by induction on the structure of M;.

— Either M; = z, then fv((Ax.M1)Ms3) = v(Msy) = fv(M; [z := Ms)).

If (Az.M7p)Ms € AT then My = M|z := M) € AL

— Or My = A\y.My then fv((Az.\y. M) M) = fv((Az. M) M2)\ {y} =1
tv(Mylz := Ma])\{y} = tv(M [z := M>]) such that y & fv(Ma)U{z}.
If (Az.M\y.Mo)Ms € Al then My, My € Al and x,y € fv(Mp). So
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(Az.Mo)My € AL By IH, Moz := Mz € AL. Hence, M|z := M) €
AT such that y & tv(Ms) U {z}.

— Or M; = PQ then fv((Az.PQ)Ms) = fv(A\z.P) MaUfv((A\z.Q) Mg) =1
tv(Plz := Ms]) Utv(Q[z := M3]) = tv((PQ)[x := Ma)).

3. We prove the lemma by induction on the length of the reduction M —
M.
— If M = M’ then fv(M) = fv(M’)
— Let M —p, M" —g, M'. By IH, fv(M) C fv(M"). By definition

there exists p such that M” Y5, M’. We prove that fv(M") C
fv(M’) by induction on p.
* Let p=0.

- either M" = (Ax.M71)Ms and M’ = M [x := My]. We prove

that fv(M') C (fv(My)\{z})Utv(Mz) = fv(M") by induction

on the structure of M;.

1. Let My = y. If y = & then M’ = M, and fv(M') =
fv(M"”). If y # x then M’ = y and tv(M') = {y} C
) UR(M) = B (0"

2. Let My = Ay.M{ then M’ = A\y.M{[xz := Ms] such that y &
fv(Ms) U{z}. By IH, fv(M][z := Mas]) C fv((Ax.M7)Ms).
Hence, fv(M') = fv(M{[z := M2])\{y} C fv((Az. M) Ms)\
{y} = (VM) \ {z,y}) U (fv(M2) \ {y}) = fv(M").

3. Let My = M{M{ then M’ = Mi[z = M]M{'[z =
Ms). By IH, tv(M{[z = M;]) C fv((Az.M{)M;) and
fv(M{' [z := Ms)) C fv((Az.M]')Ms). Hence, fv(M')
fv(Milx := Ms]) Utv(M{'[x := Ms]) C fv((Az.M7)M>)
(A M{)My) = ((fv(MY) U fv(MJ)) \ {}) U (M)
tv(M").

- Or M"” = Xx.M'z such that « ¢ fv(M’'), so fv(M") =

fv(M").

+ Let p = 1.p’ then either M” = Az.My, M’ = Az.Ms and M; %5,
M,. By IH, fv(M;) C fv(Ms), so tv(M") = fv(My) \ {«} C
fv(M3) \ {z} = tv(M’). Or M" = M1 My, M' = M{M> and
My B, My, By IH, fv(M;) C fv(M]), so fv(M") = fv(M;) U
fv(Ms) C fv(M7) U fv(Msy) = fv(M').

s Let p = 2. then M" = MMy, M’ = MM} and My %,
M. By IH, fv(Ms3) C fv(M}), so ftv(M") = fv(My) U tv(Ms) C
tv(My) Utv(My) = tv(M").

mcl

4. We prove the lemma by induction on the length of the reduction M —7;
M.

— If M = M’ then fv(M) = fv(M’)
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— Let M —%; M" —g; M. By TH, fe(M) = fv(M") and if M € Al
then M” € AL By definition there exists p such that M” 2 5; M’

We prove that fv(M") = fv(M’) and that if M” € Al then M’ € Al
by induction on p.

x Let p =0 then M = (A\x.My)M3 and M’ = M [x := Ms] such
that x € fv(My). So, by lemmma 2.2.2, fv(M') = fv(M") and if
M" € Al then M’ € AL

* Let p = 1.p’ then either M" = \z.M,, M’ = \x.M5 and M, &m
M. By IH, fv(M;) = fv(Ms) and if My € Al then M, € Al so
tv(M") = tv(My)\ {z} = tv(M2)\ {z} = fv(M’) and if M € AT
then = € fv(M;) = fv(Ms) and so M’ € AL. Or M" = M; My,
M' = Mj{My and M; %5, Mj. By IH, fv(M;) = fv(M{) and
if My € AI then Mj € Al so fv(M") = fv(My) U fv(Ms) =
tv(M]) Ufv(Ms) = fv(M') and if M” € Al then M’ € AL

* Let p = 2.p’ then M" = My My, M’ = My M} and My %5, Mj.
By IH, fv(Ms) = fv(M}) and if My € Al then M} € Al so
fv(M") = tv(My) U tv(Ms) = fv(My) U tv(ML) = fv(M') and if
M" € Al then M’ € AL

5. =) Let Aa.M gﬁn P. We prove the result by case on p. Either p =0
and M = Pz such that z & fv(P). Or p = 1.p/, P = Mz.M’ and

M s, M.
&) If P = Ao.M’ and M — 5, pM'. So, \v.M =25, P and Az.M — g, P.

If M = Px and x ¢ fvP then Ax.M = A\z.Pzx ggn P,so \z.M —g,
P.

6a. If k = 0then P = (Az.M)N; N ... N, isadirect r-reduct of (Az.M)NyNy ...

absurd. So k > 1. Assume k = 1, we prove P = M|z := Ny|N;...N,, by
induction on n > 0.

— Let n = 0 and r = BI. By definition there exists p such that
(Az.M)Ny 2531 P. We prove the result by case on p.
% Let p =0 then P = M|z := No| and = € fv(M).
x Let p = 1.p’ then \z.M Lﬁ[ Az.M' and P = (Ax.M')Ny is a
direct BI-reduct of (Ax.M )Ny, absurd.
x Let p = 2.p’ then Ny %s; N’ and P = (Az.M)N' is a direct
BI-reduct of (Az.M)Ny, absurd.

— Let n = 0 and r = fBn. By definition there exists p such that
(Ax.M)Ny &51 P. We prove the result by case on p.

* Let p =0 then P = M|z := Ny|.
x Let p = 1.p’ then Az.M ﬂ’ﬁn Q@ and P = QNy. By lemma 2.2.5:
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- Either p’ = 1.p"”, Q = Ax.M' and M p—>ﬁgn M’'. Hence P =
(Ax.M'")Ny is a direct Bn-reduct of (Ax.M )Ny, absurd.
- Orp=0,M=0Qzx and z ¢ fv(Q). Hence, P = QNy =
Mz := Np.
+ Let p = 2.’ then No Zogy N’ and P = (Az.M)N' is a direct
On-reduct of (Ax.M)Ny, absurd.
— Let n = m + 1 where m > 0. By definition there exists p such that
(Ax.M)Ny ... Ny 2. P. We prove the result by case on p.

x Either p = 1.p" then (Az.M)Ny ... Ny, ﬂ;,. Q and P =QNp41.
- If @ is a direct r-reduct of (Az.M)Ny...N,, then P is a
direct r-reduct of (Ax.M)Ny ... Np41, absurd.
- If @ is not a direct r-reduct of (Ax.M)Ny...N,, then it is
done by IH.
% Orp = 2./ then Ny p Ny and P = (\w.M)No ... NyuN' oy
which is a direct r-reduct of (Az.M)Ny ... Npyi1, absurd.

6b. By 6a, £ > 1. We prove the statement by induction on k > 1.

— If £k =1 then we conclude by 6a.
— Let (Az.M)Ny...N, =& Q —, P.

x If Q is a direct r-reduct of (Az.M )Ny ... N, then Q = (Az. M")N{ ..

such that M —* M’ and Vi € {0,...,n}, N; —F N/. Since P
is not a direct r-reduct of (Az.M)Np...N,, P is not a direct
r-reduct of Q. Hence by 6a, P = M'[z := N}|N{...N/,.

* If @ is not a direct r-reduct of (Az.M)Np...N,, then by IH,
there exists a direct r-reduct (Az.M")N{ ... N}, of (Az.M)Ny ... N,
such that M'[z := NJ]N{... N} —*Q —, P.

7. If P is a direct r-reduct of (Az.M )Ny ... N, then P = (Az.M')N{ ... N/
such that M —* M’ and Vi € {0,...,n},N; —* N/. So P —, M'[x :=
N{IN{...N] (if r = I, note that x € fv(M’) by lemma 2.2.4) and
Mz := No|Ny...N, —F M'[x := NJ|Nj...N, . If P is not a direct
r-reduct of (Ax.M)Ny... N, then by lemma 6.6b, there exists a direct r-
reduct, (Az.M')N{ ... N}, such that M —} M’ and Vi € {0,...,n}, N; —
N/, of (Ax.M)Ny...N,. We have M[z := Ny|Ny...N,, =% M'[z =
N{IN{...N] —* P.

8 We prove this lemma by induction on ths structure of p.

— Let p = 0 it is done by definition.
— Let p = 1.p’. Then:

+ Either M = Az.M; =5, Ae.M] = M’ such that M, %, M]. By
IH, p’ € Ry,,- So p € Ry, If p € Ry, then M|, = My|,» € R".

By IH, there exists M) such that M; %, M{, so M 2, \z.M].
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+ Or M = MMy “2, M{M, = M’ such that M; %, M. By IH,
p' € Ry, Sop € Ry If p € Ry, then M|, = M|, € R". By

IH, there exists M] such that M; LN, M, so M LN M{Ms,.
— Let p = 2.p'. Then, M = MM, %, My M}, = M’ such that M, %,
M. By IH, p" € RYy,. So p € Ry, If p € RYy, then M|, = Mal, €
R”. By IH, there exists M} such that My 2, M}, so M X5 M, M,
9 We prove this lemma by induction on ths structure of p.
— Let p = 0 it is done by definition.

— Let p = 1.p’. Then either M = \z.M’ 1'—p>lr Ax.M{ = M, such that
M’ P\, M. By definition, My = Az.Mj and M’ %, M. By IH,
M| = M}, so My = M. Or M = M'N ~%, M!N = M such that
M’ P5, M]. By definition, My = MN and M’ %, Mj. By IH,
M| = M}, so My = Ms.

— Letp = 2.p'. Then M = NM' "%, NM! = M, such that M’ 2, M.

By definition, My = NM} and M’ L, M. By IH, M{ = M}, so
My = Ms. O

Lemma 2.4 .
1. We prove the lemma by induction on the structure of M.

o Let M =y.
— Either y = z then M|z := ¢(cx)] = ¢(cx) # x and for any N,
Mz := c¢(cx)] = ¢(cx) # Nz because cx # x.
— Or y # x then M|z := ¢(cx)] = y # x and for any N,
Mz :=c(cx)] =y # Nz.
e Let M = A\y.P. Then, Mz := c(cx)] = M\y.Plz := ¢(czx)] # x (such
that y € {c,z}) and for any N, M|z := ¢(cx)] # Nz.
o Let M = PQ. Then, Mz := c(cz)] = Pz := c(cx)]Q[z := c(cx)] #
x. Assume M|z := c¢(cx)] = Nz, so Q[z := ¢(cx)] = x and by IH,
absurd.

2. We prove this lemma by induction on the structure of M.

o Let M = 2.

— Either z = y then M[y := ¢(cx)] = ¢(cx) # x and for any N,
My := ¢(ex)] = ¢(ex) # Nx because cx # .

— Or z # y then M[y := ¢(cx)] = z # = by hypothesis and for any
N, My :=c¢(cx)] = z # Nz.
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Let M = Az.P. Then, My := ¢(cx)] = A\z.Ply := ¢(cx)] # z (such
that y € {c,x,y}) and for any N, M[y := c¢(cz)] # Nzx.

Let M = PQ. Then, My := ¢(cx)] = Plz := c¢(cx)]|Q[z := c(cx)] #
x. Assume My := c¢(cx)] = Nz, so Qy := c¢(cx)] = x and by IH,
absurd.

. By cases on the derivation of M € M..

. By cases on the structure of M using 3.

. By cases on the derivation of M N € M..

. We prove this result by induction on n.

If n = 0 then it is done.

Let n = m+ 1 such that m > 0. By lemma 2.4.5, ¢™(M) € M, then
by IH, M € M..

. By cases on the derivation of Azx.P € An..

. By cases on the derivation of Ax.P € Al,.

. We prove the lemma by induction on the structure of M € M..

Case (R1)1. Either M = z then M[z := N] = N € M.. Or M =
y # x then M[z:=N] =M € M..

Case (R1)2. Let M = My.P € Al. such that y # ¢, P € Al. and
y € tv(P). We have Mz := N] = A\y.M[z := N] such that y ¢
fv(N)u{z}. By IH, P[z := N] € Al so M[z := N] € Al.

Case (R1)3. Let M = A\y.Py := ¢(cy)] € An. such that y # ¢ and
P € An.. By IH, P[z := N] € An.. So by (R1).3 Mz := N| =
Ay.Ply == c(ey)][z := N] = My.Plz := Nlly := c(cy)] € An, such
that y & fv(N) U {z}.

Case (R1)4. Let M = A\y.Py such that Py € An., y ¢ tv(P) U {c}
and P # c¢. We have M|z := N| = A\y.(Py)[z := N] )\ [ =
Nly, such that y ¢ fv(N) U {z}. By IH, Pz := Ny . By
lemma 2.4.4, Plx := N| # c¢. Hence, because y & fv(P [x NJ),
Mz := N] € An.

Case (R2) Let M = ¢M;Ms such that My, My € M.. Then by IH,
M|z := NJ], Mz := N] € M,.. Hence, cM;[x := N|Ms[xz := N] €
M.

Case (R3) Let M = M; M, such that My, My € M, and M; is a
A-abstraction. Then by TH, M; [z := NJ|, M|z := N] € M,. Hence,
M [z := N]Ms[z := N|] € M., since My[z := N] is a A-abstraction.

Case (R4) Let M = ¢P such that P € An.. Then by IH, P[z := N] €
An. and by (R4), Mz := N] € An..
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10. By case on the structure of M.

o let M V.

— Either M = z then, M[z := ¢(cx)] = ¢(cx). Hence, c(cx) # y,
c(cx) # Py since cx # y, c(cx) # Ay.P and c(cx) # (A\y.P)Q. If
Mz := ¢(cx)] = PQ then P = ¢ and Q = cz.

— Or M = z # x then M[z := c¢(cx)] = z. Hence, if z = y then
M =y, z # Py, z # M\y.P, z # PQ and z # (\y.P)Q.

o Let M = Az.M’ then Mz := c(cx)] = Az.M'[x := c¢(cx)], where
z & {x,c}. Hence, \z. M'[z := c(cx)] # y, Az.M'[z := c(cx)] # Py,
Az.M'[z = c(cx)] # PQ and A\z.M'[z := c(cx)] # (\y.P)Q. Let
Az.M'[x := c(ex)] = Ay.P. By a-converions, assume y = z. So
M'[z := c(cz)] = P.

o Let M = MjM, then Mz := c¢(cx)] = Mi[z := c(cx)] Mz =
c(cx)]. Hence, Mz := c(cx)]|Mz[z = c(cx)] # y and Mz =
c(cx)|Ms[z := e(cx)] # Ay.P. If My[z := c(cx)| Mo [a: :=c(cx)] = Py
then P = Mz := c¢(cx)] and Mslx := c(cx)] = y. So My = y. If
Mz = c(cx)|Ma[x := c(cx)] = PQ then P = M|z := ¢(cx)] and
Q = Ms[z = c(cx)]. If Myi[z = c(cx)|Malz = c(ex)] = (A\y.P)Q
then Ay.P = Mz := ¢(cx)] and Q = Mz := c(ex)]. So My =
Ay.My and P = My[z := ¢(cz))

~

11. (a) By definition, z # ¢. By lemma 2.4.7, either P = Nz where Nx €
An. or P = N[z := ¢(cx))] where N € An.. In the second case since
by (R4) c(cx) € An., we get by lemma 2.4.9 that N[z := c(cx))] €
Ane.

(b) By lemma 2.4.1 and lemma 2.4.7.

12. (a) =) We prove the lemma by induction on the structure of p.
e Let p =0 then:

— either M[z := c(cz)] = (\y.P)Q and M’ = P[y := Q]. By
lemma 2.4.10, M = (\y.P")Q', P = P'[x := c¢(cz)] and
Q = Q'[x := ¢(cx)] such that y & {¢,z}. So M' = P'[y :=
Q& = c(cx)] and M S5, Ply = Q).

— Or Mz := c(cx)] = Ay.M'y such that y & fv(M’). By
lemma 2.4.10, M = Ay.N and M'y = N[z := c(cx)] such
that y € {z,c}. Again by lemma 2.4.10, N = N’y and
M’ = N[z := c¢(cx)]. Because y ¢ fv(M’), we obatin
y € fv(N') and so M = \y.N'y E)ﬁn N'.

e Let p=1.p’. Then:

— Either M[z := ¢(cx)] = M\y.P 19]3/5,7 Ay.P' = M’ such that

P—>B,,P’ By lemma 2.4.10, M = Ay.N and P = N[z :=
c(cz)] such that y & {c,z}. By IH, P’ = N'[z := ¢(cx)]
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and N i’ﬁn N'. So M" = (Ay.N")[z := c(cx)] and M 14]3[3”
Ay.N.

— Or Mz := c(ex)] = PQ 1'—p>’ﬁ77 P'Q = M’ such that
P %5, P'. Then by lemma 2.4.10, either M = z and
P = ¢ and Q = cx but then P ﬂ’ﬁn P’ is wrong. Or
M = PyQo, P = Pylz := ¢(cx)] and Q = Qo[z := c(cx)].
By IH, P’ = P}z := c(cx)] and Py %4, Pj. So M’ =
(PiQo)[x := c(cx)] and PyQo . an PoQo.

e Let p = 2.p’ then M[z := ¢(cx)] = PQ 22 gy PQ = M’
such that @ ﬂﬂn @’. Then by lemma 2.4.10, either M = x
and P = ¢ and Q = cx but then @ ﬂ’ﬁn Q' is wrong. Or
M = PyQo, P = Pylz := c¢(cx)] and Q = Qo[z := c(cx)].
By IH, Q' = Q)[z := c(cx)] and Qo L4, Q). So M' =

2. ’
(Po@}) [z := c(cx)] and PoQo =% 3, PoQp.
<) We prove the lemma by induction on the structure of p.

e Let p =0 then:

— Either M = A\y.Ny such that y ¢ fv(N). Then Mz :=
c(cx)] = Ay.N[z := c(cx)y gm] Nz := ¢(cx)] such that
y & {c,z}.

— Or M = (A\y.P)Q and M’ = Ply := Q]. Then M[z :=
clex)] = (Ay.Plz := c(cx)))Qlz := c(cx)) ggn Plz =
clex)|ly = Qlx = ¢(ex)]] = Ply := Q][z := c¢(cz)] such
that y & {c,x}.

o Let p=1.p".

— Bither M = Ay.N %4, A\y.N' = M’ such that N %5, N'.
By IH, N[z := c(cz)] Lp, N'[z := c(cx)]. So, M[z :=
c(cx)] Lg, M'[z = c(cz)] such that y & {c, z}.

— Or M = PQ %, P'Q = M’ such that P %5, P'. By IH,
Plz := c(cx)] L, P'lz = c(cx)]. So, Mz := c(cx)] Lp,
M'[z = c(cx)].

e Let p = 2.p/ then M = PQ %5, PQ" = M’ such that
Q %p, Q. By H, Qz := c(cx)] Lp, Q'x := c(cx)]. So,
Mz = c(cx)] Bgy M'[z = c(cz)].

(b) We prove this lemma by induction on n.

e Let n = 0 then it is done.
e Let n =m + 1 such that m > 0. Then ¢"(M) = ¢(c™(M)) Lg,
M’. By case on p we obtain that p = 2.p’ and M’ = ¢(N’) and
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(M) Lﬁn N’. By IH, p’ = 2™.p” and there exists N” € An,
such that N’ = ¢™(N") and M %4, N”. So p = 2".p" and
M’ = c"(N").

O

Lemma 2.5. We prove this lemma by case on the structure of M.

o Let M € Vand p € R},. So M|, € R". We prove by case on the structure
of p that there is no such p.
— Let p =0 then M|, =M ¢ R".
— Let p = 1.p/ then M|, is undefined.
— Let p = 2.p’ then M|, is undefined.
e Let M = Az.N.
— Let M € R". We prove by case on the structure of p that if p € Rj,
then p € {0} U{1.p" | p' € R} }.
% Let p =0 then M|, =M € R".
* Let p = 1.p’ then M|, = N|,» € R", so p’ € Ry.
* Let p = 2.p’ then M]|, is undefined.
Let p e {0}U{l.p | p € R}, we prove that p € R},.
% Let p = 0. Since M = M|, € R", by definition, p € R},.
* Let p = 1.p" such that p’ € R%,. By definition M|, = N|,» € R".
— Let M ¢ R". We prove by case on the structure of p that if p € Rj,
then p € {1.p" | p’ € R’y }.
% Let p =0 then M|, =M ¢ R".
* Let p = 1.p’ then M|, = N|,» € R", so p’ € Ry.
% Let p = 2.p’ then M]|, is undefined.
Let p € {1.p" | p’ € R}, we prove that p € R’,;. Then, p = 1.p’
such that p’ € R}. By definition M|, = N, € R".
e Let M = PQ.
— Let M € R". We prove by case on the structure of p that if p € R},
then p € {0} U{1l.p’ | p" € Rp}U{2.p" | p' € RG}.
* Let p =0 then M|, =M € R".
% Let p = 1.p’ then M|, = P|,, € R", so p' € R}p.
* Let p = 2.p" then M|, = Q[,» € R", s0 p’ € Ry,.
Let p € {0} U{lp' | p" € Rp}U{2.p" | p’ € Ry}, we prove that
p € Ry
* Let p =0. Since M|, =M € R", so p € Rj,.
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* Let p = 1.p’ such that p’ € R}. Since M|, = P|, € R,
p € Ry
* Let p = 2.p" such that p’ € Rp. Since M|, = Q[ € R,
p € Ry
— Let M ¢ R". We prove by induction on the structure of p that if
p € Ry then p € {1.p" | p" € Rp}U{lp' | p' € RG}.
% Let p =0 then M|, =M ¢ R".
* Let p = 1.p’ then M|, = P|,» € R", s0 p’ € Rp.
* Let p = 2.p" then M|, = Q[,» € R", s0 p’ € Ry,.
Let p € {L.p" | p' € Rp}U{2.p" | p" € Ry}, we prove that p € RY,.
% Let p = 1.p/ such that p’ € R}. Since M|, = P|,, € R,
pE€Ry
* Let p = 2.p’ such that p’ € Rfy. Since M|, = Q| € R,
pERYy
O
Lemma 2.6. We prove the statement by case on the structure of M.
o Let M €V, by lemma 2.5, R}, =2, s0 F = J.
e Let M = A\y.N then by lemma 2.5:

— If M € R" then R}, = {0}U{l.p | p € Ry }. Let ' ={p | 1l.p € F}.
Let p € F' then 1.p € F, so p € R
% Let p € F\ {0} then p = 1.p’ such that p’ € RY. So p’ € F
and it is done.
x Let p € {1.p' | p’ € F'} then p = 1.p’ such that p’ € F'. So
1.p' =p e F\ {0}
—If M ¢ R" then Ry, = {1.p | p € Ry}. Let 7' ={p | 1.p € F}. Let
p € F' then 1.p € F, s0 p € RY.
* Let p € F then p = 1.p’ such that p’ € RY,. So p’ € F' and it
is done.
x Let p € {1.p" | p’ € F'} then p = 1.p’ such that p’ € F'. So
lp' =peF.

e Let M = P(Q then by lemma 2.5:

—If M € R" then Ry, = {0} U{l.p | p € Rp}U{2.p | p € R}
Let /1 = {p | lp € F} and Fo = {2.p | p € F}. Let p € F; then
lpeF,s0p €Rp. Let p € Fy then 2.p € F,s0 p € Ry,.

* Let p € F\ {0}. Either p = 1.p’ such that p’ € R}, so p’ € Fy
and it is done. Or p = 2.p’ such that p’ € RY,, so p’ € F5 and it
is done.
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x Let pe {1.p" | p' € Fi}U{2.p" | p’ € F>}. Either p = 1.p’ such
that p’ € Fi, so 1.p" € F\ {0}. Or p = 2.p’ such that p’ € Fy,
so 2.p" € F\ {0}.

—If M ¢ R" then Ry, = {l.p | p € Rp}U{2.p | p|p € RG} Let
Fi={p|lpeF}land Fo = {p | 2.p € F}. Let p € F; then
lpeF,s0p € Rp. Let p € Fy then 2.p € F, 50 p € Ry,

x Let p € F. Either p = 1.p’ such that p’ € R%, so p’ € F; and
it is done. Or p = 2.p’ such that p’ € R, so p’ € Fp and it is
done.

x Let pe {1.p" | p' € F1}U{2.p" | p’ € Fo}. Either p = 1.p’ such
that p’ € Fi, s0 1.p’ € F. Or p = 2.p’ such that p’ € Fs, so
2.p" e F.

O
Lemma 2.7.
1. By case on the structure of M.

o Let M €V then M, M|z := c(cx)] & RP".
o Let M = Ay.N then Mz := c(ex)] = A\y.N[z := c(cx)], where
y ¢ {z,ch.
— If M € RP" then N = Py such that y & fv(P). N[z := c(cz)]
Plz := c(ex)]y and y € fv(Plxz := c(cx)]), so M[z := c(cx)]
RA.
— If Mz := c(cz)] € RP" then N[z := c(cx)] = Py such that
y & tv(P). By 24.10, N = Qy and P = Q[z := c¢(cz)]. So
M = M\y.Qy. Because y ¢ fv(P), we obtain y ¢ fv(Q) and so
M e RP.
o Let M = My M; then Mz := ¢(cx)] = My[x := c(cx)|Ma[z := ¢(cz)].
— If M € RP" then My = \y.My. So M|z := c(cx)] = (A\y. Moz :=
c(ex)]) Ma[z == c(cx)] € RP", where y & {, c}.
— If M[z := c(cx)] € RP" then M;[z := c(cx)] = A\y.P. By 2.4.10,
M, = \y.My and P = My[z := ¢(cz)] such that y & {c,z}. So,
M e RPn

m |l

2. We prove this result by inducion on the structure of M.

o If M €V then by lemma 2.5, Rﬁ/}’ =0.

o Let M = Ay.M’'. Then Mz := c(cz)] = \y.M'[z := c(cx)] where
y & {z,c}. By lemma 2.5:
— If M € RP" then let p = 0. Then, M[z = c(cz)]|, = M[z =
clez)] = Mlyla i= c(ex)]
— Let p = 1.p’ such that p’ € Rf/?,. Then, Mz := c(cx)]|, =
M'[z = c(cx)]|p =7 M| [z = c(ex)] = M|,[z := c(cx)].
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3.

4.

B
=) Let p € Ry}

o Let M = MiM,. Then Mz := c(cx)] = M|z := c(cx)| Mz =
¢(cz)]. By lemma 2.5:

— If M € RP" then let p = 0. Then, M[z = c(cz)]|, = M[z =
c(ex)] = M|p[z := c(cx)]
— Let p = 1.p’ such that p’ € R@Z. Then, Mz = c(cx)]|, =

[ )
Mz = c(cx)]|, =17 M|y [z := c(ex)] = M|,z := c(cx)].

— Let p = 2.p’ such that p’ € R?VZ Then, Mz = c(cz)]], =
Mz = c(cx)]|, =17 My [z := c(ex)] = M|,z := c(cx)].

=) Let p € RM Mlzi—c(ca))- DY lemma 2.4.1, o.Mz := c(cx)] € RP" so
by lemma 2.5, p = 1.p’ such that p’ € Rﬁn[x‘_c(m)]_
<) Let p € RM[m —c(exy) BY lemma 2.5, 1.p € Rm Mlzi=c(ca)]"

[zi=c(ca)]" We prove the statement by induction on the

structure of M
— M &V since by lemma 2.5, Rﬂ[m::e(m)} = Q.
— Let M = My.N so Mz := c(cx)] = M\y.N[z := c(cx)], where
y & {z,c}. By lemma 2.5:
* Either if Mz := c(cx)] € R, p =0. By 1, M € RP", so
pE R’f}].
* Or p = 1.p’ such that p’ € R]ﬁvn

’ Bn

ety By TH, p/ € RY.
Hence by lemma 2.5, p = 1.p’ € Rf/?

— Let M = M1 Ms so M[z := c(cx)] = Mi[z = c(cx)|Malz =

¢(cx)]. By lemma 2.5:
* Either if Mz := c¢(cx)] € RP", p =0. By 1, M € R, so
0e Ry

¥ Or p = 1.p/ such that p’ € RMl (o 7C(Cz)] By IH, p’ € R?}l.

Hence by lemma 2.5, p = 1.p" € sz?

x Or p = 2.p’ such that p’ € Rﬁ;’

2lei=c(ca)]”

Hence by lemma 2.5, p = 2.p’ € Rﬁ]}.

By IH, p' € Ry,

<) Let p € RY,. Then by definition M|, € R"". By 1, M,z =

clcx)] € R, By 2, Ml = clex)], € R, Sop € REL. _ "

5. We prove this statement by induction on n > 0.

e Let n =0 then trivial.
o Let n =m+ 1 such that m > 0. By lemma 2.5, Rm(M ={lp|pe
REMUL2p | peRIL 4} =" {2"p | p € RIT}.

O
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Lemma 2.8. We prove the statement by case on r.

Either » = BI. Since M € Al., M € Al so \x.P,QQ € Al. Hence,
x € fv(P) and M € RFI.

Or r = @n. Trivial. U

Lemma 2.9. We prove the statement by induction on the structure of M.

Let M € V\ {c}. By lemma 2.5, R}, = @.

Let M = Ax.N € Al, such that N € Al and let p € R'Jé\g Since M ¢ RP!,
by lemma 2.5, p = 1.p’ such that p’ € RJBVI. So by IH, M|, = N|, € AL.

Let M = Ax.N[z := ¢(cx)] € An. such that N € An, and let p € ’Rf\? By

lemma 2.7.3, p = 1.p’ and p’ € R]’iﬁ[m::c(cw)]. By lemma 2.7.4, p’ € Rﬁfn.

By IH, N|,» € An.. So, M|, = Nz := c(cz)]|p =*72? N|p [z := c(cz)].
By lemma 2.4.9, N|,/ [z := c(cx)] € An,.

Let M = Ax.Nxz € An. such that Nz € An., = € fv(N) and ¢ # N. Let
pE ’Rﬁ? Since M € RP", by lemma 2.5:

— Either p =0so M|, = M € An..

— Or p = 1.p’ such that p’ € R2!. By IH, M|, = (Nz)|, € An,.
Let M = cNP € M, such that N, P € M,. Let p € R},. Since M,cN &
R", by lemma 2.5:

— Either p = 1.2.p such that p’ € R%,. By IH, M|, = N|,» € M,.

— Or p = 2.p’ such that p’ € RY. By IH, M|, = P|,, € M..
Let M = (Ax.N)P € M, such that \x.N,P € M,.. Let p € R},. Since
by lemma 2.8, M € R", by lemma 2.5:

— Either p =0so M|, =M € M..

— Or p = 1.p/ such that p’ € R%, . By IH, M|, = (Az.N)|, € M..

— Or p = 2.p/ such that p’ € R%. By IH, M|, = P|,, € M..
Let M = ¢N € An. such that N € An,. Let p € R%’ Since M ¢ RP", by
lemma 2.5, p = 2.p’ such that p’ € Rﬁfn. By IH, M|, = N|,» € An.. O

Lemma 2.10.

1.

Let M € An. and M —g, M'. Then there exists p such that M 1’617 M.
We prove that M’ € An. by induction on the structure of p.

e Let p =0. Then:

— either M = Az. M’z such that = ¢ fv(M’). Because M € A,
then M’z € An. and x # ¢. By lemma 2.4.7, M’ € An,.
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—or M = (Az.N)P and M’ = N[z := P]. Since M € An, then
Ax.N, P € An.. By definition and lemmas 2.4.9, N € An. and
x # c¢. By lemma 2.4.9, M’ € An..

e Let p=1.p’. Then:

— either M = \a.N D5, \z.N' = M’ such that N %5, N'. Since
M € Ang:

* Either N = Plx := ¢(cx)] where P € An. and x # ¢. So by
lemma 2.4.12a, N’ = N”[z := ¢(cz)] and P —g, N”. By IH,
N" € An. so by (R1).3, M' = Ax.N" [z := ¢(cx)] € Ane.

* Or N = Px where Pz € An., x € fv(P)U{c}, P # c¢. By
IH, N' € An.. By lemma 2.4.7, P € An.. By case on p’:

- Either p’ =0, P = (A\y.Q) and N’ = Q[y := z|. Hence
M =Xx.Qly:=xz] =P € An..
- Orp/ =1.p", N' = P’z and P %4, P'. By lemma 2.2.3,
x & tv(P'). By IH, P’ € An,, so by lemma 2.4.3, P’ # c.
Hence, M’ = \x.P'x € An..
—or M = MMy %5, M{My = M’ such that M; %5, M. By
lemma 2.4.5, Ms € An. and because M; # ¢ we obtain:

x Either M7 = ¢My and My € An.. By case on p’ we obtain
p' = 2.p", M| = cM} and My %5, M,. By TH, M} € Ane,
so by (R2), M’ = cM{M, € An,.

* Or My = Ax.My and M; € An.. By IH, M| € An.. By
lemma 2.4.11a, My € An.. lemma 2.4.7,  # c. By case on
p':

- Either p’ = 0 and My = Mz such that = & fv(M]).
Because My = Mjx € An,, by definition and lemma 2.4.5
we obtain M’ = M{M, € An..

- Or p' = 1.p" and M| = \z.M}, such that My %, M. So
M’ = (Ax.M})Ms € An_.

e Let p = 2.p'. Then M = MMy Y>3, MM}, = M’ such that

My %p, Mb. By lemma 2.4.5, My € An. so by TH, My € An,.
Because M = M;Ms € An., again by lemma 2.4.5 M’ = M, M} €
Ane.

2. By induction on M —g; M’ in a similar fashion to the above. O
Lemma 2.12. We prove the statement by induction on n > 0.
e Let n = 0 then by definition |¢"(M)|® = |M]°.

e Let n = m+1 such that m > 0 then |[c"(M)[° = |c(c™(M))|¢ = |c™(M)|¢ =TH
M. D
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Lemma 2.13. We prove the lemma by induction on n.
e If n =0 then it is done.

e Let n = m~+1such that m > 0. Then, |(¢"(M), R V¢ = {|(c*(M), p)|° |

C”(M)
p € R} =2 (1 (M).20)° | p € RZ )} = (1" (M).p)I" | €
5 (M) 5 (M)
RCV,Z(M)} = |<M7R1\}7>|C- -

Lemma 2.14. We prove the lemma by induction on n.
e If n =0 then it is done.

e Let n = m+1such that m > 0. Then, |[(c"(M),2".p)|¢ = [{c™(M),2™.p)|¢ =TH
|(M, p)|° O

Lemma 2.15.
e let P € V. We prove the statement by induction on the structure of M.

— Let M €V then |[M|°= M = P.

— Let M = Az.N then |M|¢ = Az.|N|¢ # P.

— Let M = My M,. If My = ¢ then |[M|¢ = |Ms|°. By IH, In > 0 such
that My = c¢™(P). If My # ¢ then |M|¢ = |M;|¢|Ms|¢ # P.

e Let P = A\z.QQ. We prove the statement by induction on the structure of
M.
— Let M €V then |M|® = M # \z.Q.
— Let M = Az.N then |[M|° = Az.|N|° so |[N|¢ = Q.

— Let M = MyM,. If M; = ¢ then |M|° = [My|°. By IH, 3n > 0
such that My = ¢"(Ax.N) and |N|° = Q. If M; # c then |M|¢ =
|M1|C|M2‘C 7é )\.’I}Q

e Let P = P P,. We prove the statement by induction on the structure of
M.

— Let M €V then |[M|°= M # P, Ps.
— Let M = Az.N then |[M|¢ = Az.|N|¢ # P, Ps.

— Let M = M;M,. If My = c then |M|¢ = [My|®. By IH, 3n > 0
such that My = ¢"(MLMY), M} # ¢, |My|c = P, and [MY|° = P».
If M1 7é ¢ then |M|C = ‘M1|C‘M2|C = P1P2 SO |J\4-1|c = P1 and
My = P,

O

Lemma 2.16. We prove the statement by induction on M.

e Let M €V then by lemma 2.5, R}, = @.
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o Let M = Ax.N then by lemma 2.5:

— Either M € R" then:

x Either p = p’ = 0 so it is done.

% Or p =0 and p’ = 1.p{ such that p; € R%. Then, |(M,0)|° =
0 # [(M, p")[* = 1.|(N, pp)|°.

* Or p = 1l.p; and p’ = 1.p] such that p;,p; € R%. By hy-
pothesis, [(M, p)|® = L.|(N, p1)|® = LUN, p1)|° = [(M, p")|°. So
[{N,p1)|¢ = |(N,p1)|° and by TH, p; = p} so p =p’.

— Or M ¢ R” then p = 1.p; and p’ = 1.p] such that p;,p1 € R}. By
hypothesis, [(M,p)|® = L[(N,p1)|* = LN, pp)|® = (M, p")|°. So
[{N,p1)|¢ = (N, p1)|¢ and by TH, p; = pj so p =p’.

o Let M = P(Q then by lemma 2.5:

— Either M € R", so P is a A-abstraction and:

x Either p = p’ = 0 so it is done.

%« Or p = 0 and p’ = 1.p{ such that p; € Rp. Then |(M,0)|° =
0 # [(M,p")|* = 1.|(P, p1)|°.

* Or p = 0 and p’ = 2.p; such that p; € Rf. Since P is a
A-abstraction, |(M,0)|¢ =0 # (M, p')|c = 2.{Q, p})|°.

* Or p = 1.py and p’ = 1.p{ such that p;,p; € R%. Since by
hypothesis, [(M,p)|® = 1I(P,p1)|° = L|(P,p1)|® = [(M,p")],
then [(P, p1)|® = [(P, p1)|°. By IH, p1 = p{ sop=1p".

* Or p = 1.p; and p’ = 2.p; such that p; € R and p] € RE- Since
P is a A-abstraction, [(M,p)|® = 1.[(P,p1)|° # 2.{Q,p})|¢ =
(M, p")|°.

* Or p = 2.p; and p’ = 2.p; such that py,p] € Rg-  Since
P is a A-abstraction, by hypothesis, |(M, p)|¢ = 2.](Q, p1)|® =
2.(Q, p1)|® = [(M, p")|* so [{Q, p1)|* = (@, p1)|°. By IH, p1 = p;
sop=p.

— Or M ¢ R", then:

* Or p = 1.p; and p’ = 1.p] such that p;,p] € R%. Since by
hypothesis, [(M,p)|® = 1P, p1)|* = L|(P,p1)|© = [(M,p")]°,
then [(P,p1)|* = [(P, p1)|°. By IH, p1 = pj so p = p".

* Or p = l.p; and p’ = 2.p] such that p; € R% and p; €
RG. P =# c, otherwise, by lemma 2.5, R, = @. Moreover,
(M, p)|° = 1P, p1)|© # 2.{Q, p1)|° = [{(M, p")|°.

* Or p = 2.p; and p’ = 2.p{ such that p1,p; € R, If P # ¢
then, by hypothesis, [(M,p)|® = 2./(Q, p1)|* = 2.(Q,p1)|® =
[(M, p")| so (@, p1)|* = (Q, p1)[. By IH, pr = py so p = p". If
P = c then, by hypothesis, [(M, p)|° = [{Q, p1)|° = (Q, p1)|°
[(M, p')|* so (@, p1)|° = [(Q, p1)|° By IH, p1 = pi so p =p’.
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Lemma 2.17. We prove the statement by induction on the structure of M.

o Let M eV
— Let M =z then |M[x := ¢(cx)]|® = |e(ex)|® = |z|°.
— Let M =y # x then |M[z := ¢(cx)]|® = |M]°.

e Let M = \y.N then | M|z := c(cz)]|¢ = \y.| N[z := c(cz)]|¢ =1 M\y.|N|¢ =

|M|¢, where y & {z,c}.

e Let M = NP.

— Either N = ¢, so N[z := ¢(cx)] = ¢. Then, |M[z := c(cx)]|¢ =
|Pla = c(ecx)]|* =" |P|° = |M]°.

— Or N # ¢, so N[z := ¢(cx)] # c. Then, |M[x := c¢(cx)]|® = |N[z :=
c(cx)]||P[x == e(ca)]|* =" IN||P|° = [M]°.

Lemma 2.18. We prove the statement by induction on the structure of M
e Let M = y then by lemma 2.5, Rﬁ? =0.
e Let M = Ay.N. Then by lemma 2.5:

— Either p = 0 if M € RP". Then, |(M[z := c(cz)],0)|° = 0 =
(M 0)]°.

— Or p = 1.p/ such that p’ € R Then [(M[z := c(cz)],p)|® =
LNz = e(ca)], ) ="H LN, p')[° = [(M, p)]° such that y ¢
{z,c}.

e Let M = My M,. Then by lemma 2.5:

— Either p = 0 if M € RP". Then, [(M[z := c(cz)],0)|° = 0 =
(M 0)]°.

— Or p = 1.p’ such that p’ € Rg}a. Then |(M[z := c(cx)],p)|¢ =
LI{My [z = c(cx)], p)|* =" L[(My, p')|* = [(M, p)|°.

— Or p = 2.p’ such that p’ € ’R%’Q

x If M7 = ¢ then Mz := ¢(cz)] = ¢ and |(Mz := c¢(cx)], p)|¢ =
[(Malz = c(cz)], p")|* =" |(Ma, p')|* = [(M, p)|°.

x If My # ¢ then Mz := ¢(cx)] # ¢ and |(Mz := ¢(cx)], p)|¢ =
2.[(Ma[z = c(ex)], p')|e =" 2.|(Ma, p') | = [(M, p)|°.

Lemma 2.19. We prove this lemma by induction on the structure of M.
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e Let M € V\ {c} then |[M|¢ =M and fv(M) \ {c} = {M} = fv(|]M]|°).

e Let M = A\y.P € Al such that P € Al. and y # ¢. Then |M|¢ = A\y.|P|¢
and fv(M) \ {c} = v(P) \ {y, c} =" v(|P|°) \ {y} = fv(|M]°).

e Let M = M\y.Ply := c¢(cy)] € An. such that P € An. and y # ¢. Then
[M|¢ = My.|[Ply = c(ey)]|® =>" My.|P|° and fv(M) \ {c} = fv(Ply :=
cley)) \{e.y} = tv(P)\ {e,y} =" tv(|1P|°) \ {y} = tv(|M[°).

e Let M = M\y.Py € An. such that Py € An,, y &€ fv(P) U {c} and ¢ # N.
Then [M|° = y.|Py|* and fv(M)\ {c} = fv(Py) \ {c,y} =" fv(|Py[) \
{y} = tv(|M]°).

e Let M = cPQ € M, such that P,QQ € M.. Then |M|¢ = |P|°|Q|¢ and

(M) \ {c} = (v(P) Utv(Q)) \ {e} = (fv(P) \ {e}) U (]v(Q) \ {c}) ="
fv(1P]?) Utv(|Q[°) = v (|M][%).

e Let M = (\y.P)Q € M, such that \y.P,Q € M, Then |M|® =
[Ay-P[°|Q|* and fv(M) \ {c} = (fv(Ay.P) U fv(Q)) \ {c} = (fv(Ay.P) \
{ch U (tv(@Q) \ {c}) =" tv(|Ay.P|*) Uv(|QI°) = fv(|M]°).

o Let M = cP € An. such that N € An.. Then |[M|® = |P|® and fv(M) \
{c} = tv(P)\ {c} =M fv(|P[°) = fv(|M[°). B

Lemma 2.20. We prove this lemma by induction on the structure of M.
o Let M € V\ {c}.
— Either M = z then |M[z := N]|¢* = |[N|* = M[z := |N|¢] =

|M|“[z := |N|°].
— Or M =y # x then |M[x := N||° = |M|* = M = M|z := |N|] =
|M|[°[z == [N|°].

o Let M = Ay.P € Al such that P € Al and y # ¢. Then |[M[z :=
N]|¢ = A\y.|P[z := N]|¢ =15 \y.|P|¢[x := |[N|] = |M|¢[z := |N|¢], where
y € fv(N) U {z} and so by lemma 2.19, y & fv(|N|°).

e Let M = Xy.Ply := ¢(cy)] € An. such that P € An. and y # c¢. Then
Ml = NI = AplPly == eleplliz = NI = Ay|Plz = N]ly i=
lep)lF =17 Ay |Ple = NI =/ My | Plelz = [NJ] =17 Ap|Ply =
cley)]|¢[xz == |N|°] = |M|°[z := |N|°], where y & fv(N) U {z} and so by
lemma 2.19, y & fv(|N°).

e Let M = A\y.Py € An. such that Py € An., y € tv(P) U {c} and ¢ # P.
|Mlz := NJ|* = Ay.|(Py)[z := N||* =" My.|Py|°[z == [N|] = |[M|°[z :=
[N|¢], where y & fv(N) U {2} and so by lemma 2.19, y & fv(|N|°).

e Let M = ¢PQ € M, such that P,Q € M.. |M[z := N]|° = |P[x :
N|Q[x == N]|° =" |P|lz := [N|]|Q|°[z := [N|] = (IP|°|QI)[x :
[N[] = [M][z := |N].

60



e Let M = (\y.P)Q € M, such that \y.P,Q € M.. |M[z := N]|° =
(Ow-Plz = NIFIQLs = NIIF = |xp.Pz i= NIIIQI[e = [NI] =
(IAy-Pl°|Q[%) [z := [N|] = [M][[x := [N]°].

e Let M = cP € A, such that N € An.. |M[x := N]|® = |P[z := N]|© =IH
|P|[z := [N|] = [M][x := [N|]. O

Lemma 2.21. We prove the lemma by induction on the structure of M.
e Let M € V\ {c} then M| =M € V\ {c} C AL
e let M = Az.N such that N € Al. and = € fv(N) and = # ¢. Then
|M|¢ = Az.|N|¢ and by IH |N|® € AL. Since z € fv(N), by lemma 2.19,
x € tv(|N|°), so |M]|° € AL

e Let M = cPQ such that P,Q € Al. then |[M|¢ = |P|¢|Q|° and by IH,
|P|,|Q|¢ € AL hence |M|¢ € Al

e Let M = (\z.P)Q such that Az.P,@ € Al then |[M|¢ = |\z.P||Q|° and
by IH, [Az.P|¢,|Q|° € AL hence [M|° € AL O

Lemma 2.22. Let p € R, then by definition, M|, € R". We prove the result
by induction on the structure of p.

e Let p=0.

— Let » = BI then M = (Az.M;)Ms such that =z € fv(M;) and
Ax.My, My € Al, and M’ = M|z := Ms]. By definition M; €
Al., © € fv(M;) and « # c¢. Then |M|® = (Ax.|M;]°)|Mz|® and
|M'|¢ = |M[z := Ms]|¢ =220 |M;[¢[z := |M3[|°]. By lemma 2.19,
x € fv(|My]°). So, M| %4, |M'|¢ and |(M,0)|¢ = 0.

— Let r = (n.

* Either M = (Ax.M7)M> such that A\x.M;, My € An. and M’ =
M [z := Ms]. By lemma 2.4, M; € Al. and x # ¢. Then |M|¢ =
(Az.|M;|€)|M3|¢ and |M'|¢ = |M[z := Ma]|¢ =220 |M;|[z :
[Ma|]. So, |M|* g | M| and [(M,0)[° = 0.

x* Or M = Az.M'x such that M’z € An,, x & tv(M'), z # ¢ and
M’ # c. Then |M|¢ = Az.|M'|°z. By lemma 2.19, x € fv(|M'|°).
So, |M|¢ 25 [M'|¢ and |(M,0)|° = 0.

o Let p=1.p".

— Either M = Az.M; and M’ = \z.M/ such that M; %, M|. By
lemma 2.5, p’ € R}, . By lemma 2.4, M; € M. and z # ¢ . By IH,

| My |© . |M]|¢ such that p” = |(My,p’)|¢. So |M|° Ly » |M'|¢ and
Lp" = |(M, p)|°.
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—Or M = MM, and M’ = M{M, such that M; %, M{. By
lemma 2.5, p’ € RYy,- By lemma 2.5, M; # c. By lemma 2.4.5:

* Either M; = c¢My where My € M.. By lemma 2.5, p’ = 2.p|
such that py € R}, . So by definition Mj = cMj such that

Mo 28, Mj. By IH, |My|® 2%, |Mj|¢ such that pf = |(Mo, p})|°.
Hence [M[° "2, [M’'| and |(M,p)|° = [{(cMoMz,1.2.p5)|¢ =
L[{eMo, 2.pg)|¢ = 1.[{Mo, pg)|® = 1.py
x* Or My = M\z.My € M.. By IH, |[M;|° %, |M]|¢ such that
p" = |(My, p")|¢. By lemma 2.10, M| € M, and by lemma 2.4.3,
1. 1"
M{ # ¢ So, M| 5 |M'|° and [(M,p)|° = L|(My,p')|° =
1.p”.
o Let p = 2.p’ then M = M, My and M’ = M, M}, such that My %, M}. By

lemma 2.5, p’ € R}, . By lemma 2.4.5, My € M.. By IH, |Ms|° L M
such that p” = |(Ma, p')|°.

— If My = ¢ then |M|¢ p—>ur |M'|¢ and |{M, p)|¢ = |(Ma,p")|¢ = p”.

— Otherwise [M]° %5, [M'|° and (M, p)|¢ = 2.|(Mz, p')|¢ = 2.p"".

Lemma 2.23. The proof is by induction on the structure of Mj.

e Let My € V\ {c}. Then M; = |M;|° = |Mz|°. By lemma 2.15, My =
Cn(Ml).

— Either My = z, then M|z := N1] = Ny and Ms[z := Na] = ¢"(N2).

By hypothesis [(N1, Ry, )| € [(N2, Ry, )¢ =1 [(¢"(Na), Rin (x|

— Or My =y # x then My[z := N1] = y and Ms[z := Nao| = " (y). We

conclude using lemma 2.13.

o Let My = Ay.M{ € Al such that y € fv(M]), y # ¢ and M{ € Al
then |My|¢ = A\y.M| = |M|°. By lemma 2.15 and because My € Al,
My = My.MS, y € tv(M}), My € Al. and |M}|© = |M7|°. By lemma 2.5,
R%l ={lp|pe RBI{} and Rﬁ/fg ={lp|pe Rﬁlé}. So, |<M1,72’16\/}1>|C =

I\|c I\ ¢ I\ c
{Lp | p € (ML REL)IY and [(Ma, REL)E = {Lp | p € (M5, REL)Ie).
Let p € [(M{,Ry[)I% then Lp € [(My, Ry)I® C (Mo, RYL)I% So
I\jc I\ |c I\c

p € [(Mg, REL)IC, de. (M7, RO € [(M3, Ry By TH, [(M{[e :=

I I
Nl]’Rﬁ/Il’[z::NﬂHC C [(My[z = N2]7R1€42’[a;;:N2]>|C'
Since Mz := Ni| = Ay.M{[x := Ni| and Ms[z := Na| = Ay.Mj[z := No)
where y ¢ fv(N1) U fv(Na), by lemma 2.5, Rlﬁl[ﬂZM] ={lp|pe
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R’gj/[w .} and RMz[w Ny ={lplpe ’Rﬁ]/[z —ny) )t So [(Mifz =

N, Rffl[z _le={Lp | p € [(M{lz = N\|,RY,,. _N]>| }and (Ml :

Nl R IE = (L | p € [(Msle i= Nl RL I} Let
p € |(My[z := N], RMl[m —ny))|© then p = 1.p’ such that p’ € [(M][z :=
Ny, R'ij,[w _le € (Mgl = Nol RYL . _n,))I° So p € [(Mafr =
Nal, RMg[z =Ns] e

Let My = Ay.-M{[y := ¢(cy)] € An. such that M; € An. and y # ¢, then
|My|¢ =217 \y.|M{|¢. Because |Mz|¢ = A\y.|Mj|¢, then by lemma 2.15,
My = ¢™(Ay.P) such that |P|¢ = |M]|°. By lemma 2.4.6, \y.P € An.. By
lemma 2.4.11a, P € An.. We prove the lemma by case on Ay.P.

— Either A\y.P = \y.Mj[y := c¢(cy)] such that M} € An.. Hence
|Mb|e =217 | My = c(ey)]|¢ = |M{]°. We also have Rg}l =273
{Lp|pe Rﬁ;’“y:zc(cy)]} =274 {1p | p € Ry} and RYY , =273
{lLpe RM/[y —c(cy)]} 2T {lplpe R]\/I’} So |<M1’R16V1171>| =18
{Lp | p € (M7, REL) [} and [(Ma, RAL)E =21 [(Ay. P RYY )| =218
{Lp | p € (M3, R} Let p € [(M{, Ry then Lp € [(My, RA7 )| C
|(Ma, R, s0 p € [(Mg, RAL)C dee [(MY, AL S [(Mg, R
By TH, [(M] [z := N1J, R, ey )I° € (M3l i= Nal, RATL ).
Because Mi[z := Ni| = Ay.M{[y := c(cy)][z := N1] = \y.M{[z :=
My := e(ey)] and (A\y.P)[z := No| = Ay.Mjly := c(cy)][x := No] =
Ay.Mjlx := Na|[y := c(cy)] such that y & tv(Ny) U fv(N2) U {z}, we
obtain RY7 Mipeny = A{lplp € RM,[x —Ni][y=c(ey) ]} 214 |
P € Ry ey} A RY, pymny) = {10 12 € RO gy} =
(1017 € R2 b S0 [(afe = MR 238 {1 |
€ (Ml o Mo R I} and [l 1o N REL e =213
(WPl = Nl RED ooy )° =218 {Lp | p € [(Myfar =
Ny, RM,[m_NZ]H . Let p € [(Milz := Nq], RMI[I_N]H then
p = 1.p’ such that p’ € [(M][z := Nl],Rfjj,[T _w)le € [(Myx o=
No, ’RN;,[:D —N, ]H ¢. Hence, p € [(Ma]z := Na], R]sz[w _N2}>|c.

— Let A\y.P = Ay.Mjy such that P = My € An,, y & fv(M}) and
M} # c¢. So we have |Mjy|® = |Mj|°. We already showed that
Rf/?l ={lp | p € Rg}’{} Since \y.P € R"" by lemma 2.5,
Ry p = {0}U{lp | pe Ry} So |<M1,R§z>|c =218 {1p |
p € [(M{, R{})I°} and [(Ma, RYL)|C =212 [(A\y. PR )¢ = {0} U
{Lp | p € [(My,RY], )} Let p € [(M{,Ry])[° then 1p €
(M3 REIE C (M, REL)IE, s0.p € [(Mgy, REL VI, e (0, RN €

2.7.4
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|(Mgy, RAJL e By TH, [(Mi[e = N RYE )1 = [(Msy)[a =

Nal, R e

Because Mz := Ni] = Ay.M{ly = c(ey)]|[z := N1] = Ay M{[z =
Nily := cley)], (Ay-P)[x := Na] = Ay.(M3y)[w := No] = Ay. M [z :=
Nsly such that y & fv(Ny) U fv(Ny) U {1:} we obtain (Ay. P)[ =
Nz] € RE7, Rz\ﬂ[x ) =T 1P € R et} =

{Lp | » € Ry, simny) ) and R()\yP)[;c—Ng ={0}u{lp | p €
R? y)[z: —Nz} SO [(Mifz := Nil, RJ\Z[I —N1]>|c =218 {Lp|pe

|<M1[x = Ny, Rf\’mm, DIy and [(Ms [z = NoJ, R o [e =213
{Ow-P)fe = Nal, R o) = 0} U{Lp | p € [{(My)la
NQ] R(M’y)[:c =Na] >| } Let p € |<M1[Z‘ = Nl] RMl[x* ]>| then
p = 1p’ such that p' € [(M{[z := N1], R}, .. _N]>|cg (M) =
N, Ry w80 p € [(Mofw i= Nal, RYL v e
o Let My = My.Mjy € An. such that Mjy € An., M] # c and y ¢
tv(M]) U{c}, then |M;|¢ = Ay.|M{y|¢. Because |Ma|® = A\y.|Mjy|¢, then
by lemma 2.15, My = ¢"(\y.P) such that |P|° = |M/y|°. By lemma 2.4.6,
Ay.P € An.. By lemma 2.4.11a, P € An.. We prove the lemma by case
on \y.P.
— Either A\y.P = Ay.Mily := c(cy)] such that M) € An.. Since
My € RO, RE1 =25 {0}u{l.p | p € R?V}Qy}. Moreover, R§Y , =273
{Lp | p € Ryp ey} 50 [(MLRED|E = {0y U{lp | p €
[(M7y, R )Y and [(Ma, RAL) =21 [y P, RY] p)|° = {L.p |
p € [(M3ly = c(ey), RAp: yeeeeyy) |} We have 0 € [(My, RAF )|
but 0 ¢ |(Ma, R47)|.
— Or A\y.P = \y.Mly such that My € An., y & tv(M}) U {z} and
M} # c. So we have |Mly|¢ = |Mjy|¢. Because Ml, M\y.P € RP". by
lemma 2.5, Rf}] ={0}U{1p\pe7€ﬁ} }adeA p={0}U{lp|
P E Ry} So |(My, REDI = {0}U{Lp | p € [(My, Ry] )|} and
|<M2,R§f}'2>\c =233 | (. P RS p)|° = {0}U{Lp | p € [(May, R, )}
Let p € [(M{y, Ry, )| then Lp € [(M1, Ry )[e € [(Ma, RYL)I%, so
p € [(Mgy, Ry% DI°, des [(M{y, Rp )1e C [(May, Ry, e By TH,
[(Miy)[z == Ni], Rf;&{y)[m —N1]>| = [{((M3y)[z := N2, R(M/ )[I;:N2]>|C-
Because Mz := Ni] = My.(M{y)[z := N1] = \y.M{[z := Ni]y,
(Ay.P)[z := No] = My.(Mly)[x := Na] = Ay.Mj[z := NsJy and
y & fv(Ny) U fv(Na) such that y & fv(Ny) U fv(No) U {z}, we have
Mifo = NiJ, (. P)lo := No] € RO, RED = {0}U{Lp|pe

B B
R(&{y)[m .1} and RM weny) = 10tU{lp | p € R(;\Z[gy)[z::Nﬂ}'
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So [(Mil = N, RE ) = {0} U {Lp | p € |(Mip)l =
N, R(M’y)[x _w I and [(Ma e := N R )1 =212 (. P =

Naj, R(,\y P)l: 7N2]>‘ = {0}u{l.p | p € {(Mzy)[z := N2], ’R'(M/y)[x ,N2]>|c}~

Let p € [(Mq[z := Ny], RMl[x N ]>|C then either p = 0 € [(Ms[x :

N3, RMQ[I 7N2]>\ or p = 1.p’ such that p’ € [{((M{y)[z := Ny], R(M/y)[z 7N1])|C -
[(M3y)[z == N2, R(M’y)[x —N2]>| Sop € [(Ma[z := N3], RMg[x —1\/2]>‘C

o Let My = cP1Q1 € M, such that P, Qa € M, then |M|¢ = |P1|¢|Q1]¢ =
|Ma|¢. Note that My € R”. Because |Ma|® = |P1|¢|Q1|¢, then by lemma 2.15,
M,y = "(PQ) such that P # ¢, |P|° = |P1|° and |Q|° = |Q1]°. By
lemma 2.4.6, PQ € M_.. We prove the lemma by case on PQ.

— Either P,Q € M, and P is a M-abstraction \y.P’. Because PQ €
M., by lemma 2.8, PQ = (A\y.P')Q € R". By lemma 2.5, R}, =
{12.p | p e Rp}U{2.p | p € R, } and Ry = {0} U{lp | p €
RpyUi2p | p e R} So [(Mi, Ry )| = {L.p | p € |(P1,Rp,)|} U
{2 | p € Q1 RE, )} and [(Mz, R}, )| =*1° [(PQ,Rpq)|® =
{0} u{lp | p € (PLRE)TFU{2p | p € (Q, Ry} Let p €
(P, Rp, )| then 1.p € [(My, Ry, )| € [(Ma2, Ry, )| Sop € [(P,Rp)°,
Le. (P, Rp)|© € [(P,Rp). Let p € [(Q1,Rp,)|° then 2.p €
[(My, Ry )1 € [(Ma, Ry, )| So p € [(Q,R)°, Le. [(Q1, R, )|° €
QR By IH, [(Pilz := Nil, Rp, .y, )” S (Pl := NoJ, Ripp,_ ) |°
and [(@1]z := Ni|, RG), ey | € HQLw := Naf, R oy, |
Because Mi[x := Ni| = cPi[x := N1|@Q1[z := Ni] and (PQ)[x :=
No] = (A\y.P'[z := Na])Qx := Na] €249 M., such that y ¢ fv(Na),
we obtain Mi[z := Ni] € R" and (PQ)[z := Na] €>% R". So by
lemma 2.5 we have Ry, .y ={1.2.p [ p € Rp [,._n,}U{2P [P E
Raniw=ni} 804 Ripoaimnyy = {0} Uilp [ p € R};[w NP UAZp |
P € Ry} S0 [(Mifr = Ni|, Ry oy )l = {117 | p €
(Pl = N R o VUL | 9 € (@1 NuL Ry, o))
and [(Ma[z := Na], RMQ[z =N>] ) =21 ((PQ)[x = N, R(PQ)[m::N2]>| =
{0y u{lp|pe (Pl := Nz] Rppa=ny) T V{20 [ p € [(Qlz =
No|, R, ,N2]>| }. Let p € [(Mifz == Ni], Ry, (pony))|© then ei-
ther p = 1.p" such that p’ € [(Pr[z := M|, Rp ,._n, )| € [(Pla =
Nol, Rople ] Y. So p € |[(Ma]z :== Ny, R o 21— Na] >|c Or p=2p
such that p’ € (@12 := N1}, Ry, p.—n,))|° € Q2 —N2] Rogpw=no)) |
So p € [(Mz[z := No|, Riyp, 11mvy )
Or P = cP’ such that P',Q € M., then |P|° = |P'|° = |P|°
Since My, PQ ¢ R", by lemma 2.5, R}, = {1.2.p | p € Rp } U
{2p | p € Rp,} and Rpg = {1.2p | p € Rp}U{2p | p €
@t So [(My, Ry )| = {lp | p € (P, Rp)IFTU{2p | p €
[(Q1, Ry, )} and [(Ma, Ry, )¢ =1 [(PQ,Rpg)|© = {l.p | p €
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(P Ry )T U2 | p € (@, RD)}. Let p € (P, Ry, )l then Ly €
[(My, Ry )¢ € [(Ma, Riy, )| So p € [(P), R Le. [(P1, R, )| C

|(P, R Let p € [(Q1, Rg, )| then 2.p € [(My, Ry )| C [(M2, Ry, )|

So p € [(Q. R L. [(Qu Ry )I° € (@RI, By TH, (Pl =

Nil, R (. _N]>| C [(P'[x _Nz} RP/17N2]>| and\(@l[x =N RG, meni) | €
(Qlz := N2, RQ[x::N2]>|C'

Because Mi[x := Ni| = cPi[z := N1]Q1[z := Ni] and (PQ)[z
Ny] = ¢P'[x := No|Q[z := N3], we obtain M;[z := N], (PQ)[z :=
No| ¢ R". So by lemma 2.5 we have Ry, ,._n,; = {1.2p | p €
R feny F {20 | P € R, (o} a0d Ripg)an, = {120 €
Rp/[z_:NQ]}U{Q PP E RGNyt So[(Mifz = N1, Ry oy 2| =
(| p e Pl == MRy} U (2 | 9 € l(Q@il0 =
M| RG, (rieny ) and [(Ma]a == Na|, Ry vy =213 |((PQ)[x =
No|s R{pgywenoI© = {12 [ p € [(P'[z:= Na|, R .y, ) FU{2.p |

p € QI = Noh Ry I} Lt p € (M 1= M, Ry o )
then either p = 1.p’ such that p’ € [(Pi[z = Ni|, Rp ,._n,)® €
|<P’[J; = NQ] RP’[J— ]>|C So p < ‘<M2[$ = N2] RMz[w _N2]>|C.
Or p = 2.p’ such that p" € [(Qi[z := N1, R, .oy, | € {Qlz =
No|, Ry peny) | S0 p € [(Malz := No|, Ry 1 n, )|

o Let My = P1Qq € M, such that P;,Q; € M, and P; is a A-abstraction
Ay.Py. Then |Mi|¢ = |P1|¢|Q1]°. Note that because M; € M, then by
lemma 2.8, M; € R". So by lemma 2.5, 0 € R}, , so 0 € [(My, R}, )|
Because |Ms|® = |P1]°|Q1]¢, then by lemma 2.15, Mg = ¢"(PQ) such that

¢, |[P|¢ = |P]¢ and |Q|¢ = |@1]¢. By lemma 2.4.6, PQ € M.. We
prove the lemma by case on PQ.

— Either P = ¢P’ such that P',Q € M., so PQ ¢ R". Hence, by
lemma 2.5, Rpg = {1.2.p | p € Rp}U{2p | p € R} So
(M2, Ry, )| =21 (PQ,Ripg)| = {1.p | p € [(P",Rp)[° }U {2p |
p € {Q,R)|°}. Hence 0 ¢ |<M2,R’1”MZ>|C.

— Or P,Q € M, and P is a A-abstraction \y.P’ . Because PQ =
()\y PHQ € M. then by lemma 2.8, PQ € R". By lemma 2.5,

={0}u{lp | p € Rp}U{2p | p € RE,} and Rpg =
{O}U{lp\pGR }U{2P€R }. So, [(My, Ry, )1 = {0} U{l.p|
p e PL,Rp)GFU{2p|p € |<Q1»RT1>|°} and |(Ma, Ry, )| =>1°
[(PQ, Rpg)|*={0}u{lp|pe |<P»R}>|C}U{2~p | p € {Q.RG)I}-
Let p € |(P1,Rp)|° then 1.p € [(My,R};)|¢ C |<M2,R}"\42>|C. So
p € (P,Rp)[% ie [(P,Rp)|® C [(P,Rp)[. let p € [(Q1,Rg,)|
then 2.p € [(My, Ry, )| € [(Ma, R}y,)|° So, p € [(Q,Rp)I ie.
(@1 Ro ) C @ RO)E By TH, [(Prl = NiJ, Ryl €
(Pl = N, Ry )| and | (@1 = Ni), Ry, o O € QU =
Nao], R [fo2]>|
By lemma 2.4.9, My[z := Ni] € M, and by lemma 2.8, M;[z :=
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Ni] = (M\y.Bolz := N1))Q1[z := N1] € R". By lemma 2.4.9, (PQ)[z :=
Ns] € M. and by lemma 2.8, (PQ)[z := Na] = (\y.P'[x := No|)Q[z :=

No] € R™. So by lemma 2.5 we have Ry, .y, = {0} U{Lp |
pERPl[I_Nl]}U{2p|p€RQ1[I_N]} andRPQ)w_ ={0}u
(9 | P e Ripny} U2 | € Ryl So (Mo =
N Ry ) = (0HLp | p € (B = NuJ, R, )} U
{2-p | pEe |<Q1[$ = Nl] RZ?l[I :=N1] >| }and |<M2[.’L' - NQ} RM2[I —N2]>|C =213
((PQ)[z := Na|, Ripg) e, I© = {03U{Lp | p € [(Plz := No|, Ry, n, [}V
{2.p [ p € Q= Na|, Ry, ) [} Let p € [(Myz = Nu, R o= )N
then either p = 0 € [(Ma[z := Ng] Riypyw=ny)) |- Or p = 1.p" such
that p' € [(Pi[z := N1|, R ,._n,)I© € (P [x = Nao|, Rop,._ny )|
So p € [(Ma[z := No|, Ry, (p.mn,))| Or p = 2.p" such that p’ €
(@ilz := N1, RO, o —N1]>|c € KQlz := N, RQwi=n ]>|C~ Sop €

|(Mz[x := N, R]\/[z[w —N2]>|C'

e Let M; = ¢cM{| € An. such that M] € An.. So |M{|¢ = |M;]|°.
lemm 2.13, |(My, RE )| = [(M{, R By I, | (M2 1= Ny, Ry )l C
[(Ma[z := Na|, Ry, .o n,p) |- Since Ml[x = N1] = ¢Mj[x := Ny] then by
lemm 2.13, [(Mi[z := MJ,RY] x| = [(M{[w = N, RYL oy )
So ‘<M1[5E —Nl] RMl[m _N1]>‘ C |<M2[IIT —NQ] RMg[r _N2]>|C, O
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Lemma 2.24. By lemma 8, p1 € R}, and ps € R),. We prove this lemma by
induction on the structure of M.

1. Let M; € V\ {c} then nothing to prove since M; does not reduce.

2. Let My = Ax.Ny € Al such that x # c¢. So |[M1]® = Az.|N1|¢ = |Ma]°.
By lemma 2.15, because My € Al. and by lemma 2.4, My = Axz.Ny and
|N2|¢ = |N1]¢ . So Ny € Al.. Since My, My ¢ RP!, by lemma 2.5,

I I I I Iy|c
Rin = {Lp | p € RY} and Ry, = {Lp | pRY} so (M1, RE)I° =
{Lp | p € (N1, R} and [(Ma, RYL)IC = {Lp | p € [(No, R
Let p € |<N1,R§3V11>|C then 1.p € |<M1,R§jl>\c, so by hypothesis, 1.p €
[(Ma, Rijz,)I°. Hence, p € [(No, R )¢, de. [(N, RRDI C [(N2, RY)I“
Since p; € R[ﬁl, p1 = 1.pj such that pj € Rf\,ll Since py € Rﬁz, pa = 1.p}
such that p} € R?\é Since |(M1,p)|¢ = |(Ma, p)|¢ then |(Ny,pi)|¢ =
|(Na, py)|°. Hence, My = Az.Ny 2437 Az.N| = M] such that Ny 25, N}
and My = Az.Ny B5; Az.Ny = M} such that Ny 25, Nj. By IH,
(N, R S (N5, RY,)|° By lemma 2.5, Ry, = {1.p | p € RY,} and

I I I I
Rip = {Lp | p € R}, so [(M],REL)[e = {L.p | p € (N, R}
and (Mg, Ryp)|° = {1.p | p € (N, R} Let p € |(M], Ryf,)|°, then

I\c I\|c I\c
p = 1.p such that p’ € [(N], RY})[* C [(N3, R, )|, so p € [(Mg, Ry, )|°

3. Let My = Xz.Ni[z := c¢(cx)] € An. such that Ny € An. and = # ¢

then |Mi|¢ = A\x.|Ni[z = c(ex)]|¢ =217 \a.|N1|°. Because |My|¢ =

Az.|Nyl° then by lemma 2.15, My = ¢"(Az.P) such that |P|° = |Ny|°.
By lemma 2.4.6, Ax.P € An.. We prove the lemma by case on Az.P.

e Either \z.P = Ax.Na[z := c(cz)] such that Ny € An.. Then,
IN1[¢ = |P|® = [ Na[a = c(ca)]|® =217 |Na|® and Ry} =273 {1.p |
P ERY ey} =27 L [ p € R Y and RYY p =273 {Lp | p €
R]sz[m;zc(m)]} =274 {lplpe RJ%Z} So, |<MlaR§/1[71>|c =218 {1.p|
p € (N, RV and (Mo, RYL) =21 [(Aa.P,RYL p)|° =218
{1.p | p € [(No, R} Let p € [(Ny, RR)| then 1.p € [(M;, Ry} )¢ C
(Mo, REL)I, s0 p € [(No, RIS, de. [(Ny, R C (N, RYT
Because p; € Rﬁ;’l, we obtain p; = 1.p] such that p] € R?\Z Because
po € R’ﬁ and by lemma 2.7.5 we obtain py = 2".1.p} such that p) €

Ri%. Because L|(Ny, pf)[* =218 [(Mi, p1)|° = [(Mo, po)|° =182
1.[{Na, p})|¢, we obtain |(N1, pi}|¢ = [{Na, p5)|¢. So My = Az.N1[z :=
clex)] Bg, APy = M} and My = *(Ax.Nofz := c(cx)]) Bp,

c"(Az.Py) = M} such that Ni[z = c(cz)] &Bn Py and Nyz :=
c(cex)) p—%ﬁn P, . By lemma 2.4.12a, P, = N{[z := c(cx)], P» =
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Ny := c(cx)], Ny g, Ni and Ny g, Nj. By IH, [(N{, R37)[
|<N§,R?\Z>|c Hence, R%’{ =273 fp | p € R?V?[I:C(m)]} =274
{Lp|peRY} and RYY p, =273 {Lp € R, _ iy} =27 {11 |
p e R} So. |(MLRIL =215 {1p | p € [(NL,REDI} and
(M3, REZD|E =213 [ Po, RYD p,)|° =215 {Lp | p € (N3, R}
Let p € |(M{,R§/Z/>|C then p = 1.p’ such that p’ € \(NLR?\,?HC c
(V5 REDI 50 p € (M5, REIE, . (M1, REL)E € |(M, REL)
e Let Az.P = Ax.Nox such that Nox € An., x & fv(N3) and Ny # ¢,
then \z.P € R, Rﬂl =273 p|pe€ R%[x;:c(cz)]} =274 .p |
pE RIB\Z} and RY7 , =25 {0} U{l.p|pe R]BVZI} By lemma 2.7.5,
Ripp =27 {200} U{2"1p | p € Ry} So, [(My, R )|" =>78
{Lp | p € [(N1, R} and (M, RYZ)| =>" [(Aa.P,RY] )| =
{0} U{Lp | p € [(Noz, RY )} Let p € [(N1,RY)|° then 1.p €
(M, RAE )| € (Mo, RYL )%, s0 p € [(Naw, RAZ ), dee. [(N1, RRT)|C €
|<N2x,7'\’,]ﬁvzm>|c. Since p; € Rﬁ/}’l, p1 = 1.py such that pj € T\’,]ﬁv’z Be-
cause ps € R@Z and 1.[(Ny,p})|¢ =218 |(My,p1)|¢ = |(Ma, p2)lc,
then py = 2™.1.p} such that p) € R?VZT Because 1.[(Ny, pj)|¢ =218
(M, pi)|© = [(Ma, pa)|® =1 |(Az.Now, 1.p3)|° = 1. |(Naw, p3)|° then
[(N1, p})|¢ = [(Naz, ph)|¢. So My = \z. N[z = c(cx)] Bog, Ao Py =
M| and My = c¢"(\z.Noz) B, ¢"(A\r.Nb) = M} such that Ny[z :=
c(cx)] ﬁ)ﬁn Py and Nox an N} . By lemma 2.4.12a, P, = Nj[z :=
c(cx)], and Ny B4, NJ. By IH, |<N{,R?V’}>|c c |<N§,R]5V2)|C. More-
ngr, R’]BV?{ =273 {1p|pec Rlﬂv;[ﬂ:c(w)]} :2-7-46{1.1) |p e 'Rﬁ,?} and
R/\ZANQ \ {0} =**{lplpe RNZ} So, |<M{aR1\/7{>|° =*1{lp|pe
[V REDIY and (M3, R0} =19 [(Aa N5, R )1 {0} =
{l.p e |<N§,R%>|C} Let p € |<M{,R§/Z/>|C then p = 1.p" such that
e NLRY € (LRI 0 p € QLRI (0. be
ML RN C (M5, REI
4. Let My = Ax.Nix € An. such that Nyz € An., v € tv(N;) U {c} and
Ny # ¢, then M; € RP" and |M;|¢ = Az.|N12|® = Az.|N{|°z. Because
|M2|® = Ax.|N1|®z, then by lemma 2.15, My = ¢"(Ax.P) such that |P|® =
|Ny|°2. By lemma 2.4.6, Az.P € An.. We prove the lemma by case on
Ax.P.
(a) Let Ax.P = Az.Na[z := c¢(cx)] such that Ny € An. then Rg}l =25
{0}uflp [ p € RY, Y and RY o =273 {1p | p € RAY, _ omy} =27
{lp | pE RIB\/’Z} SO, |<M17R§/Z>|C = {O}U{lp | pe ‘<N1$:R15v?x>|c}
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and [(Ma, RY7)[° =21 [(Aa. PRI p)[© =215 {1.p | p € (N, RRT)[}.
Hence, 0 € [(M1, RG] )[¢ but 0 & |(Ma, RGP ).

Let Az.P = Ax.Naz such that Nox € An., x & fv(N3) and Ny # ¢,
then My € RP7. Since |M|¢ = A\z.|Naz|¢ = Az.|No|x, |Niz|¢ =
|[Noz|¢ and |Ny|¢ = |N2|¢. Moreover, Rﬁnl =25 {0l u{lp|p €
R?v’ix}, R =25 {0} U{lp|pe RNQE} and Ry =275 {2".p |
peRp 25{2"0}u{2”1p|pe7zm} So, [(My, RA7)|* =
{0}U{1.p | p € [(N1z, RY )} and [(Ma, RGL)|© =21 |\ PR )¢ =
{0} U{lp | p € [(Noz, R VY. Let p € [(Ny2, RY,)|¢ then
lp € \<M1,R5">|c |<M2,R§;2>|c, sop € |<N2x,7€]ﬂv"2x>|c, ie.
(N1, RY)[C € [(Noa, RAT, )| Moreover, RY!, \ {0} =2 {L.p |
p e RY} and R\ {0} =25 {1p | p € R}, s0 [(Nyz, RY)I\
{0} = {Lp | p € [(N1,RY")[} and [(Noz, RNNHC \ {0} = {1l.p|
p € [(N2, R} Let p € [(N1, RY1)| then Lp € [(Nyz, RY! )¢\
{0} C [(Nia, RRT)E C [(Now, RRT G, s0 p € [(Na, R, e
[(N1, R C (N2, RR)[. Since py € Ry

o

e Either p; = 0. Because py € ’Rﬁ;’z and [(My, p1)|¢ = |[(Ma, p2)|°,

we obtain ps = 2".0. So M; ggn Ny and My = ¢ (\z.Nozx) B g,

¢"(Ny). Tt is done since [ (N1, R )| C [(Na, RA)[C =213 [("(Na), RD x|
e Or p; = 1.p] such that p; € Rﬁgw Becasue py € RM2 and

[(M1, p1)|¢ = [{Mz, p2)|°, we obtain p; = 2".1.p) such that p} €

R Becasue LI(N1z, p))[© = [(My, pr)|° = [(Ma, pa)|© =>4

[(Az.Naz, 1.p5)|¢ = 1.|(Naz, pb) |, we obtain | (N1, p1)|¢ = [(Naz, pb)|©.

So M; = \x.N1z ﬂﬁn Az.N{ = M{ and My = ¢"(Az.Nax) B’Bn

¢"(Ax.N§) = Mj such that Niw g, N{ and Noz 35, Nj. By

TH, [(N], RN € [(N3, RRD)I"

— Either Nyz € R?", s0 Ny = Ay.P; and by lemma 2.5, Rle =
{0}U{L.p | p € RYT}. Because (N2, RY, ) C [(Now, R,
we obtain 0 € |<N2x RNﬂHC. Hence, 0 € R?\,Zz and by
lemma 2.5, R?\,Zx ={0}u{lp|pe€ RJB\Z} Hence, Noz €
RA" and by lemma 2.15, Ny = \y.P; such that |P;|° = |P|°.

* Either p; = 0. Because |(Nix,p1)|® = [(Naz, pj)|°, we
obtain p5 = 0. So M; = Az.(\y.P)x s, \e.Pily ==
z] = M} and My = ¢"(A\z.(\y.Po)z) Bg, "z Paly ==
x]) = Mj. Because x ¢ {v(N7) U fv(N2), we obtain M| =
N; and M} = ¢"(N3). Tt is done since |<N1,RJB\Z>|C -
[(Na, RE)E =213 | (e (N), R, I
* Let p} = 1.p{ such that p{’ € R]ﬁ\g Because |(N1z, p))|°
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[{Naox, p4)|©, we obtain pj = 1.p4 such that p§ € R]BVZ So
M, = x.Niz ﬂ’ﬁn Ax.N{'x = M7 and My = ¢"(Az.Nax) Eﬁn
c"(Ax.NYx) = M) such that Ny p—1>5n Ny and N, p—2>577
NY. because x ¢ fv(N7) U fv(N3), by lemma 2.2.3, we
obtain z ¢ fv(N{) U fv(NY). So, M{,\x.Nyz € RP"
and by lemma 2.5, R%’{ ={0}u{lp|pe€e R]ﬁv?} and
R nyw = {0} U{Lp | p € R} Hence, [(M{, RA})|° =
0} U0 | € € [(NREIFY and (M, REIE =21
NG, RED v )l = {0} U {Lp | p € [(Ng REDI).
Because |(N{,’R§Z>|C C |<N§,R§Z)|C, we obtain |(M{,’R§/’[7{>|C =
{}U{Lp | p € (NI, REDIEY € {OWALp | p € (N3 REL)IY =
(M, R
— Else by lemma 2.5, R%w ={lp|pce€ Rﬁg} Let p; =

1.pY such that p{ € Rﬁg Then, p) = 1.p4 such that

py € RY. So My = dz.Niz P, A\z.N{z = M] and

My = ¢*(Ax.Noz) B g, ¢ (\x.NY x) = Mj such that N p—1>5n

N/ and Ny 25, NY. Because z & fv(Ny) U fv(Ny), by

lemma 2.2.3 we obtain, x & fv(N])Ufv(NY). So, M1, Az.Njx €

RA" and by lemma 2.5, Rf/?{ ={0}u{lp|p€ Rf\,"{} and

Ry, = {0} U{lp | p € RYI}. Hence, [(M{, Ry =
O} U{Lp | p € [(NLREDIY and [(M3, R )|e ==212
\(Az.Né,RfZ.NQF ={0u{lp|pe |<N§,Rf\,z>|c}. Because
(N7 R C (N3, REDIE, we obtain |(M{, RI) [ = {0}U
{Lp | p e (N, RENITT S {0} U{Lp | p € [(Ng, R} =
(M3, R ).

5. Let M, = CPlQl € M. such that Pl,PQ € M.. So |M1|C = |P1|C‘Q1‘C =

|Ma|¢. We prove the statement by induction on the structure of Ma:

o Let My € V\ {c} then |Ma|® = My # |P1|°|Q1].

o Let My = Ax.Ny € Al such that Ny € Al and x # ¢ then |Ms|¢ =
Az.[Na|® # | P1|°|Q1]°.

e Let My = Az.Na[z := c(cx)] € An. such that Ny € An. and x # cthen
[My|® = Az [ Nofz := c(cx)]|® # [P1]|Qu]".

e Let My = Az.Nax € An, such that Noz € Al and = & fv(N2) U {c}
and Ny # ¢ then |Ms|® = Ax.|Nax|® # | P1]°|Q1]°.

o Let My = cP>Qo € M, such that Py, Q2 € M., then |cP,|¢ = |P2l¢
|P1]¢ and [Q2|¢ = |Q1]°. Since My, cPy ¢ R", by lemma 2.5, R},
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{1.2p [ p € Rp}U{2p | p € RG,}. So, (M1, Ry )¢ = {L.p |
p € [(P1,Rp)|° }U {2p [ p € [{Q1,RG,)[°}. Again by lemma 2.5,
since Mg ZR", Ry, =1{12p | p € Rp}U{2.p | p € R,}. So,

2.p

|(Ma2, Riyp,) € = {lp WS \(Pz, P U2 | p € {Q2,RG,)I}-
Let p € |<P1,RT )|¢then 1.p € (M1, Ry )|¢ € [(Ma2, Ry, )¢ Hence,
pE |<P27,R’§32>|c7 Le. |<P17 T >‘C < |<P27R§32>|C Let p € ‘<Q1a E)l>|c
then 2.p € \(Ml,RM e C |<M2,72}\42>|°. Hence, p € |(Q27R£22>|C,

ie. (@1, EQIHC C |<Q2, TQQHC. Since p1 € Ry,
— Either p; = 1.2.p; such that p; € R and so 1.|(P1,p1)|® =
|(My, p1)|® = |(Mz, p2)|°. Hence, because p; € Rj,,, we obtain
p2 = 1.2.py such that [(Pr,p1)|® = [(P2,ps)|° and py € R,

Hence, M1 = CP1Q1 g,- CP{Ql = M{ and MQ = CPQQQ Er

cPiQs = M) such that P; ﬁr P| and P, p*%r Pj. By IH,
|(P], ’1"31,>|c C (PS5, ;2,>|C. By lemma 2.5, R}, = {12.p|p€
R;{} U{2.p|p € Ry, } and R) ;= {12.p|pe€ RTZ,} U{2.p|
p € Ry}, 50 |(ML, Rig)* = {Lp | p € [(PLRpMG U {2 |
p € 1(Q1, R, and |(M5, Ry ) = {1y | € (P Ry} U
{2.p | p € (Q2,RG,)[°}. Let p € [(M],R},)|° Either p = 1.p’
such that p" € [(P{, R, )| C [(P3, R So p € [(M3, Ry, )|
Or p = 2.p such that p’ € (Q1,Rp,)I° € [(Q2, Ry, So
p € (M5 Ry, I

— Or p1 = 2.p] such that p; € Ry, and so 2.(Q1, p1)|¢ = [(M1, p1)|¢ =

|(Mz, p2)|°. Because pa € R}, we obtain py = 2.p5 such that

{Q1,p})| = [(Qa, pb)|°. Hence, My = cP1Qy =, CP1Q1
and M2 = cPQ2 5, cP>Q4 = Mj such that Q4 L2 Q) and

Q2 3, Qb By TH, [(Q1.Rp,)|° € [(Q5, Ry, )|° By lemma 2.5,
Ry = {12.p | p € ’RT }U{2p | p 6 RT,}andR’", =
{12p | p € Rp,}U {2 ' ERT/} 50 \<M17R§W>IC— {ip|
p € {PLR)ITU L2 | p € [(QL Ry )|} and | (M, Ry )I° =
{Lp | p € (P, Rp)IHU{2.p | p € [(Q,Rgy)[} Let p €
[(M], TM{>|C. Either p = 1.p" such that p’ € [(P1,Rp )| C
|(P2,R’p,)|°. So p € |<M2’,R}wé>|° Or p = 2.p' such that
P € Q4 Ry ) € (@ Ry ). So p € | (M3, i)

e Let My = P,Q2 € M, such that P>, € M, and P, is a A
abstraction. Then |P,|¢ = |P1|¢ and |Q2]¢ = |Q1]°. Since M; € R",
by lemma 2.5, R}, = {1.2.p | p € Rp }U{2.p | p € Ry, }. So,
[(My, Ry ) = {Lp | p € (P, Rp )T UA{2p | p € [(Q1,Rg, )|}
Again by lemma 2.5, since My € R" by lemma 2.8, R}, = {0} U
{Lp|peRptU{2p | p € Ry} So, [(Mz,Ry,)" = {0jU =
{lp | p € \(szRT >|}U{2p I'p e (Q2: Ry, )|} Let p €
|(P1,Rp,)|¢ then 1.p € [(My, R}, )¢ € [(M2,R}y,)|°. Hence, p €
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|<P27R71;2>|c7 Le. |<P17R}’1>|C C |<P2ﬂR?32>|c' Let JS ‘<Q1a Z}l>|c
then 2.p € [(My, Ry, I C [(Ma, Ry, ). Hence, p € |(@a, Riy, )%,
iLe. [(Q1,Rp,) C {Q2, RG, )| Since p1 € Ry,

— Either p; = 1.2.p; such that p; € R and so 1.|(P1,p1)|® =
|(My1, p1)|¢ = [(Mz,p2)|°. Because py € R, we obtain py =
Lpy such that [(Pr,p1)|® = [(P2,py)|® and p; € Rp,. Hence,
My = cPiQy =, cP{Q1 = M and My = P,Qa 3, P3Qs = Mj
such that P, ™, P} and P, '3, Pj. By IH, |(P], R} C
|<P2’,Rrpé)|c. Because P € M., then by lemma 2.10, P} c M.
By lemma 2.4.3, Pj # ¢. By lemma 2.5, R?w{ ={l2p|pe€
R}{}U{Z.p | p € R, } and RR{;\{O} ={lpl|pe Rré}U{Q.p |
p € iy}, 50 | (ML, Ryg)|* = {Lp | p € [(PL R} U2.p | p €
(Q1, R, )|} and [(M3, Ry, )|*\{0} = {L.p | p € [(P3, Rp;)|“}U
{20 p € [(Q2,RY,)I}. Let p € (M}, Ry ). Fither p = 1.5/
such that p’ € |<P{,R§;{>|c C |(P2’,R’1;2,>|C. Sop e |<M5’R§\/1§>|c
Or p = 2.p" such that p’ € [(Q1,Rp,)I° C [(Q2,Rp,)I° So
p € (M3 R

— Or py = 2.p; such that p; € R, and so 2.[(Q1, p1)|® = [(M1, p1)|° =

|(Mz, p2)|°. Because pa € RYy,, we obtain py = 2.py such that
Q1. p1)|° = [(Q2, ph)[°. Hence, My = cP1Qy =, cP1Q} = M|
and My = PyQs %3, PoQ, — M} such that Q; %, @/ and
Q2 %, Q5. By IH, [(Q1, Ry)I° € (@, Riy,)I°. By lemma 2.5,
Riy = {1.2.p | p € Rp}U{2p | p € Ry } and Ry, \ {0} =
{Lp|peRpIU{2p | p € Ry} so (M, Ry = {L.p |
p € [(PLRY,)F U {2 | p € (@5 R, )7} and [(M, Ry, )1\
{0} ={1.p [ p € (P2, Rp)IFU{2.p | p € [(Q5, Ry, )|} Let
pE |<M{,RTM{>|C Either p = 1.p’ such that p’ € [(P1, Ry )|* C
|(P2, R’p,)|°. So p € [(My, R/[é>|c. Or p = 2.p’ such that
P’ € Qi ROIE C (@5, Riy, ) So p € (M, Ry I
e Let My = cNy € M, = An. such that Ny € An.. So |Na|¢ = |Ms|¢ =
|My|°. By lemma 2.7.5, Ry, = {2.p | p € R} and |(My, RG] )| C
|(M2,Rf/?z>\c =213 |<N2,R%)|C. Because ps € R%’z, we obtain py =
2.p} such that pj € Rfi,z So, My = c¢Ny B4, Ny = M} such that
Ny “gy Nj. Because |[(No, ph)[© =>'* |(My, p2)|° = [(My, pr)l°, by
TH, [(M{, R7)| C (N3, R =13 (M3, R |°.

73



6. Let My = (Ax.P1)Q1 € M, such that Az.P;, Q1 € M,.. By lemma 2.4.7,

lemma 2.4.11a and lemma 2.4.8, P, € M, and z # ¢. So |Mi|® =
[Az.Py|°|Q1|¢ = |Ma|¢ = (Az.|P1|%)|@1]¢. By lemma 2.8, M; € R", so by
lemma 2.5, Rl ={0}U{l.p|p € R, p }U{2.p|p € RG, } and Ry, \
{10} = {0} U{11p | p € Rp}U{2p | p € Ry }. So (b, Ry e =
{0y u{lp | p € [Qa.P,RE, p ) UA{2p | p € [(Q1,RG,)I°} and
(M1, Ry )1\ {10} = {0 U{l.lp | p € [(P,Rp)IFU{2p | p €
[(Q1,Rp, )|} We prove this statement by induction on the structure of
2.

Let My € V\ {c} then |Ms|¢ = My # |P1|°|Q1]°.

Let My = Ax.Ny € Al such that Ny € Al. and x # ¢ then |Ms|¢ =
Az Nao|® # |P1||@x]°.

Let My = Az.Na[z := c¢(cx)] € An. such that Ny € An. and = # ¢
then |Ms|® = Az.|Nafx := c(cx)]|® # | P1]°|Q1]°

o Let My = Mx.Nox € An. such that Nox € An., Ny # c and = ¢
fv(N2) U {c} then |M3|® = Az.|Nax|® # | P1]¢|Q1]°.

Let My = ¢PQ2 € M, such that Py, Qs € M.. By lemma 2.5,

Ri, = 11.2.p | p € Rp,} U{2p | p € RE,}, so [(Ma, Ry,)|¢ =
{Lp [ p € (P, Rp,)IFFU{2.p | p € [(Q2,Rp,)|°}. Because 0 €

|<M17 ?\/Il>‘cand0¢|<M27R§\42>|07W60btain|<M17 7\/[1>‘C/q|<M27R§\/I2>‘C'

Let My = ()\.Z’PQ)QQ S ./\/lc such that )\x.Pg,QQ S Mc, then |P1|C =

|P2|¢ and |Q1|¢ = |Q2]°. By lemma 2.4.7, lemma 2.4.11a and lemma 2.4.8,

Py € M.. By lemma 2.5, R}, = {0}U{l.p |p € Ry, p,}U{2.p|p €
RG,} and Ry, \ {1.0} = {0} U{l.lp|p e R }U{2.p|p € Ry, }
S0 (Mo, Ryl = {0} U{1p | p € [(AePa Ry, oI} U {25 |
p € 1(@a R} and [(My, Ry, )\ {10} = {0} U{llp | p e
(P2, Rp,) T UA{2.p | p € (Q2,RE,)[} Let p € [(Ax.P1, Ry, p)I°
then 1p € | (M1, Ry, )[° € [{Ma, Ry, I S0 p € [(Aa.Pa, R )
e, |2 PLRY, p )l C [(Ae.Pa, Ry p)le. Lot p € (PRI
then 11p € |(M1, Ry)° C [(Ma,Rig)I*. S0 p € [(Po, R,
ie. [(P1,Rp)® C [(P2, Rp,)| Let p € [(Q1,Rp,)|° then 2.p €
(M, Ry ) [(Ma, Ry ) S0 p € (@2 RE, ), 6. | (@1, Ry ) €
[(Q2,RG,)|° Since p1 € Ry,

— Either p; = 0. Because p» € Rj,,, we obtain po = 0. Hence,
M, = (M\2.P)Qy 2, Pi[z = Q1] = M and My = (\z.P)Qs >,
Pz := Q2] = M). By lemma 2.23, |<M{,R§VI{>|C C |(M5,R§Mé>\c.

— Or p; = L.pj such that p; € Ry, p and so 1.[(Az.Py,p7)|¢ =
(M1, p)l° = [(Ma, pa)°- Because py € Ri,, we obtain ps =
L.py such that [(Az. Py, p1)|® = [(Ax. P2, p3)|° and py € RY, p,-
By lemma 2.5:

* Either Az.P; = Az.Njz € R" such that z & v(Ny), M. =
An. and p; = 0. So, |{(Ax.Py,p})|° = 0. Hence, pj) = 0
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and A\x.Py = Ax.Nax such that © & fv(Ny). Hence, M; =
M. N12)Qp B, N1Qy = M| and My = (A\z.Noz)Qo 2,
NoQy = MY such that Az.Nyz 2, Ny and Az.Noz 2, N,.
By IH, |<NlﬂR7lﬂV1>|c - |<NQa 7]“\72>|C'

- If Ny is a A-abstraction then by lemma 2.8, Nyx € R". So

1.1.0 € Ry, and [(My, 1.1.0)[° = 1.1.0 = |(My, 1.10)|° €
[(M7, Ry )¢ € [(Ma, Ry, )| Hence, 1.1.0 € RY,. So No
is a A-abstraction. So R, = {0}u{l.p | p € Ry, JU{2.p |
p ERG,} and Ry, ={0}u{lp|peRy,}U{2p|pE
Rpy,}. s0 (M, Ry )7 = {0} U{Lp | p € (N0, Ry, )I°} U
{2 | p € (@1, R} and [(Mj, Ry} = 0} U {1p |
p € (N2 R U2 | 9 € QoYY Let p €
[(M{,Ry)|° Either p = 0 € [(M3,R})|° Or p =

Lp" such that p" € [(N1, Ry, )¢ € [(N2, Ri,)|° So p €
|<M£,R}"wz,>|c. Or p = 2.p" such that p’ € [(Q1,R5,)|° C
[(Q2, R, )% So p € [(Ms, Riyy,)°

- Otherwise R}, = {Lp | peRyU{2p|pe Ry}
and Ry, \ {0} = {l.p | p € RY,}U{2p | p € R},
so [(M1, Ry )|© = {Llp | p € (N, Ry)IFU{2p | p €
(@1, Ry, )} and (M3, Ry} I\(0} = {Lp | p € [(N2, R )IU
{2.p | p € (Q2,Rg,)}. Let p € [(M{,Ry,)[" Either
p = Lp’ such that p" € [(Ny, Ry, )¢ C [(N2, Ry, )| So
p € (M}, ’M2,>|C. Or p = 2.p' such that p’ € |<Q1,R221>\C -
[(Q2, Ry, So p € [(Ma, Ry, )|

* Or p; = Ll.py such that p{’ € Rp. So p; = 1.py such
that pj € R}, . Hence, M1 = (A\z.P1)Q1 &, (\z.P{)Q; =
M| and My = (Az.P,)Q2 B3, (\z.P})Qy = M} such that

’

Az.Py B Ao Pl and Ax.Py 22, AP, By IH, |(\z.P), hepp) | C
[(Az.P3, RY, py)| Since My, M € M., by lemma 2.10,
M{,M} € M,. By lemma 2.5 and lemma 2.8, Ry =
{0tu{lp | p € R’;\m_P{} U{2p | p € Ry, } and Ry =
[O}U{1p | p € Ry g U120 | p € Ry, }, 50 | (M, Ry ) =
{0}u{lp | p € [Az. P, RY, p )| FU{2.p | p € [(Q1,RG,)I}
and (M3, Ry )l° = 02U {L'p | p € [(A-P RS, o7} U
{2p | p € (Q2,RG,)I%. Let p € [(M{,R},)|° Either

p = 0 then p € \(MQ’,R?%)F Or p = 1.p’ such that p’ €
AP RS, )l € | (AP, RS, )l Sop € (M3, R )|
Or p = 2.p" such that p’ € [(Q1,Rg,)|° € [(Q2,Rp,)|° So

p € [(Mj, Ry, )1

— Or p1 = 2.p] such that p; € Ry, and so 2.(Q1, p1)|¢ = [(M1, p1)|© =
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|(Mz, p2)|°.  Because py € R}y, we obtain py = 2.py such
that [(Q1,p)|° = [(Q2.p5)|°. Hence, M = (Aa.P)Q1 =,
(A\z.P)Q) = M and My = (A\z.Py)Qs =, (\z.Py)Qy = Mj
such that Q1 =, Q| and Q> 2, Q4. By TH, [(Q}, R, )|° <
|<Q’2,R’Q,2>|° Since My, My € M., by lemma 2.10, M{, M} €
M.. By lemma 2.5 and lemma 2.8, R}, = {0u{lp | p €
Ri,ptU{2p | p € Rr,l} and Ry, = {0 u{lp | p €
ep,t UA2p | p € R} so [(M], Ry, )" = {0t U{lp |
p € [PLRE)IY U2 | € (@, Ry} and (M, Ry )| =
{0} U{Lp | p € |(Ae-Poy RS ) FH U 120 | 1 € (@b Riy I}
Let p € |<M{,R§VI{>|C Either p = 0 € |<M2/>R§\/15>‘c Or
p = L.p" such that p’ € [(Az.Py, Ry, p)|® C [(Az.P2, RY, p,)|°
Sope |<M§,R§V[§>|C Or p = 2.p’ such that p’ € |(Q’1,RTQ,1>|C -
(@ REy ). S0 p € | (M, Ry
e Let My = cNy € M, = An. such that Ny € An.. So |Na|¢ = |Ms|¢ =
|My|°. By lemma 2.7.5, Ry = {2.p | p € R} and |(My, RG] )| C
|(M2,R§}[72>\C =213 |<N2,R]’i,7;)|c. Because ps € Rf}’z, we obtain py =
2.p} such that p} € R?Vz So, My = c¢Ny B4, Ny = M} such that

N2 %677 Né Since ‘<N27pé>|c =214 |<M2,p2>|c = |<Mlap1>|ca by IH;
(ML, R C |(N3, RED) e =213 | (Mg, RE )

7. Let My = ¢N; € M. = An. such that N3 € An.. So |N1|¢ = |M;y|¢ =
|Ms|°. By lemma 2.7.5, Ry} = {2.p | p € RY'} and |(Ny, RR)|c =213
|<M1,R§Z>|° C |<M2,R’]H\}72>|c. Because p; € RJQZ, we obtain p; = 2.p]
such that p{ € R]ﬂ\g So, My = Ny %5, ¢Nj = M such that N, p—1>,g77 Nj.
Because | (N1, pf)| =214 [(My, pi)|e = (M, pa)|€, by TH, | (M, R, )| =212
(VT R € (Mg, RED)°. O

B Proofs of section 5

Lemma 5.2. 1. (a) By induction on the structure of M € AL

o Let M =z # ¢. Then ®°(z,F) = 2, F = & and fv(z) =
fv(z) \ {c}.

o Let M = Ax.N such that © # cand F/ = {p | 1.p € F} C
RE!. Then, fv(M) = fv(N) \ {z} =T fv(®¢(N, F) \ {c, 2} =
fv(Az.@°(N, F)\ {c} = tv(®°(M, F)) \ {c}.

o Let M = MMz, Fi = {p | Lp € F} C Ry}, and > = {p |
2.p € F} C Ry

— If 0 € F then, ®(M, F) = ®°(My, F1 ) (My, Fa).
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— Else, ®°(M, F) = c®°(My, F1)P (M, F2).

In both cases, fv(M) = fv(My) U fv(Mg) =1 (fv(®¢(My, F1)) \
{ch) U (fv(2°(M2, F2)) \ {c}) = fv(@°(M, F)) \ {c}.
(b) By induction on the structure of M € AL

o Let M €V, then M # c. So F = @ and ®°(M,F) = M € AlL.

e Let M = Az.N such that z # ¢ and F' = {p | 1.p € F} C R
By IH, ®¢(N,F’) € Al.. By lemma 5.2.1a, x € fv(®(N,F")).
Hence, ®¢(M,F) = Az.®¢(N,F') € Al.

o Let M = MM, Fi = {p | Lp € F} C Ry}, and > = {p |
2.p € F} C Ry,

— If 0 € F then ®¢(M,F) = &¢(My, F1)®(Ms, F2). By IH,
O(My, Fr), P¢(Msy, Fo) € Al, and as M is a A-abstraction,
®°(My, Fy) is a A-abstraction. Hence ®°(M,F) € Al.

— Else, ®°(M, F) = c®°(My, F1)®(Ma, F2). By IH, ®¢(M;, F1), (M, F2) €
Al., hence, ®°(M, F) € Al.

(¢) By induction on the structure of M € AL

o Let M =z # ¢. Then, F = @ and ®°(z, F) = = = |z|°.

e Let M = \x.N such that x #cand F' = {p| 1l.p € F} C R?VI.
Then, |®¢(M,F)|¢ = |Az.®(N,F')|¢ = I\x.|®¢(N,F')|c =H
Ax.N.

o Let M = MM, F1 = {p | 1.p6.7:}§72§4[1 and Fo = {p |
2.p € F} TRy,

— If 0 € F then M, is a A-abstraction, hence, ®¢(My, F) is a M-
abstraction. So, |®°(M,F)|¢ = |P°(My, F1)P(Ma, F2)|¢ =
|DC( My, Fy)|¢|@¢(Ma, Fo)|¢ =TH MyMy = M.

— Else, |9°(M, F)|° = [c®¢(My, F1) @ (M2, F2)|* = |0 (M, F1)|°|°(Ma, F) | ="H
MMy =M.

(d) By induction on the structure of M € AL
o If M =z # ¢ then ®°(M,F) = M and F = @ =5 |(M, R41)|°.
I

o Let M = ;\zN such that z ;éjgand F={pl|lpeF} %IR%
Then F =*°{1l.p[pe F'} =" {Lp|p € (®(N,F'), Rge (v 71} =
[LURE N, F). D) | p € Ry p} = (@M, F), Lp)l* | p €

I c 1 c
RgC(N,]-")} =25 |<CD (va)aRgc(MJ_-)H .

o Let M = MM, Fy = {p | Lp € F} C Ry, and > = {p |
2.p € F} C Ry

— If0 € F then ®°(M, F) = &¢(M;, F,)®¢(Ma, F»). Since M,
is a A-abstraction then ®¢(M;,F;) too. By lemma 5.2.1b,
®¢(M,F) € Al. then ®°(M,F) € RP!. Hence, F =26
{0}ullp [ p € AFUL2p | p € T2} =M {oyuflp pe
‘<¢C(M17‘7:1)7R@c(Ml,f1)>|c}U{2-p | pe |<¢0(M2a‘7:2)’R<1>0(M2,]:2)>|C} =
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2.

{OYU{1.[(@(My, F1), p) [ | p € Rae p, 5y UL [(@(Ma, F),

|

P € Rl agy 5y} = {OJU{I(@°(M, F), 1. Pl e Rk, Y
(@M, F), 2.p)I | p € Rk (ay, 7y} =2° [(@°(M, ), R@ nm)I"

— Else, (M, F) = c®°(My, F1)d(My, Fp). Then, F =

{Lp|lpeFYU{2p|peF} =" {1p]|pec[(®(M,F1), Rg{ M1, F)

{2.p | p € (2°(Ma, F2), Rif% ) |F = {1K@ (M1, Fr), p)|®

p e R L VUL B My, o), )7 | p e REL =
e DI 1< R 5 OB 0L, 2|
pE R<I>C(MQ,]~‘2)} =25 |(®¢(M, F), ’R@(M U

(a) By induction on the construction of M € Al.. By lemma 2.21, |[M|°¢ €

Al

Let M € V\{c}. Hence |M|¢ = M, by lemma 2.5, |(M, Rﬁ/flﬂc =
2 = Rijye and M = @(|MJ%, [(M RI)I°)

Let M = Az.P such that © # ¢, P € Al. and z € fv(P).
Then, |M[¢ = Az.|P|*. By IH, (P,R})|* € R} and P =
®°(|PI°, [(P,Rp)[). Hence, |(M, Ryp)|® =>? {|<M Lp)|®lpe
REY ={lp|pe|(P, RM)I }CA{Lp | p e R} =27 R
Moreover, M = ®¢(| M|, |(M, RE1)|).

Let M = cPQ where P,Q € Al then |M|¢ = |P|°|Q|¢. By IH,

(PRI CREL (@R C REL,

P = (P, (PR

and Q = &°(|Q|°, |(Q, RE)[®). Hence, [(M, Ri5)[e =27 {|(M,1.2.p)|° |

p € REYULM, 2.p)|° | pRG'} = {Lp | p € |(P. Rﬁ[>| Uiz |
pENQRYNY C{lp|peREIU{2p | p Ry} C
Rlﬂer Moreover M = ®¢(|M|?1, (M 7Rﬁl>| ).

Let M = P(Q where P,(Q € Al. and P is a A-abstraction.
Then, |M|¢ = |P| |Q|¢, where |P|¢ is a A-abstraction. By IH,

0

PRI € REL (@ R € REL, P = @%(1 I [(PREN)

and Q = ¢°(|Q|Ca|(Q,Rﬁ1)| ). Hence, |(M,R{[)|* =** {0} U
{(M, Lp)* | p € Rg}U {[(M2p)|° | p € RY'} = {0} U
{plpe (P,RENITFU{2.p | p € (QRG)I} € {0} U {1.p |
p € RIP\ tuf{2p | p € RIQIC} =25 R’ﬁé‘ Moreover M =
(| M7, [(M, Rip)[°)-

(b) By lemma 2.21, |M|® € AL. By lemma 2.19 ¢ ¢ fv(|]M|?). By
lemma 5.2.2a, [(M, R?\/}HC c R

e and M = @<(|MI%, [(M, D).

To prove unicity, assume that (N’, F') is another such pair. So F’ C
R]ﬁvll and M = (I)C(N/’]:/) Then, ‘M|c _ “bC(N/7.7'-/)|C _5.2.1c N
and F' =521 [(QC(N', F'), Rk o )| = (M, R O

8
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Lemma 5.3. By lemma 5 2 lc and lemma 2.16, there exists a unique p’ €
Rg{(M 7> such that |< <I>f(M £, P = p. By lemma 2.2.8, there exists P

such that <I>C(M F) 2 —>g1 P. By lemma 2.22, M =521¢ |d¢(M, F)|© X5, | P|,
such that |(R? <I>c (F) P p")|¢ = po. So p = pp and by lemma 2.2.9, M’ = |P|¢. Let

= [(P,RE)|c. Because, ®¢(M, F) ﬂﬁm P, by lemma 2.10 and lemma 5.2.1b,
P € Al.. By lemma 5.2.2a, P = ®¢(M’, F') and F’' C Rﬁ,. By lemma 5.2.2b,
F' is unique. O

Lemma 5.6. Tt sufficient to prove:
(M, F) —pra (M',F') <= @(M,F) —pr (M, F')

o =) let (M, F) —prq (M',F'). Then by definition 5.5, there exists p € F
such that M %5; M” and F' is the set of BI-residuals in M’ of the set of
redexes F in M relative to p. By definition 5.4 we obtain ®¢(M,F) — g
(M, F).

o &) Let ®°(M,F) —pr ©°(M',F') then by lemma 2.2.8, there exists
qu)C(M #) such that (M, F) Lgr ®(M’, F'). Because, by lemma 5.2.1b,
¢(M, F) € Al by lemma 2.22 and lemma 5.2.1c, M = |®°(M, F)|* B4,
|@¢(M’, F')|¢ = M’ such that |[(®(M,F), po)|¢ = p. By definition 5.4, F’
is the set of SI-residuals in M’ of the set of redexes F in M relative to
po. By definition 5.5 we obtain (M, F) —gq (M', F'). O

Lemma 5.7. By lemma 5.2.1b, ®¢(M, Fy), ®¢(M, F3) € Al.. By lemma 5.2.1c,
|D°(M, Fy)|° = |8°(M, Fp)|°. By lemma 5.2.1d, [(D°(M,F1), Rl 1y 5y =
Fi C Fy = [(@°(M, Fo), Rt s 7)) |

If (M, F1) —pra (M',F7) then by lemma 5.6, ®°(M, F1) —gr ©°(M', F7).

By lemma 2.2. 8 there exists p; € Rgi(M,fl) such that ®¢(M, Fy) Bsp @°(M', FY).
Let pg = |< (I)C(M fl),p1>|c, so by lemma 5.2.1d, pg € F;. By lemma 2.22 and
lemma 5.2.1c, M 2 = M.

By lemma 5.3 there exists a unique set F' C R@,, such that ®¢(M, Fy) L ar

®(M', F') and [(B°(M, F1), p')|° = po. By lemma 2.2.8, p' € Ryl 3 7.,

P, p1 € Rige(r. 5, by lemma 216, p' = py. So, by lemma 2.2.9, (I)C(M”]-") —
®(M', F}). By lemma 5.2.1d, ' = F{ and F| = [(@°(M', F}), Rt 1. f,)>|0.
By lemma 5.3 there exists a unique set 75 C R%,, such that ®¢(M, Fy) P 5;
O¢(M', F5) and [{(®¢(M, F2), p2)|¢ = po. By lemma 2.2.8, py € (M, Fs). B
lemma 5.2.1d, Fj = [(D°(M", F3), Rige a0 )|
Hence, by lemma 2.24, F; C F} and by lemma 5.6, (M, Fs) —pgra (M', F3).
O

. Since

Lemma 5.9. 1. By induction on I' 87 M : o. 2. By induction on I' 5" M : o.
3. First prove (*): f TF" M : 0, and ¢ C ¢ then I' " M : ¢’ by induction on
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o C o’. Then, do the proof of 3. by induction on I' V" M : ¢. For the latter we

do:
e Case(az): Tl x:0F2:0, 1" 2:0'CT,z:0and o C 0" theno’' C o
and so o' C o”. By (ax) IV, x: 0/ FF" x : ¢’. By (*), IV, 2 : o' F9" 2 : &

o Case (—pi): If EXMamr ACPING P — ) Ty A = Ay, Ay, TTTA =
[5,Tg, Ag, IV = T%,T%, Ay T T where, I'v = (x; : 04)n, T2 = (Y5, Tj)m,
Ts = (x;: 0,N0) 0, A1 = (2 : 0})n, Do = (21, p1)k, dom(I'y) Ndom(Az) =
@, Fg = (SL’Z Zﬁi)n, ]_-\/2 = (yja?j)ma AI2 = (Zl,ﬁl)k, i E O'imO'Z/-, 7_7] E Tj and
P Cp then T4 T, CT and I, AL C A By IH, T4, T FI M 10 — 71
and T4, AL FPL N @ o, 50 by (—pr), T T4, T, AL FPL MN 7. By (*),
and since 'y MT% = T'%, we have: T4, Th, AL F9 MN : 7. O

Lemma 5.10. When M —} N and M —? P, we write M —* {N, P}.
1. By induction on ¢ € Type'.

e If 0 € A then CR[ C CR" = [o]".

e If o = 7Np then by IH, CR{ C [7]", [p]” € CR", so CR; C [rNp]” C
CR".

o If 0 =7 — p then by IH, CR; C [7]", [p]” € CR" and [o¢]" € CR" by
definition. Let M € CRj, so M = zN; ... N, such that n > 0 and
Ni,...,N, € CR". Let P € [r]" so P € CR", hence, MP € CRj; C
[p]" and M € [o]".

2. Let M[z := N|N; ... N, € CR? wheren > 0,z € fv(M) and (Az.M)NN; ... N, —%,
{My, Mz}, By lemma 2.2.7, there exist Mj and Mj such that My —7j; Mj,
Mz := N]N;y ... N, =51 M, My =51 M} and M[x := N]N;...N, —h1
M}. Then we conclude using M[z := N|N; ... N, € CR?..

3. Let M[z := N|N; ... N, € CR?"wheren > 0 and (A\z.M)NN; ... N, —Bn
{My, Ma}. By lemma 2.2.7, there exist M} and Mj such that My —73, M,
Mz := N]N;y ... N, —%n M, Mo = M} and M[z := N]Ny...N, =%

M}. Then we conclude using M|z := N]N; ... N, € CR?",
4. By induction on o.

o If 0 € A, then the statement is true by 2.

o If o = 7N p, then by IH, [7]?! and [p]?! are I-saturated. Let M,
N, Ny,..., N, € A, z € ftv(M), n > 0, and M[z := N|N;...N,, €
[o]?t = [7]?1 N [p]?!. Then by I-saturation, (Az.M)NN;...N,, €
[7]%! and (Ax.M)NNj ... N,, € [p]?'. Done.

e If o = 7 — p, then by IH, [7]%! and [p]?! are I-saturated. Let n > 0,
M,N,Ny,...,N, € A, x € fv(M), and M[x := N|N; ... N, € [o]?.
Let P € [7]?! # @, then M|z := N]N;...N,P € [p]?!. By I-
saturation, (Az.M)NNj...N,P € [p]?! so (\e.M)NN;...N, €
[71°1 = [p]?*. Since, M[z := N]N;...N, € [o]?! € CRP! and
CRP! is saturated by 2, then (A\z.M)NN; ... N, € CR®L,
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5. By induction on o.
o If 0 € A, then the statement is true by 3.
e If 0 = 7N p, then by IH, [7]%" and [p]?" are saturated.
Let M[x := N|N;...N, € [o]°" = [7]°" N0 [p]®". Then by satu-
ration, (Ax.M)NNj ...N, € [7]?" and (\e.M)NN; ... N, € [p]°".
Done.
e If o = 7 — p, then by IH, [7]?" and [p]°" are saturated. Let n > 0,
M,N,Ny,...,N, €A, z €V, and M[z := N]N;...N, € [0]°". Let
P € [7]°" # @, then M|z := N]N;...N,P € [p]°?". By saturation,
(Ar.M)NN;...N,P € [p]°" so (Ax. M)NN; ... N, € [7]°" = [o]".
Since, M|[x := N|N;y... N, € [¢]?" C CR’" and CRP" is saturated
by 3, then (Az.M)NN; ... N, € CR"".
O
Lemma 5.11. By induction on 1 : 01,..., 2, : 0, F" M : 0.
e If the last rule is (az) or (ax’), use the hypothesis.
o If the last rule is (—pr). Let T1 M Ty = (2 : 0 N o), (Y = Ti)p, (2 :

pi)q such that T'y = (2; : 0)n, (i : T)p and Ty = (25 : 0))n, (2 © pi)g-
Let Vi € {1,...,n},N; € [o: No/]?! so N; € [0:]° and N; € [o/]°!
Vie {l,...,p}, P, € [7]°" and Vi € {1,...,q}, P/ € [p:]?!. So by IH,
M|(z; :== Ni)n, (yi := Pi)p] € [0 — 7] and N[(z; := Ni)n, (z; := P!),] €
[0]°7. Hence, (MN)[(z; := Ni)n, (yi := Pi)p, (zi := P})q] € [7]"".

If the last rule is (—pg). Let T' = (z; : 0;), and Vi € {1,...,n},N; €
[o:]°". So by TH, M|[(z; := N;),] € [o — 7]°" and N[(x; := N;),] €
[o]7". Hence, (M N)[(z; := N;),] € [7]°".

If the last rule is (—7). Let I' = (z; : 03)n and Vi € {1,...,n}, N; € [oi]".
Let P € [o]" # @. So by IH, M[(z; := N;)n,z := P] € [7]". Moreover
(A M)[(w; := Ni)n])P = (Az.M[(x; := N;)n]) P

— For FA1 | since x € fv(M) by lemma 2.2.4, (Az.M|[(z; := N;)n]) —pr
M[(x; := N;)pn,z := P] and since by lemma 5.10, [7]?! is I-saturated,
((Az.M)[(z; == Ni),]) P € [r]"".

— For F9" (A\x.M[(z; := N;)n]) —p M[(z; :== N;)n,x := P] and since
by lemma 5.10, [7]°" is saturated, ((Az.M)[(z; := N;),]) P € [7]°".

So (Az.M)[(x; := N;)n] € [o]" = [7]". Since x € [o]", M[(x; := N;)»] €
[7]" € CR", so Ax.M[(z; := N;)n] = Ax.M)[(z; := N;),] € CR".

Let ' = (z; : 0y)p and Vi € {1,...,n}, N; € [oi]".

If the last rule is (Ny).
= Nz)n} S [[THT and M[(ZL‘Z = Nz)n} S [[p]]r So ]\4[(;17Z =

So by TH, M[(z; :
Ni)n] € [o]".
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o If the last rule is (Ng1). Let I' = (x; : 0y)n and Vi € {1,...,n}, N; € [o;]".

So by IH, M[(z; := N;)] € [oN7]", so M[(z; := N;),] € [o]".

e If the last rule is (Np2). Let T' = (x; : 0y)p and Vi € {1,...,n}, N; € [0]".

So by TH, M|[(x; :== N;)n) € [o N 7], so M[(z; := N;),] € [7]".

Lemma 5.13. By induction on M. Note that by Lemma 2.4, M # c.

O

elet M =x#c Thenl' =Ty,2:7, IV =z:7, I z: 7 and Vo,

Iy,z:7,¢c:0F% g 1.

e Let M = Az.N € Al then by lemma 2.4, N € Al and z € fv(N). Vp:

— If ¢ € fv(M) then ¢ € fv(N) and by IH, Jo, 7 where I,z : p,c: o P!

N:7,hence IV,c: o0 F1 \a.N : p — 7.

— If ¢ ¢ fv(M) then by IH, 37 where I,z : p -°I N : 7, hence IV 77

Ae.N :T.

e Let M = Ax.N € An, then by lemma 2.4.11.11a, N € An.. By IH, Vp,

Jo,7 such that T',z : p,c: o 9" N : 7. Hence, I',c: 0 FP" \x.N : 7.

o Let M = c¢NP where N,P € Al.. Let T} =T [ fv(N) and ', =T | fv(P).

Note that IV =T | fv(cNP) =T N T%.

— If ¢ ¢ fv(N) U fv(P) then by IH, 3, 75 such that ') F#7 N : 7, and
Ty HP1 Py, Let p € Type' and 0 = 71 — 75 — p. By (—g,) twice,

LN, c:oFPT eNP :p.

If ¢ € tv(N) and ¢ ¢ fv(P) then by IH, 3oy, 71,72 such that I}, ¢ :
o1 FN 7 and T FPL P - 71y, Let p € Type' and let 0 =
o1 N (11 — 7 — p). By (az?) and (Ng), c: o F¥ c:m — 7 — p.
By lemma 5.9.3, T}, c: 0 F31 N : 1. By (—g,) twice, [, M T%, ¢ :
o FPLeNP : p.

— If ¢ € fv(N)Nfv(P) then by IH, 30y, 02, 71, 72 such that T, ¢ : o7 F57
N:mandTh,c:09 FAT N7y Let p € Type! and let o = o1N(o2N
(11 — 7 — p)). By (az!) and (Ng), c: o F* ¢c: 1 — 7 — p. By
lemma 5.9.3, T',c: 0 FT N : 7y, and T, c: 0 F91 P : 5. By (—g,)
twice, T MTh,c: a FAT NP : p.

o Let M = ¢NP where N, P € An.. by IH, Jo1,09, 71,72 such that I',c :
o1 FP" N - and T,c : oy FP7 N ¢ 7. Let p € Type1 and let o =
o1 N (oaN (11 — 72 — p)). By (az!) and (Ng), c: o Fc: 1 — = — p.
By lemma 5.9.3, T,c: o " N : 7y, and I',c : 0 F°" P : 5. By (—g,)
twice, I',c: 0 FP" ¢NP : p.

e Let M = NP where N,P € Al. and N = Az.Nyg. So Ny € Al. and
x € fv(Np). Let Ty =T [ fv(N) and I, =T | fv(P). Note that I =T |
fv(NP) =T, 1NT%. By BC, z # c and = & tv(P).
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— If ¢ ¢ fv(Ar.Ng) U fv(P) then by IH, 375 such that I'y F91 P :
and again by IH, 37 such that I'},z : 7 F%7 Ny : 7. By (—7) and
(—g,), Ty 0T, P (A2.Ng) P : 7.

— If c € fv(\z.Np) and ¢ ¢ fv(P) then by IH, 37 such that Ty H51 P :
7. Again by IH, 3o, 7, such that I'),c : o,z : 7o % Ny : 7. By
(=) and (—g,), Tf M, c: o T (A\x.Ng)P : 1.

— If ¢ € fv(A\z.Ny) N fv(P), then by TH, Joq, 7o such that T, ¢ : og FO7
P : 75 and again by IH, 3oy, 71 such that T}, c: 01,2 : 1o FA NG : .
By (—1), I'j,c : o1 FPT XaNy : 75 — 71. By (—g,), I} M Th,c:
o1 Noy FPT (Az.No)P : 7.

e Let M = NP where N, P € An. and N = A\z.Nj then by lemma 2.4.11.11a,
Ny € An.. By IH, 303,75 such that T,c : oo F77 P : 75 and again
by IH, 3oy, 7 such that I',c : 01,2 : 7 F%7 Ny : 7. By (—p), T,c:
o1 FP Ma.Ny : 9 — 71. Let 0 = o1 N os. By Lemma 5.9.3, T';c :
o M Xx.Ny : 79 — 7 and T,c : 0 97 P : 7. Hence, by (—g),
T,c:0 P (A\o.No)P : 7.

e Let M = ¢N where N € An.. By IH, 30,7 such that T,c: o F97 N : 7.
Let p € Type! and ¢/ = 0 N (7 — p). By Lemma 5.9.3, T,¢: o' FF" N : 7
and I',c: o' F9 ¢ : 7 — p. Hence, by (—g), [,c: o' F9 c¢N : p. O

Lemma 5.14. If M ﬂmd M; and M }—-2>,31d My, then there exists Fy', FY
such that (M,F1) —5, (My, Fy) and (M, Fa) —%;, (Ma, Fy). By defini-
tions 5.4 and 5.5, F/ C Ry, and F§ C Ry, . Note that by definition 5.5
and lemma 2.2.4, My, My € Al. By lemma 5.7, there exist F;” C Rﬁ/fﬂ and
FY' C Ry, such that (M, FyUFa) —%, (My, FYUF") and (M, FiUF) =%,
(M, F§ UF3"). By lemma 5.6, T' —7%; Ty and T' —J; Ty where T' = ®¢(M, F1 U
Fo), Ty = ®(My, F'UF)") and Ty = &°¢(Ma, FYUFL') . Since by lemma 5.2.1b,
T € Al and by lemma 5.13.1, T is typable in the type system DI, so T €
CRPT by corollary 5.12. So, by lemma 2.10.2, there exists T5 € Al,, such
that Ty —%; T3 and Tp —%; Ts. Let F3 = [(T3,R7)|¢ and My = [T3]°7,
then by lemma 5.2.2b, T3 = ®°(Mjz, F3). Hence, by lemma 5.6, (M, F; U

. f(/U]_—III
{”> —>E1d <M3,f3> and <M2,.7:é/ U]:é”> _>Eld <M3,.7:3>, 1.e. M1 = BId M3
f’luf//l
and Mg 252 BId M3. O

Lemma 5.16. Note that @ C Rﬁ/fl We prove this statement by induction on
the structure of M.

o Let M €V then ®°(M, @) = M and Rfj = @ by lemma 2.5.
e Let M = Ax.N such that z # ¢ then ®°(M, @) = Az.9°(N, o). By IH,

Rgiwﬂ) = ¢ and by lemma 2.5, Rgi(M,g) =0.
e Let M = My Ms then ®¢(M, @) = c®¢(M,, @)®¢(M>, &). By IH, Rgﬁ(Ml o) =
& and Rgi(Mz ) =9 and by lemma 2.5, Rg{(M o) = 9. 0
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Lemma 5.17. We prove the statement by induction on the structure of M.
e let M €V, then ®°(M,2) = M.
— Either M = z, then ®¢(M,&)[x := ®¢(N,o)] = ®°(N,2) and by

lemma 5.16, wa(z\r z) =9
— Or M # z, then ®°(M, @)[z := ®°(N,o)] = M and by lemma 2.5,
R =@
v .

e Let M = Ay.M’ such that y # ¢ then ®°(M, @) = \y.®°(M',2). So,

B Bl c
R (M, 0) [r=de(N,2)] = Rorg.de(M/,0)[z:=de (N, Such that y & fv(®¢(N, @)U
BI
{z}. By IH, R<I>C(1\/I’ &) w=de(N,2)] — &~ By lemma 2.5, Ri’c(M 2)[e:=®°(N,2)] —
@.

o Let M = M, M, then ®(M, @) = (M, )@C(MQ, D). S0, Rige (71.0) fmretbe (N.0)] =
GBI
chn(M1 @) [z:=d(N, Z)]@L(MQ,Q)[QC =d¢(N,2)]" By IH, Ry

BI
qu: (M, @) [zi=<(N,2)] = @ and by lemma 2.5, RY

<I>C(M @) [z:=®¢(N,2)] —
<I>C(M @) [z:=®¢(N,2)] _
O
Lemma 5.18. We prove the statement by induction on the structure of M.

e Let M €V then by lemma 2.5, R = &

e Let M = Az.N such that 2 # ¢ then by lemma 2.5, Rﬁ/ll ={lplpe R]BVI}
Let p € R’]g\/ﬂ then p = 1.p’ such that p’ € R?VI. Then, (M, {p}) =
c I 1
Az.®¢(N,{p'}) By lemma 2.5, RgC(M,{p}) ={lp|pc€e RgC(N,{p'})}' So,
By lemma 2.2.8, if ®¢(M,{p}) 2s; P then py = 1.p;, P = A\z.P’ and
(N, {p'}) Bs; P'. By IH, RS = @, so by lemma 2.5, RY = @.

o Let M = MlMQ.

— Let M € RP!| then M; = Az.M, and by lemma 2.5, R4 = {0} U
{lplpe R‘Xi} U{2p | peRIL}

« Either p = 0 then ®¢(M, {0}) = O¢(M,2)¢(Ms,@). By
lemma 5.16, R{)C(Ml R,I)C Ma,) — 9+ Because O°(M,{0}) —pr
M’ then by definition there exists py such that ®°(M, {0}) 24,
M'. By lemma 2.2.8, py € Rq)C(M oh- Because (M, 2) =
Az.®¢( My, @) such that z # ¢, by lemma 2.5, we obtain Rq) c(M,{0}) =
{0} if ®(M,{0}) € RPT, Rl \; (o) = @ otherwise. So py and
®°¢(M,{0}) € R%1. Hence, M' = ®°¢(My, @)[x := ®°(Ms, D))
and by lemma 5.17, R@C(Mo &) [wimbe (My,2)] = = .

# Or p = Lp' such that p’ € R} . So, (M, {p}) = c(IDC(Ml,{p’})(I)C(MQ,Q).

By lemma 5.16, Ry, o) = @. By lemma 2.5, Rl 1) =
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}. So, By lemma 2.2.8, if ®°(M, {p}) %41
M = M (Ms, @)

I
{1201 P € Rl (a1, )
M’ then py = 12p0, Py € R@(Ml '}

and ®¢(My, {p'}) —‘im M/. By IH, Rﬁjl, = @ and by lemma 2.5,
1
R = &
* Or p = 2.p’ such that p’ € Rm So, ®¢(M,{p}) = c(I>C(M17®)<I>C(M2, {p'}).
By lemma 5.16, R(I)((M o) = 9 By lemma 2.5, Rqr(M {p})
{2p|p€ R@c(Mz ) So, By lemma 2.2.8, if ®¢(M, {p}) Zsr
M’ then py = 2. pO, Pl € R M’ = c®¢(M,, @) M} and

@e(Mz,{p'})’
d¢(Ms, {p'}) 2 —m Mj}. By IH, R% = @ and by lemma 2.5,
I
R = &
— Let M ¢ RPT, then by lemma 2.5, R = {lp|pe€ ’R%l} U{2.p |
pE Rfﬁz}

* Either p = 1.p’ such that p’ € R’BI So, ®¢(M,{p}) = c®(My, {p'}) P (M2, @).
By lemma 5.16, R@"(M 2 = 9 By lemma 2.5, Rqr(M {p})
{12.p|p€ wa(M N })} So, By lemma 2.2.8, if ®¢(M, {p}) Zs;

M’ then py = 12p0, Py € R(bC(Ml (o'}’ M’ = cM{®¢(Ms, @)

and ®°(My, {p'}) —%ﬁ, M]. By IH, Rf/[{ = @ and by lemma 2.5,
R = &

* Or p = 2.p’ such that p’ € Rﬁ/g. So, ®¢(M,{p}) = c®° (M1, D) (Mo, {p'}).
By lemma 5.16, Rgi(M o) = 9 By lemma 2.5, Rg‘{(M {p})
{20 | p € Ryl ap, py) )+ S0, By lemma 2.2.8,if &°(M, {p}) *;

M’ then py = 2. pO7 Pl € chc Mo {p'})? M’ = c®¢(M,, @) M, and

¢(Ms, {p'}) 2 —m Mj. By TH, R}, = @ and by lemma 2.5,
I
REL =2
O

Lemma 5.19. By lemma 2.2.8, p € Rf/fl By lemma 5.3, there exists a unique set
F' C Ry, such that &°(M, {p}) =g ®°(M’, F'). By lemma 5.18, Ry! /., ) =
2, 50 [(®(M', F'), Rt (s )|© = @ and by lemma 5.2.1d, 7/ = @. Finally,
by lemma 5.6, (M, {p}) —s14 <M',®>. O

Lemma 5.20. 1t is obvious that —7,C—7%;. We only prove that —3,C—7;. Let
M, M'" € Al such that M —j; M’'. We prove this claim by induction on the
length of M —7%, M'.

e Let M = M’ then it is done since (M, F) —j, (M, F) for some F.
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o Let M —j; M" —pgr M'. By IH, M —7; M". By definition there exists

p such that M” %57 M’ then by lemma 5.19 (M”, {p}) — 414 (M', @), s0

M" —1; M'. Hence M —5; M" —11 M. O

Lemma 5.21. Let M € Al and ¢ be a variable such that ¢ & fv(M). Assume

M HZ’I My and M HEI My. Then by lemma 5.20, M —7; M; and M —7; M.
We prove the statement by induction on the length of M —7; M;.

o Let M = M. Hence My —7; My and My —7; Ma.

o Let M —3; M{ —1y My. By IH, 3Mj, M{ —%; M} and My —7; M}. We
prove that IMs, My —%; M3 and M} —1; M3, by induction on M| —%;
— let M| = M}, hence M4 —1; My and My —3; M.
— Let My —%; M§ —1; M3. By IH, 3M3", My —7; M3 and My —q;
M}’ By lemma 2.2.4, ¢ & tv(MY'). Since MY —11 M§ and M§ —q;
M3’ by lemma 5.14, IM3, M4 —1; M3 and MY —q1; Ms.

O

C Proofs of section 6

Lemma 6.3. 1. (a) By induction on the structure of M.
e Let M € V\ {c}, then F =26 g and U§(M,2) = {M} =
{O(M)} C 9 (M, ).
e Let M = Az.N such that z # cand F' = {p | 1.p € F} C>6
Ry
—If 0 € F then WE(M,F) = {\a.N' | N' € W§(N,F')} =
{PAz.N") | N' € U§(N, F')} C ¥e(M, F).
— Else U§(M,F) = {Mx.N'[z := c(cx)] | N' € (N, F')} =
{P(A\x.N'[z := c(cx)]) | N' € U(N,F')} C ¥e(M,F).
e Let M =NP, Fi={p|lpeF}C* R and F, = {p|2.p €
F 2O RY.
— If0 € F then U§(M,F) = {N'P' | N € U§(N,F1) AP €
VE(P, Fa)} = {°(N'P') | N' € U§(N, F1)AP' € U§(P, Fs)}.
By IH, U§(P, Fa) C ¥¢(P, F2), so by definition, ¥§(M,F) C
(M, F).
— Else WE(M, F) = {cN'P' | N' € US(N, F1)AP' € WE(P, F)}
= {(cN'P") | N' € W(N,F) AP € U5(P,F)}. By
IH, U§(P,F2) € V¢(P,Fz), so by definition, U§(M,F) C
(M, F).
(b) By induction on the structure of M.
o Let M € V\{c}, then F = @, V¢(M,F) = {c"(M) | n > 0} and
VN € U¢(M,F). tv(M) = {M} = fv(N)\ {c}.
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e Let M = \z.N such that  # 2 and F/ = {p | 1.p € F} C RI".
—If 0 € F then ¥¢(M,F) = {c"(Mx.N") | n > OAN' €
US(N,F)}. Let P € W¢(M,F), so In > 0 and N’ €
UE(N, F') such that P = ¢"(Ax.N"). Hence, fv(M) = fv(N)\

{a} =M1 (N \ {e, 2} = v(P) \ {c}.

— Else U°(M,F) = {"(Az.N'[z := ¢(czx)]) | n > OAN' €
(N, F)}. Let P € U¢(M,F), so In > 0 and IN' €
Ue(N, F') such that, P = ¢"(Az.N'[z := ¢(cz)]). Hence,
fv(M) =fv(N)\ {z} =" fv(N) \ {e, 2} = fv(P) \ {c}.

o Let M = MM, Fy = {p | Lp € F} C Ry} and > = {p |
2peF}C R%’Q.

— If 0 € F then, U¢(M, F) =
{"(N'P') | n > 0AN' € W5(My, F1) AP € U¢(Ma, F3)}.
Let P € U¢(M,F), so 3n > 0, N' € W§(M,,F;) and P’ €
Ue(Ms, Fa) such that P = ¢ (N'P’).

Hence, fv(M) = fv(M;) U fv(My) =H:1e (fy(N') \ {c}) U
(tv(P)\{c}) = (tv(N) Utv(P)) \ {c} = v(P) \ {c}.

— Else ¥¢(M,F) = {c"(cN'P") | n > 0 AN' € ¥¢(My,F1) A
P’ € (M3, F2)}. Let P € ¥¢(M,F), so In > 0, N’ €
We(My,F1) and P’ € W¢(My, F3) such that P = ¢™(cN'P’).
Hence, fv(M) = fv(M;) U fv(My) =1 (fv(N') U fv(P')) \
{c} = tv(P)\ {c}.

(¢) By induction on the structure of M.

o If M € V\{c} then F = @ and V¢(M,F) = {c"(M)|n > 0}.
Use lemma 6.2.
e Let M = \z.N such that  # ¢ and F/' = {p | 1.p € F} C RA".
— If 0 € F, then N = Px such that = & fv(P) and V°(M,F) =
{"(Ax.N") | n>0AN € U§(N,F)}. Let F' ={p|1lp€
F'} 26 Rg".
« If 0 € F then, U(N,F') = {P'z | P' € W§(P,F")}.
Let M’ € W¢(M,F), so M' = ¢"(Ax.P'xz) where n > 0
and P’ € U5(P,F"). Since z ¢ fv(P), by lemmas 6.3.1b
and 6.3.1a, z ¢ fv(P’). By IH and lemma 6.3.1a, P', P'z €
Ane. By lemma 2.4, P’ # c¢. Hence, by (R1).4, Az.P'z €
An.. We conclude using lemma 6.2.
x Else U§(N,F') = {cP'z | P' € U¢(P,F")}. Let M' €
Ue(M,F), so M' = ¢"(Ax.cP'xz) where n > 0 and P’ €
Ue(P, F'"). Since x & fv(P), by lemmas 6.3.1b, = & fv(P’),
so z & tv(cP’). By IH and lemma 6.3.1a, cP'z € An..
Since ¢P’ # ¢, by (R1).4, Ax.cP'z € An.. We conclude
using lemma 6.2.
— Else U(M,F) = {"(MAz.N'lx := c(ex)]) | n > OAN' €
Ue(N,F")}. Let N' € U¢(N,F') and n > 0. Since by IH

87



N’ € Ane, by lemma 6.2 and (R1).3, ¢"(Az.N'[z := c(cx)]) €
Ane.

eLet M=NP, Fi={p|lpeF}CRY and Fy = {p | 2.p €
FYCRY.

—If 0 € F then V¢(M,F) = {¢*(N'P') | n > 0OAN' €
UE(N, FL)AP' € U6(P, Fy)}. Let P = ¢"(N'P') € U¢(M, F)
such that n > 0, N' € W§(N, F;) and P’ € U¢(P, F,). By IH
and lemma 6.3.1a, N’, P’ € An.. Since N is a A-abstraction
then by definition N’ too. Hence, by (R3), NP’ € An.. By
lemma 6.2, ¢*(N'P’) € An..

— Else U¢(M,F) = {c"(cN'P') | n > 0AN' € U¢(N,F1)AP' €
Ue(P,Fy)}. Let ¢"(eN'P') € ¥¢(M,F) such that n > 0,
N’ € U¢(N, Fy) and P’ € W(P, ). By IH, N', P’ € Au..
Hence by (R2), cN'P’ € A1, and by lemma 6.2, ¢"(¢N'P’) €
Ane.

(d) We prove this lemma by case on the belonging of 0 in F. Let F' =
{p|lpeFyCRY.

o If 0 € F then U§(Nz,F) = {N'z | N’ € U5(N,F’)}. Hence,
P = N’z such that N’ € U§(N,F'). Since z ¢ fv(N), by lem-
mas 6.3.1b and 6.3.1a, = ¢ fv(N’). So Az.P = \z.N'z € RA"
and by lemma 2.5, R57 , = {0} U {1.p | p € RW}.

e Else UG(Nz, F) = {cN'z | N' € U(N,F’)} and P = c¢N'z such
that N € @¢(N,F’). Since x & fv(N), by lemmas 6.3.1b, = ¢
fv(N’) and so & fv(eN'). Since Azv.cN'z € RP", by lemma 2.5,
R{Lp={0tU{lp|peRE}

(e) Let Fy = {p | 1lp e F} CRY and F = {p | 2.p € F} C RP1 =25
@. We prove this lemma by case on the belonging of 0 in F.

e If0 € F then U¢(Nz, F) = {c"(N'Q) | n > OAN'" € U5(N, F1)A
Q € Uz, F2)}. So Pxr = ¢"(N'Q) such that n > 0, N’ €
UE(N,Fy) and Q € ¥°(z,F3). Son =0, N/ = P and Q = z.
Since z € V§(z, @), Pr € U5(Nz, F).

e Else U¢(Nx, F) = {c"(cN'Q) | n > 0AN" € U§(N,F1) ANQ €
Ue(x, Fa)}. So Pz = c™(cN'Q) such that n > 0, N’ € U§(N, F1)
and Q € Uz, F2). Son =0, cN' = P and Q = z. Since
v € Us(z,0), Px € W§(Nx, F).

(f) Easy by case on the structure of M and induction on n.
(g) By induction on the structure of M.

e Let M € V\{c}. Then ¥¢(M,F)={c"(M)|n>0}and F = @.
Now, use lemma 2.12.

e Let M = Az.N such that t #cand F/ ={p|1l.pe F} C Rﬁ,”.

—If 0 € F then U¢(M,F) = {c"(Ae.N') | n > OAN' €
U§(N,F)}. Let ¢*(Ax.N') € ¥°(M,F) where n > 0 and
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N’ € UE(N, F'). Then, |c"(A\z.N")|¢ =212 |\z.N'|¢ = \o.|N'|¢ =1H:1a
Ax.N.

— Else U¢(M,F) = {c"(Az.N'[z := c(cx)]) | n 2 0OAN' €
Ue(N,F)}. Let ¢"(Ax.N'[z := c(cx)]) € ¥¢(M,F) where
n > 0and N’ € U¢(N, F'). Then, [c"(A\z.N'[z := c(cz)])|¢ =212
|IA\x.N'[z = c(cx)]|¢ = Ax.|N'[z := c(cx)]|¢ =217 Ao |N'|¢ =TH
Az.N.

o Let M = MM, Fy = {p | Lp € F} C Ry} and F» = {p |
2.p € F} C R

— I£0 then U¢(M, F) = {¢"(N'P') | n > OAN' € U§(My, F1)A
P’ € U¢(My, F3)}. Let ¢*(N'P’) € (M, F) where n > 0,
N' € W§(M;,F1) and P' € U¢(Ms, Fs). Since M; is a A-
abstraction, by definition N’ too. Then, |c"(N'P’)|¢ =212
‘N’P/‘C — |N/|C|P/‘C _IH,la MlMQ.

— Else U(M,F) = {c"(cP.P) | n > 0A Py € U¢(My, Fy) A
Py, € U¢(Ms, F2)}. Let "(cP1Py) € W¢(M,F) where n > 0,

P e \I’c(Ml,fl) and P, € \IJC(MQ,}—Q). Then ‘cn(cplpz)‘c =212
‘CP1P2‘C = |CP1|C‘P2|C == |P1|C|P2|C =IH M1M2.
(h) We prove the statement by induction on M.
e Let M € V\{c}. Then U¢(M,F) = {c"(x) | n >0} and F = &.
If P € U¢(M,F) then RY" =275 &, Hence, F = |(P, R
e Let M = Xx.N such that z #cand F' ={p|lpe F} C R]‘i,".

— If 0 € F then N = Px where z ¢ tv(P) and ¥°(M,F) =
{"(Ax.N") | n > 0AN' € U§(N,F')}. Let Ny = "(Mz.N') €
We(M, F) wheren > 0 and N’ € W§(N, F'). Then, \<NO,R?VZ>\C =
{I(No,p)|* | p € RE7} =275 {|</\93-N' pI° I p € REL y} ="
{0} U{|(Az. N Lp)[* | p € R} = {0} U{LUN',p)|* | p €
Ry} = {O}U{lp | p € (N, R =12 {0} U {1p |

p € F'} =26

— Else ¥°(M, .7-“) {"(Ax.Plx := c(cx)]) | n > OAP €
Ue(N,F')}. Let Ny = ()\m Plz = c(cex)]) € ¥¢(M,F)
where n > 0 and P € \IIC(N,]-"). Then, |(N0,R§3Vz>|c =
{[(No,p)I | p € R} =27 {|(Ax.Pla = c(ca)]p)|° |

P E R bl CI)]} 278 {l(Az.Plz := c(cx)], 1.p)|* | p €
Rl —oean} =27 {02 Pla := c(ca)], Lp)|° | p € RE"} =
{LI(P[z == c(c)],p)|° | p € RE'} =218 {L(P,p)|° | p €
RE} ={Lp|p e (PREN} =" {Lp|peF}=>FF.

o Let M = MMz, Fy = {p | Lp € F} C Ry} and Fp = {p |

2.p € F} CRYL.

— If0 € F then U¢(M, F) = {¢"(NP) | n > OAN € WE(M;y, Fy)A
P € U¢(My, F2)}. Let No = ¢*(NP) € We(M,F) where
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n >0, N € U§(My,F1) and P € U¢(My, Fp). Since M is
a A-abstraction, by definition N too. Then, |<N0,7€15\,z>|C =
{|(No, p)|< | p € ROT oy} =273 {{(NP, p)|¢ | p € R} =20
{0} U{(NP,1p)|° | p € RYTYU{|(NP,2.p)|° | p € RY} =
{0} U{LUN, p)I¢ | p € RIFU{2[(P,p)° | p € RP'} =
{0} U{Lp|pe[(NREHFU{2p | p e [(PRE) =T
{0tu{lp|peF}U{2.p|peF} =26 F,

— Else \IJC(M,]:) = {Cn<CP1P2) | n>0ANP € ‘I’C<M1,.7:1) A
Py € U¢(My, Fy)}. Let Ny = ¢"(cP1Py) € W¢(M, F) where
n > O7 P1 (S \IJC(thl) and PQ (S \IJC(M27.F2). Then,
[(No, RAE = {[(No, p)|° | p € RY} =272 {|{cP Py, p)|° |
p € R p} =22 {[(cPLP2,1.2.p)° | p € REIU{|(cPL P2, 2.p) ° |
p € REYY = {LUPLDI | p € RETU{2|(Pep)¢ | p €
R} ={Lp|p e (P, RINTU{2.p | p € (P, RE|} =TH
{lp|lpeFYu{2p|pec F}=*0F.

2. (a) By induction on the construction of M.

o Let M € V\{c}. So|M|° = M, by lemma 2.5, R{] = & = R/} .
and M € Ue(| M|, [(M,RA])|) = ¥°(M, @) = {¢"(M) | n > 0}.
o Let M = Ax.N[z := c(cx)] such that © # ¢ and N € An,.
Then, |M[® = Az|N|¢ and [(M, R = {{(M,p)|° | p €
R}y =273 (M, 1p)I° | p € R oy} =7 (1M, 1) |
p € RY'} 2518 {LUN, p)I“ [ p GRB"} {Lplpe |<N Rﬁ")\ pett
{1 p | pE R ’7‘ } =217 {1 p | pe R|N[z =c(cx)] |C} C R)\;z |N[z:=c(cz)]|® =
RBN
|Az.N[z:=c(cz)]|¢"
We just proved that |(M,R§;7>|c ={lp|pce€ |<J\/',7€]5\;7>|C}7 S0
0 ¢ [(M,Ry7)|” and [N RD|* = {p | Lp € [(M,Ry])I}. By
definition, $e(| M|, |[{M, R%’HC) ={c"(Az.N'[z := c(cx)]) | n >
OAN' € E(IN|, [(N, RY)|)}. By IH, N € W*(IN|°, [(N, RR)[%),
so M € We(|M|%, [(M, R57)[).
e Let M = Ax.Nz such that Nz € An., N # cand z & fv(N)U{c}.
By lemma 2.4.7, N € An. and by lemma 2.19, = ¢ fv(|N|).
|M|¢ = \z.|Nz|¢ = Ax.|N|¢x. Since M, |[M|¢ € RP", by lemma 2.5,
Raf = (0} UL | p € Ry o0 [ REI = (0} U {Lp |p €
|<N$ Ran>| } CIH {0} U {1 p | pe 7?/|Ng;|v} R|M\
We proved [(Nz, R = {p | 1.p € (M, Ry)|} and 0 €
(M, REM)|°. By definition, We(|M |, [(M, RN |¢) = {¢*(Ae.N') | n >
OAN" € U§(|Na|®, [N, RY%)[%)}. By TH, No € Ue(|Na|?, [(Na, R3)[°),
so by lemma 6.3.1e, Nz € W§(|Nx|?", (N2, R5T)|). Hence
M € UO(IM]°, [(M.REDI).
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e Let M = ¢cNP where N,P € An., so ¢cN € An.. |M|° =
|cN|¢|P|¢ = |N|¢|P|¢. Because M,cN ¢ RP", By lemma 2.5,
Ry = {1.2p | p € R} U{2p [€ R} So (M, RYD)|" =
{Lp|pe (VR Jutzalpe (P RENIY S {Lp | p e
Ry UL2p [ p e R} C° R
We just proved that 0 ¢ [(M,R57)|¢ and |(N, RN = {p |
Lp € (M, Ryf)[°} and [(P,RED|® = {p | 2.p € (M, RED)|).
By definition, We(|M |, [(M,RI1)|¢) = {¢"(¢N'P") | n > 0 A
N’ € (N[, [(N,RR)|) A P € We(|PJ, |(P,RE")[)}. By I
N € WE(INJP, [(N, RRT)I%) and P € we(I1PI, [(P, R, s
M € Ue(| M, [(M, RA])[°).

o Let M = NP where N, P € An. and N is a Ad-abstraction. So by
definition | N|¢ is a A-abstraction too and |[M|® = |N|¢|P|¢. Since
M € RP7, By lemma 2.5, R?T = {0} U{l.p | p € RI"} U {2.p |
p € RE". So (M, Ry)|° = {0}u{lp | p e |<N RANTU{2.p |
p € (PRENY S {0} uflp | p e RYIU{2p | p €

Bn \ _2.5 1061
Ripek =7 Ripgpe:
We just proved that 0 € |(M, RN, [(N,RAN|e = {p | 1.p €
(MR} and [(P,RED|S = {p | 2.p € [(M,Ri])|}. By
definition, \IJC(|M|C,\<M,R§/?)|C) ={c"(N'P") |n>0AN'€
W(IN|e, [(N,RYD[E) A P € we(|PJ, [(P,RE|)}. By TH, N €
(NI, (N, RRY)[) and P € WE(|PJ7, (PRI, s0 N € WG(INI, [(N, RY))
and M € We(| M|, (M, RE])[°).

e Let M = cN where N € An, then |M|¢ = |N|°. By lemma 2.5,

Ryl = (2p | p € RY} so [(MREDI = [(N.REP '

U 7
Rinje = Rjagge-
By IH, N € We(|N|¢, (N, RIM|¢) = we(|M|e, [(M,REM|°), so
by lemma 6.3.1f, M € We(|M|¢, [(M,RT)|°).

(b) By lemma 2.19, ¢ € fv(|M|¢). By lemma 6.3.2a, |(M, R57)|¢ C R\M|c
and M € PU(|M|¢, |(M, R%’H ‘). To prove unicity, assume that
(N, F') is another such pair. So 7' C R4 and M € W¢(N', F'). B
lemma 6.3.1g, |M|¢ = N’ and by lemma 6.3.1h, F' = [(M,R57)|c.

O

°
o

Lemma 6.4. Let Ny € ¥¢(M,F). By lemma 6.3.1¢c, Ny € A7.. By lemma 6.3.1h
and lemma 2.16, there exists a unique p; € R?\Z, such that [(Ny,p1)|¢ = p.

By lemma 2.2.8, there exists Ny such that Ny %5, N{. By lemma 2.10,

Ni € An.. By lemma 2.22, |N;|° Hﬁn |N7|¢ such that p; = |(N1,p1)|© = p.
By lemma 6.3.1g, M |Nl\C So by lemma 2.2.9, M’ = |Nj|¢. Let F' =
|(N{,’R?V"{>|° By lemma 6.3.2b, (M’,F’) is the one and only pair such that
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c g tv(M'), 7' C R, and N| € Ue(M', F').

Let Ny € ¥¢(M,F). By lemma 6.3.1c, N3 € An.. By lemma 6.3.1h
and lemma 2.16, there exists a unique ps € Rlﬁvz, such that |(Na, p2)|¢ = p.
By lemma 2.2.8, there exists N4 such that N gﬁn Nj. By lemma 2.10,
N} € Ane. By lemma 2.22, |Ny|® B4, |Nj|© such that pb = |[(Na, p2)|¢ = p.
By lemma 6.3.1g, M = |N3|°. So by lemma 2.2.9, M’ = |Nj|°. Let 7" =
|(Né,7€§3vz>|c By lemma 6.3.2b, (M’, F") is the one and only pair such that
c g tv(M'), ' C RYT and Nj € Oe(M', F").

Because N1, N2 € U¢(M, F), by lemma 6.3.1h, [(N1, RY')|¢ = [(Na, RR)|°
and by lemma 6.3.1g, | N1|¢ = | N2|¢. Finally, by lemma 2.24, 7' = |<N{,7§’,]BV?>|C =

(NG, REDI" = 7. =
Lemma 6.15. Note that ¥¢(M,F) # &. Then, it is sufficient to prove:

o (M,F) =%, (M',F') = YN € U(M, F). AN’ € We(M', F'). N —%, N’
by induction on the reduction (M, F) —73,, (M, F').

— If (M, F) = (M', F') then it is done.

— Let (M, F) —pya (M, F") =%, (M, F'). By IH:YN” € U*(M", F"). 3N’ €
ve(M',F'). N =% N". By definition 6.6, there exist p € F such
that M D5, M"” and F” is the set of Bn-residuals in M" of the
set of redexes F in M relative to p. By definition 6.5 we obtain:
YN € U¢(M, F). IN" € U¢(M", F"). N —4, N".

o 3N € U(M, F). IN' € W(M', F'). N —%, N’ = (M, F) —%, , (M',F')
by induction on the reduction N —7% N’ such that N € U°(M,F) and
N' € we(M', F).

— If N = N’ then by lemma 6.3.2b, M = M’ and F = F.

— Let N —g, N” —%n N’. Bylemma 6.3.1¢c, N € An., so by lemma 2.10,
N" € An.. By lemma 6.3.2b, (|N”[°,[(N",R3%,)[°) is the one and
only pair such that ¢ ¢ FV (IN"[°), |(N", R,)|¢ C ’Rﬁg,,‘c and N” €
WE(IN"IE (N R So by TH, (IN[ (N, RIEI) —Fpa (M, F).
By definition, there exists p such that N Aﬁn N"" and by lemma 2.2.8,
p € R]BV". By lemmas 2.22 and lemma 6.3.1g, M = |N|¢ %5, |N"|¢
such that [(N,p)|° = po. So by lemma 2.2.8, py € R5!. By def-
inition 6.5, there exists a unique F’' C Rlﬂﬁ’”l“ such that for all
P € W°(M, F), there exist P’ € W¢(|N"|¢, F') and p}, € R such
that P &)’ﬂn P’ and |(P, p{)|® = po = |(N, p)|°. Moreover, F' is called

the set of On-residuals in |N”|¢ of the set of redexes F in M relative
to |(N,p)|¢. Since N € ¥¢(M,F), there exist P’ € W(|N"|¢,F)

and p’ € R?\,ﬂ such that N &/ﬁn P’ and |(N,p")|¢ = |[(N,p)|°. By
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lemma 2.16, p = p’, so by lemma 2.2.9, P/ = N”. Since N” €
Ue(|N"|¢, F'), by lemma 6.3.2b, F' = [(N”,R5",)|°. Finally, by def-
inition 6.6, (M, F) —gya (|N”|¢, [(N", RED)[%).

O

Lemma 6.16. By lemma 6.3.1c, V¢(M, Fy), V(M,Fy) C An.. For all Ny €
Ue(M,F1) and Ny € U°(M,F;), by lemma 6.3.1g, |N1|° = |N2|° and by
lemma 6.3.1h, |(N1, RY)|¢ = Fi € Fp = [(Na, RR).

If (M,F1) —pna (M',F{) then by lemma 6.15, there exist Ny € W¢(M, Fy)
and N{ € U°(M’', F7) such that Ny —g, N{. By definition, there exists p; such
that Ny E’ﬂn Ni, and by lemma 2.2.8, p; € Rlﬁv’z Let po = [(N1,p1)|¢, so by
lemma 6.3.1h, py € F;. By lemma 2.22 and lemma 6.3.1g, M &ﬁn M.

By lemma 6.4 there exists a unique set F' C R%’, such that for all P, €

We(M, Fy) there exist P{ € ¥¢(M',F') and p’ € Rf{’ such that P, %, Pj and

(P, p")| = po-
Because, N1 € (M, F1), there exist P{ € U¢(M',F') and p’ € RIBVZ such

that Ny ﬁ)ﬁn P} and |[(Ny,p")|® = po. Since p’,p; € R?\Z, by lemma 2.16,
p’ = p1, so by lemma 2.2.9, P{ = Nj. By lemma 6.3.1h, F' = [(N}], Ra")|¢ = F].

By lemma 6.4 there exists a unique set Fj C R%',, such that for all P, €

We(M, Fs) there exist Py € We(M', F3) and pg € Rg’; such that P, 25, P} and
|(P2, p2)|* = po-

Since We(M, Fo) # @, let Ny € ¥¢(M, Fs). So, there exist Nj € We(M', F})
and py € R]ﬂvz such that Ny %25, Nj and [(Na, p2)|¢ = po. By lemma 6.3.1h,
Fy = (N3, RRI)|°.

Hence, by lemma 2.24, F| C F; and by lemma 6.15, (M, Fa) —gna (M’, F3).

0

Lemma 6.17. 1t M D3 5,4 My and M Z35,4 M,, then there exist FJ/, FY such
that (M, F1) —p,, (M1, F') and (M, Fo) —5,, (Ma, 7). By definitions 6.5
and 6.6, F; C R@Z and FY C Rf/g. By lemma 6.16, there exist F;” C R%’l
and F3' C Ry such that (M,Fy U Fp) —%, (M1, Fy UF}") and (M, F; U
Fa) —hpa (M2, 75 U F3’). By lemma 6.15 there exist T' € W(M, F1 U F),
Ty € Ve(My, 7Y U F") and Tp € ¥°(Ma, 7y U F3") such that T —7, T1 and
T _)277 Ts.

Because by lemma 6.3.1c, T € An. and by lemma 5.13.2, T is typable in
the type system D, so T € CRP" by corollary 5.12. So, by lemma 2.10.1, there
exists T3 € Ane, such that Ty —7%, T3 and Th —7, T3. Let 73 = (T3, R§j>|c and
M3 = |T3|%", then by lemma 6.3.2a, F3 C Rggg and T3 € U¢(Ms, F3). Hence, by
lemma 6.15, (M, F}/ UF}") =%, (M, Fy) and (Ma, Fy UFY') =%, (M, Fs),

A ]_—/luf/// f/luf”/
1.e. M1 el Bnd M3 and M2 e Bnd Mg. O
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Lemma 6.19. Note that @ C Rg}] . We prove this statement by induction on
the structure of M.

e Let M € V\ {c} then ¥¢(M,2) = {"(M) | n > 0} and Rff(M) = g,
where n > 0, by lemma 2.5 and lemma 2.7.5.

e Let M = Ax.N such that z # ¢ then U¢(M, &) = {"(\z.Q[z := c(cx)]) |
n > 0AQ € ¥¢(N,2)}. Let P € U¢(M, @), then P = ¢"(\z.Q[z := c(cz)])
such that n > 0 and Q € ¥*(N, @) By IH, R/}’ = @ and by lemma 2.7.4,
lemma 2.7.3 and lemma 2.7.5, Rg,” =a.

o Let M = My Mj then U¢(M, @) = {"(cQ1Q2) | n > 0AQ1 € V(M7, D)A
Q2 € U¢(Ms,2)}. Let P € U¢(M, o), then P = ¢"(cQ1Q2) such that
n >0, Q€ U(M,2) and Qa2 € ¥¢(M,, ). By IH, R} = R)) = @
and by lemma 2.5 and lemma 2.7.5, RS = @. O

Lemma 6.20. We prove the statement by induction on the structure of M.

o Let M € V\ {c}, then ¥¢(M, o) = {c"(M) | n > 0}. Let P € U°(M, )
and Q € U¢(N, @), then P = ¢"(M) where n > 0.

— Either M = z, then Plz := Q] = ¢"(Q) and by lemma 6.3.1f and

lemma 6.19, ’Rff](Q) =0.

— Or M # z, then Plz := Q] = P and by lemma 6.19, RY = @.

o Let M = A\y.M’ such that y # ¢ then V¢(M, @) = {c"(A\y.P'[y := c(cy)]) |
n>0AP € ¥¢(M',2)}. Let P € U¢(M, o) and Q € ¥¢(N, @), then P =

" (Ay.P'ly := c(cy)]) where n > 0 and P’ € ¥¢(M’,&). So, R?DYI:Q] =
RP

B _
c"?(Ay.P'[m::Q][y::c(cy)])v such that y & tv(Q)U{z}. By IH, RP7/7[z::Q] =0

and by lemmas 2.7.4, 2.7.3 and 2.7.5, Rg{z::@] = .

o Let M = M; M, then ¥¢(M, &) = {c"(cP1P:) | n>0AP, € U(My, D) A
Py € UMy, @)}, Let P € U¢(M,o) and Q € W¢(N, D) then P =
c"(cP1Py) where n > 0, P, € V¢(M;,2) and P, € ¥¢(Msy, o). So,

Bn _ pBn Bn _ pBn _
RP[Z::Q] - Rc"(cPl[x::Q]Pz[x::Q])' By IH’ RPl[m::Q] - RPQ[IZ:Q] =g
and by lemmas 2.5 and 2.7.5, Rg’{$::Q] = o. O

Lemma 6.21. We prove the statement by induction on the structure of M.
e Let M € V\ {c} then nothing to prove since by lemma 2.5, R47 = @.
e Let M = A\x.N such that z # c.

— If M € RP" then N = Nyx such that z & FV(Ny) and by lemma 2.5,
RET={0}U{lp|peRIY. Let p € RYY then:
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* Either p = 0, then ¥¢(M,{p}) = {¢"(Mx.P’) | n > 0N P’ €
U§(N,2)}. Let P € ¥¢(M,{p}) then P = ¢"(\z.P’) such
that n > 0 and P’ € U§(N,9). So P’ = cPjz such that
P} € U°(Ny,@). By lemmas 6.19 and 6.3.1a, RY = @. If
P — g, @Q then by definition, there exists py such that P &Bn Q.
By lemma 2.4.12b and lemma 2.2.8, Q@ = ¢"(Q’), po = 2™.p{, and

’

Az.P' P25 Q' such that p) € RY" .. By lemma 6.3.1b, = ¢
fv(cP}). By lemmas 2.5, RQZ_P, ={0ju{lp|pe€ ’R’?ﬂ} = {0}.
So py = 0 and Q' = cP}. By lemma 6.19, R’}HDZ = @ and by
lemma, 2.7.5, Rg" = .

% Orp = 1.p' such that p’ € R5". So We(M,{p}) = {¢"(\z.P'[z :=
clex)]) | n > 0AP € U¢(N,{p'})}. Let P € ¥¢(M,{p}) then
P = c"(Ax.P'[z := ¢(cz)]) such that n > 0 and P’ € ¥¢(N, {p'}).
If P —g, @ then there exists py such that P @’ﬁn Q. By

lemma 2.4.12b, lemma 2.2.8, lemma 2.7.3 and lemma 2.4.12a,
po = 2™.1.p{, such that p) € ’Rlﬂ;] and @ = ¢"(Az.Q'[z := ¢(cx)])

such that P’ LO% Q'. By IH, Rg? = &, so by lemma 2.7.4,

lemma 2.7.3 and lemma 2.7.5, R, = @.

— Else, by lemma 2.5, R?} ={lp|pe Rﬁ,"} Let p = 1.p" such that
p € R So we(M,{p}) = {"(A\e.P'[z = c(cx)]) | n > OA P €
Ue(N,{p'})}. Let P € ¥¢(M,{p}) then P = " (Az.P'[z := c(cx)])
such that n > 0 and P’ € U¢(N,{p'}). If P —g, Q then there
exists pp such that P @’Bn @. By lemma 2.4.12b, lemma 2.2.8,
lemma 2.7.3 and lemma 2.4.12a, py = 2".1.p(, such that p) € Rg’ and
Q = " (Az.Q'[x := c(cx)]) such that P’ ﬁﬁn Q'. By IH, Rgf = g,
so by lemma 2.7.4, lemma 2.7.3 and lemma 2.7.5, R} = @.

o Let M = MlMQ.

— Let M € RP", then M; = \z.Mj such that = # ¢ and by lemma 2.5,
Rﬁ}] ={0}u{lp|pe Rfjl} U{2.p|pce Rf}g}. Let p € Rg} then:

x Either p = 0 then ¥¢(M,{p}) = {¢"(P1P) | n > 0A P, €
WE(My, D) AN Py € U¢(Mo,@)}. Let P € ¥¢(M,{p}) then P =
c"(PyP2) such that n > 0, P, € U§(M;,9) and P; € U°(My, ©).

By lemma 6.19 and lemma 6.3.1a, Rfj;l’ = RIB,Z = @. Since P; €
U§(My,2), Pr = Ax.Py[z := c(cx)] such that Py € ¥¢(My, @). If

P — 4, Q then by definition there exists py such that P %5, Q.

By lemma 2.4.12b and lemma 2.2.8, Q = ¢"(Q’), po = 2™.p{, and

PP &)ﬁn Q' such that p} € Rjﬁ)?Pz. By lemma 2.5, T\’,?D?PQ =
{0}. So p{ =0 and Q = " (Py[z := c¢(cP)]). Because c(cPs) €
U (Ms, @), by lemma 6.20 and lemma 2.7.5, Rg" =g.

95



* Or p = 1.p’ such that p’ € Rg/ﬂ So, Ue(M,{p}) = {c"(cPP) |
n>0AP € U(M,{p'}) AN P, € ¥¢(M>,2)}. Let P €
Ue(M,{p}) then P = ¢"(cP, Py) such that n > 0, P, € U°(My,{p'})
and P, € U¢(M,,@). By lemma 6.19, R = @. If P —4, Q
then by definition there exists py such that P @5,7 Q. By
lemma 2.4.12b and lemma 2.2.8, py = 2".p} such that p) €
Rf}’;l p, and Q = ¢*(Q') such that cP, P, ﬁﬁn Q’. By lemma 2.5,
R’f}lﬂ% ={12p|pe€ Rfi{’} So p{ = 1.2.p§ such that p{ € R?;f
So Q" = c@1P; and Py 5, Q1. By IH, R} = @, so by
lemma 2.7.5, Rg” =a.

x Or p = 2.p’ such that p’ € R%’z. So, U¢(M,{p}) ={c"(cPP) |
n>0AP € U(M,{@}) NP, € U(Ms,p')}. Let P €
Ue(M,{p}) then P = ¢"(cP, Py) such that n > 0, P, € U°(M;,{2})
and Py € U¢(Ms,p'). By lemma 6.19, R} = @. If P —4, Q
then by definition there exists py such that P @)ﬁn Q. By
lemma 2.4.12b and lemma 2.2.8, py = 2".p{ such that p) €
R’fﬁl& and Q = ¢"(Q’) such that cP; Py &577 Q'. By lemma 2.5,
Rf}zle ={2p|pe Rf,g} So p{ = 2.p{ such that pj € Rgz
So Q' = cPiQ2 and Py "3, Q. By IH, R} = 2, so by
lemma 2.7.5, Rg" =g.

— Let M ¢ RP7, then by lemma 2.5, Ry} = {Lp | p € Ry} U{2.p |
pE R']@\Z}

* Either p = 1.p’ such that p’ € RIKZ. So, Ue(M,{p}) = {c"(cPP2) |
n>0ANP € \I/C(Ml,{p/}) NPy € \IJC(M27@)}. Let P €
Ue(M,{p}) then P = ¢"(cP,Ps) such that n > 0, P; € U¢(M7,{p'})
and Py € U¢(M,,@). By lemma 6.19, R} = @. If P —4, Q
then by definition there exists py such that P ﬂﬁn Q. By
lemma 2.4.12b and lemma 2.2.8, py = 2".p{ such that pj €
Rf}ll& and Q = ¢"(Q’) such that cPy Py ﬁ’ﬁn Q. By lemma 2.5,
Rf}’;lpz ={12pl|pe RIBD?} So p = 1.2.p{ such that p{ € R[;,:’
So Q' = QP and Py %5, Q1. By IH, R} = 2, so by
lemma 2.7.5, Ry = @.

* Or p = 2.p’ such that p’ € Rf/g. So, (M, {p}) = {c"(cP1 P) |
n>0AP € U(M,{@}) NPy, € U¢(M,p")}. Let P €
Ue(M,{p}) then P = ¢"(cP; Py) such that n > 0, P, € U°(M;,{2})
and P € U¢(Ms,p'). By lemma 6.19, R} = @. If P —p, Q
then by definition there exists py such that P @’ﬁn Q. By

!

lemma 2.4.12b and lemma 2.2.8, py = 2".p} such that p) €
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Rf}zle and Q = ¢"(Q’) such that cP, P, p—6>[3,, Q’. By lemma 2.5,
Rf}llp? ={2p|pe€ Rf;;’}. So py = 2.p{ such that p{ € R?JZ.
So Q' = ¢PiQs and Py "opy Qs By IH, RY = @, so by
lemma 2.7.5, Ry = @.

O

Lemma 6.22. By lemma 2.2.8, p € Ro7. By lemma 6.4, there exists a unique
set F' C Rf\]}],, such that for all N € ¥¢(M,{p}), there exists N' € ¥¢(M', F')
such that N —g, N’. Note that U¢(M,{p}) # @. Let N € ¥°(M,{p}) then
there exists N’ € W°(M’, F') such that N —g, N’. By lemma 6.21, R]BV”, =g,
so [(N,R1)|® = @ and by lemma 6.3.1h, F/ = @. Finally, by lemma 6.15,
(M, {p}) —pna (M', ). [

Lemma 6.23. By definition —1E—5,. Weprove that —5 C—7. Let M, M e A
such that ¢ ¢ fv(M) and M —7, M'. We prove this claim by induction on
M —>;‘3n M.

e Let M = M’ then it is done since (M, F) —7%, ; (M, F).

o Let M —j, M" —p, M'. By IH, M —7 M". By definition there exists

p such that M" iﬁn M'. By lemma 2.2.3, ¢ & fv(M"). By lemma 6.22,
(M" {p}) —pna (M',2),s0 M" —1 M'. Hence M —; M" — M'. O

Lemma 6.24. Let M € A and let ¢ € V such that ¢ ¢ fv(M). Let M —3 M
and M H;}n M. Then by lemma 6.23, M —] M; and M —7 M,. We prove
the statement by induction on M —7 M;.

o Let M = M;. Hence M; —] My and My —7 M.

o Let M —% M| —; M,. By IH, 3M}, M| —% M} and My —% M;. We
prove that 3Ms5, My —% M3 and M4 —1 M3, by induction on M| —7 M.

— let M{ = M}, hence M§ —1 My and My —F M.

— Let M| =7 MY —; M}. By IH, IMY’, My —5 MY and MY —; M.
By lemma 2.2.3, ¢ ¢ fv(MY{). Since M4 —q Mg and M5 —q My’,
By lemma 6.17, IM3, M4 —1 M3 and M§' —1 M.

O
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