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Abstract

Reducibility has been used to prove a number of properties in the
λ-calculus and is well known to offer on one hand very general proofs
which can be applied to a number of instantiations, and on the other
hand, to be quite mysterious and inflexible. In this paper, we look at
two related but different results in λ-calculi with intersection types. We
show that one such result (which aims at giving reducibility proofs of
Church-Rosser, standardisation and weak normalisation for the untyped
λ-calculus) faces serious problems which break the reducibility method
and then we provide a proposal to partially repair the method. Then,
we consider a second result whose purpose is to use reducibility for typed
terms to show Church-Rosser of β-developments for untyped terms (with-
out needing to use strong normalisation), from which Church-Rosser of
β-reduction easily follows. We extend the second result to encompass both
βI- and βη-reduction rather than simply β-reduction.

1 Introduction

Based on realisability semantics [Kle45], the reducibility method has been devel-
oped by Tait [Tai67] in order to prove normalisation of some functional theories.
The idea is to interpret types by sets of λ-terms closed under some properties.
Krivine [Kri90] uses reducibility to prove the strong normalisation of system D.
Koletsos [Kol85] proves that the set of simply typed λ-terms has the Church-
Rosser property. Gallier [Gal97, Gal03] uses some aspects of Koletsos’s method
to prove a number of results such as the strong normalisation of the λ-terms
that are typable in systems like D or DΩ [Kri90]. In particular, Gallier states
some conditions a property needs to satisfy in order to be enjoyed by some
typable terms under some restrictions. Similarly, Ghilezan and Likavec [GL02]
state some conditions a property on λ-terms has to satisfy in order to be held
by all λ-terms that are typable under some restriction on types in a type sys-
tem which is close to DΩ. Additionally Ghilezan and Likavec state a condition
that a property needs to satisfy in order to step from “a λ-term typable under
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some restrictions on types holds the property” to “a λ-term of the untyped λ-
calculus holds the property”. If successful, the method designed by Ghilezan
and Likavec would provide an attractive method for establishing properties like
Church-Rosser for all the untyped λ-terms, simply by showing easier conditions
on typed terms. However, we show in this paper that Ghilezan and Likavec’s
method fails for the typed terms, and that also the step of passing from typed to
untyped terms fails. We show why we also fail to entirely repair the first result
and how far we succeeded to get when trying to repair it (we reach a result
similar to one already obtained by Ghilezan and Likavec). The second result
seems unrepairable. Ghilezan and Likavec also present a weaker version of their
method for a type system similar to system D, which allows using reducibility
to prove properties of the term typable by this system, namely the strongly
normalisable terms. As far as we know, this portion of their result is correct.
(They do not actually apply this weaker method to any sets of terms.)

In addition to the method proposed by Ghilezan and Likavec (which does not
actually work for the full untyped λ-calculus), other steps of establishing proper-
ties like Church-Rosser (also called confluence) for typed λ-terms and concluding
the properties for all the untyped λ-terms have been successfully exploited in the
literature. Koletsos and Stavrinos [KS08] use reducibility to state that λ-terms
that are typable in system D hold the Church-Rosser property. Using this result
together with a method based on β-developments [Klo80, Kri90], they show that
β-developments are Church-Rosser and this in turn will imply the confluence of
the untyped λ-calculus. Although Klop proves the confluence of β-developments
[BBKV76], his proof is based on strong normalisation whereas the Koletsos and
Stavrinos’s proof only uses an embedding of β-developments in the reduction of
typable λ-terms. In this paper, we apply Koletsos and Stavrinos’s method to
βI-reduction and then generalise it to βη-reduction.

In section 2 we introduce the formal machinery and establish the basic
needed lemmas. In section 3 we present the reducibility method used by Ghilezan
and Likavec and show that it fails at a number of important propositions which
makes it inapplicable to the full untyped λ-calculus, although a version of their
method works for the strongly normalisable terms. We give counterexamples
which show that all the conditions stated in Ghilezan and Likavec’s paper are
satisfied, yet the claimed property does not hold. In section 4 we give some
indications on the limits of the method. We show how these limits affect the
salvation of the method, we partially salvage it and we show that this can now
be correctly used to establish confluence, standardisation and weak head normal
forms but only for restricted sets of lambda terms and types (that we believe
to be equal to the set of strongly normalisable terms). We also point out some
links between the work done by Ghilezan and Likavec and the work done by
Gallier. In section 5 we adapt the Church-Rosser proof of Koletsos and Stavri-
nos [KS08] to βI-reduction. In section 6 we non-trivially generalise Koletsos
and Stavrinos’s method to handle βη-reduction. We conclude in section 7.
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2 The Formal Machinery

In this section we provide some known formal machinery and introduce new
definitions and lemmas that are necessary for the paper. Let n,m be metavari-
ables which range over the set of natural numbers N = {0, 1, 2, . . .}. We take as
convention that if a metavariable v ranges over a set s then the metavariables
vi such that i ≥ 0 and the metavariables v′, v′′, etc. also range over s.

A binary relation is a set of pairs. Let rel range over binary relations. Let
dom(rel) = {x | 〈x, y〉 ∈ rel} and ran(rel) = {y | 〈x, y〉 ∈ rel}. A function is a
binary relation fun such that if {〈x, y〉, 〈x, z〉} ⊆ fun then y = z. Let fun range
over functions. Let s→ s′ = {fun | dom(fun) ⊆ s ∧ ran(fun) ⊆ s′}.

Given n sets s1, . . . , sn, where n ≥ 2, s1 × . . . × sn stands for the set of all
the tuples built on the sets s1, . . . , sn. If x ∈ s1× . . .×sn, then x = 〈x1, . . . , xn〉
such that xi ∈ si for all i ∈ {1, . . . , n}.

2.1 Familiar background on λ-calculus

This section consists of one long definition of some familiar (mostly standard)
concepts of the λ-calculus and one lemma which deals with the shape of reduc-
tions.

Definition 2.1.

1. let x, y, z, etc. range over V, a countable infinite set of λ-term variables.
The set of terms of the λ-calculus is defined as follows:

M ∈ Λ ::= x | (λx.M) | (M1M2)

We let M,N,P,Q, etc. range over Λ. We assume the usual definition of
subterms: we write N ⊆ M if N is a subterm of M . We also assume the
usual convention for parenthesis and omit these when no confusion arises.
In particular, we write M N1...Nn instead of (...(M N1) N2...Nn−1) Nn.

We take terms modulo α-conversion and use the Barendregt convention
(BC) where the names of bound variables differ from the free ones. When
two terms M and N are equal (modulo α), we write M = N . We write
fv(M) for the set of the free variables of term M .

2. Let n ≥ 0. We define Mn(N), by induction on n, as follows: M0(N) = N
and Mn+1(N) = M(Mn(N)).

3. The set of paths is defined as follows:

p ∈ Path ::= 0 | 1.p | 2.p

We define M |p as follows: M |0 = M , (λx.M)|1.p = M |p , (MN)|1.p = M |p
and (MN)|2.p = N |p . We define 2n.p by induction on n ≥ 0: 20.p = p
and 2n+1.p = 2n.2.p.
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4. The set ΛI ⊂ Λ, of terms of the λI-calculus is defined by the following
rules:

(a) If x ∈ V then x ∈ ΛI.

(b) If x ∈ fv(M) and M ∈ ΛI then λx.M ∈ ΛI.

(c) If M,N ∈ ΛI then MN ∈ ΛI.

5. We define as usual the substitution M [x := N ] of N for all free occur-
rences of x in M . We let M [xi := Ni, . . . , xn := Nn] be the simultaneous
substitution of Ni for all free occurrences of xi in M for 1 ≤ i ≤ n.

6. Let define the four common following relations:

• Beta ::= 〈(λx.M)N,M [x := N ]〉.
• BetaI ::= 〈(λx.M)N,M [x := N ]〉, where x ∈ fv(M).

• Eta ::= 〈λx.Mx,M〉, where x 6∈ fv(M).

• BetaEta = Beta ∪ Eta.

Let 〈r, s〉 ∈ {〈Beta, β〉, 〈BetaI, βI〉, 〈Eta, η〉, 〈BetaEta, βη〉}. We define Rs

to be {L | 〈L,R〉 ∈ r}. If 〈L,R〉 ∈ r then we call L a s-redex and R the
s-contractum of L (or the L s-contractum). We define the ternary relation
→s as follows:

• M
0→s M

′ if 〈M,M ′〉 ∈ r.

• λx.M
1.p→s λx.M

′ if M
p→s M

′.

• MN
1.p→s M

′N if M
p→s M

′.

• NM
2.p→s NM

′ if M
p→s M

′.

We define the binary relation →s (we use the same name as for the just
defined ternary relation →s to simplify the notations) as follows: M →s

M ′ if there exists p such thatM
p→s M

′. We defineRs
M = {p |M |p ∈ Rs}.

7. Let M ∈ Λ and F ⊆ Λ. F � M = {N | N ∈ F ∧N ⊆M}.

8. →hβ ::= 〈λx1. . . . xn.(λx.M0)M1 . . .Mm, λx1. . . . xn.M0[x := M1]M2 . . .Mm〉,
where n ≥ 0 and m ≥ 1.

If 〈L,R〉 ∈→hβ then L = λx1. . . . xn.(λx.M0)M1 . . .Mm where n ≥ 0 and
m ≥ 1 and (λx.M0)M1 is called the β-head redex of L.

We define the binary relation →iβ as →β \ →hβ .

9. Let r ∈ {→β ,→η,→βη,→βI ,→hβ ,→iβ}. We use →∗
r to denote the reflex-

ive transitive closure of →r. We let 'r denote the equivalence relation
induced by →r. If the r-reduction from M to N is in k steps, we write
M →k

r N .
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10. Let r ∈ {βI, βη} and n ≥ 0. A term (λx.M ′)N ′
0N

′
1 . . . N

′
n is a direct r-

reduct of (λx.M)N0N1 . . . Nn iff M →∗
r M

′ and ∀i ∈ {0, . . . , n}. Ni →∗
r

N ′
i .

11. NFβ = {λx1. . . . λxn.x0N1 . . . Nm | n,m ≥ 0, N1, . . . , Nm ∈ NFβ}.

12. WNβ = {M ∈ Λ | ∃N ∈ NFβ ,M →∗
β N}.

13. Let r ∈ {β, βI, βη}.

• We say that M has the Church-Rosser property for r (has r-CR) if
whenever M →∗

r M1 and M →∗
r M2 then there is an M3 such that

M1 →∗
r M3 and M2 →∗

r M3.

• CRr = {M | M has r-CR}.
• CRr

0 = {xM1 . . .Mn | n ≥ 0 ∧ x ∈ V ∧ (∀i ∈ {1, . . . , n},Mi ∈ CRr)}.
• We use CR to denote CRβ and CR0 to denote CRβ

0 .

• A term is a weak head normal form if it is a λ-abstraction (a term
of the form λx.M) or if it starts with a variable (a term of the form
xM1 · · ·Mn). A term is weakly head normalising if it reduces to
a weak head normal form. Let Wr = {M ∈ Λ | ∃n ≥ 0,∃x ∈
V,∃P, P1, . . . , Pn ∈ Λ,M →∗

r λx.P or M →∗
r xP1 . . . Pn}. We use W

to denote Wβ .

14. We say that M has the standardisation property if whenever M →∗
β N

then there is an M ′ such that M →∗
h M

′ and M ′ →∗
i N . Let S = {M ∈

Λ | M has the standardisation property}.

The next lemma deals with the shape of reductions.

Lemma 2.2.

1. M
p→βη M

′ iff (M
p→β M

′ or M
p→η M

′).

2. If x ∈ fv(M1) then fv((λx.M1)M2) = fv(M1[x := M2]) and if (λx.M1)M2 ∈
ΛI then M1[x := M2] ∈ ΛI.

3. If M →∗
βη M

′ then fv(M ′) ⊆ fv(M).

4. If M →∗
βI M

′ then fv(M) = fv(M ′) and if M ∈ ΛI then M ′ ∈ ΛI.

5. λx.M
p→βη P iff either (p = 1.p′, P = λx.M ′ and M

p′

→βη M
′) or (p = 0,

M = Px and x 6∈ fv(P )).

6. Let r ∈ {βI, βη}, n ≥ 0, P is not a direct r-reduct of (λx.M)N0 . . . Nn

and (λx.M)N0 . . . Nn →k
r P . Then the following holds:

(a) k ≥ 1, and if k = 1 then P = M [x := N0]N1 . . . Nn.

(b) There exists a direct r-reduct (λx.M ′)N ′
0N

′
1 . . . N

′
n of (λx.M)N0 . . . Nn

such that M ′[x := N ′
0]N

′
1 . . . N

′
n →∗

r P .
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7. Let r ∈ {βI, βη}, n ≥ 0 and (λx.M)N0N1 . . . Nn →∗
r P . There exists

P ′ such that P →∗
r P

′ and if (r = βI and x ∈ fv(M)) or r = βη then
M [x := N0]N1 . . . Nn →∗

r P
′.

8. There exists M ′ such that M
p→r M

′ iff p ∈ Rr
M .

9. If M
p→r M1 and M

p→r M2 then M1 = M2

2.2 Formalising the background on developments

In this section we go through some needed background from [Kri90] on develop-
ments and we precisely formalise and establish all the necessary properties. In
order not to clutter the paper, we have put all the proofs of this section in an
appendix. Throughout the paper, we take c to be a metavariable ranging over
V. As far as we know, this is the first precise formalisation of developments.

The next definition adapts Λc of [Kri90] to deal with βI- and βη-reduction.
Basically, ΛIc is Λc where in the abstraction construction rule (R1).2, we restrict
abstraction to ΛI. In Ληc we introduce the new rule (R4) and replace the
abstraction rule of Λc by (R1).3 and (R1).4.

Definition 2.3 (Ληc, ΛIc).

1. We let Mc range over Ληc,ΛIc defined as follows (note that ΛIc ⊂ ΛI):

(R1) If x is a variable distinct from c then

1. x ∈Mc.
2. If M ∈ ΛIc and x ∈ fv(M) then λx.M ∈ ΛIc.
3. If M ∈ Ληc then λx.M [x := c(cx)] ∈ Ληc.
4. If Nx ∈ Ληc such that x 6∈ fv(N) and N 6= c then λx.Nx ∈ Ληc.

(R2) If M,N ∈Mc then cMN ∈Mc.

(R3) If M,N ∈Mc and M is a λ-abstraction then MN ∈Mc.

(R4) If M ∈ Ληc then cM ∈ Ληc.

Here is a lemma related to terms of Mc.

Lemma 2.4 (Generation).

1. M [x := c(cx)] 6= x and for any N , M [x := c(cx)] 6= Nx.

2. Let x 6∈ fv(M). Then, M [y := c(cx)] 6= x and for any N , M [y := c(cx)] 6=
Nx.

3. If M ∈Mc then M 6= c.

4. If M,N ∈Mc then M [x := N ] 6= c.

5. Let MN ∈Mc. Then N ∈Mc and either
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• M = cM ′ where M ′ ∈Mc or

• M = c and Mc = Ληc or

• M = λx.P is in Mc

6. If cn(M) ∈Mc then M ∈Mc.

7. If λx.P ∈ Ληc then x 6= c and either

• P = Nx where N,Nx ∈ Ληc where x 6∈ fv(N) and N 6= c or

• P = N [x := c(cx))] where N ∈ Ληc

8. If λx.P ∈ ΛIc then x 6= c, x ∈ fv(P ) and P ∈ ΛIc.

9. If M,N ∈Mc and x 6= c then M [x := N ] ∈Mc.

10. Let y 6∈ {x, c}. Then:

• if M [x := c(cx)] = y then M = y,

• if M [x := c(cx)] = Py then M = Ny and P = N [x := c(cx)],

• if M [x := c(cx)] = λy.P then M = λy.N and P = N [x := c(cx)].

• if M [x := c(cx)] = PQ then either M = x, P = c and Q = cx or
M = P ′Q′ and P = P ′[x := c(cx)] and Q = Q′[x := c(cx)].

• if M [x := c(cx)] = (λy.P )Q then M = (λy.P ′)Q′ and P = P ′[x :=
c(cx)] and Q = Q′[x := c(cx)].

11. Let M ∈ Ληc.

(a) If M = λx.P then P ∈ Ληc.

(b) If M = λx.Px then Px, P ∈ Ληc, x 6∈ fv(P ) ∪ {c} and P 6= c.

12. (a) Let x 6= c. M [x := c(cx)]
p→βη M ′ iff M ′ = N [x := c(cx)] and

M
p→βη N .

(b) Let n ≥ 0. If cn(M)
p→βη M

′ then p = 2n.p′ and there exists N ∈ Ληc

such that M ′ = cn(N) and M
p′

→βη N .

Here is a lemma about the paths of redexes in a term:

Lemma 2.5. Let r ∈ {βI, βη}.

• If M ∈ V then Rr
M = ∅.

• If M = λx.N then:

– if M ∈ Rr then Rr
M = {0} ∪ {1.p | p ∈ Rr

N}.
– else, Rr

M = {1.p | p ∈ Rr
N}.
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• If M = PQ then:

– if M ∈ Rr then Rr
M = {0} ∪ {1.p | p ∈ Rr

P } ∪ {2.p | p ∈ Rr
Q}.

– else, Rr
M = {1.p | p ∈ Rr

P } ∪ {2.p | p ∈ Rr
Q}.

Here is a lemma about the set of redexes in a term:

Lemma 2.6. Let r ∈ {βI, βη} and F ⊆ Rr
M .

• If M ∈ V then F = ∅.

• If M = λx.N then F ′ = {p | 1.p ∈ F} ⊆ Rr
N and:

– if M ∈ Rr then F \ {0} = {1.p | p ∈ F ′}.
– else, F = {1.p | p ∈ F ′}.

• If M = PQ then F1 = {p | 1.p ∈ F} ⊆ Rr
P , F2 = {p | 2.p ∈ F} ⊆ Rr

Q

and:

– if M ∈ Rr then F \ {0} = {1.p | p ∈ F1} ∪ {2.p | p ∈ F2}.
– else, F = {1.p | p ∈ F1} ∪ {2.p | p ∈ F2}.

The next lemma shows the role on redexes of substitutions involving c.

Lemma 2.7. Let r ∈ {βη, βI}. and x 6= c.

1. M ∈ Rβη iff M [x := c(cx)] ∈ Rβη.

2. If p ∈ Rβη
M then M [x := c(cx)]|p = M |p [x := c(cx)].

3. p ∈ Rβη
λx.M [x:=c(cx)] iff p = 1.p′ and p′ ∈ Rβη

M [x:=c(cx)].

4. Rβη
M [x:=c(cx)] = Rβη

M .

5. Rβη
cn(M) = {2n.p | p ∈ Rβη

M }.

The next lemma shows that any element (λx.P )Q of ΛIc (resp. Ληc) is a βI-
(resp. βη-) redex.

Lemma 2.8. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)} and M ∈ Mc. If M =
(λx.P )Q then M ∈ Rr.

The next lemma shows that ΛIc (resp. Ληc) contains all the βI-redexes (resp.
βη-redexes) of all its terms.

Lemma 2.9. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)} and M ∈ Mc. If p ∈ Rr
M

then M |p ∈Mc.
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In order to deal with βI- and βη-reduction, the next lemma generalises a
lemma given in [Kri90] (and used in [KS08]). It states that Ληc and ΛIc are
closed under →βη- resp. →βI -reduction.

Lemma 2.10.

1. If M ∈ Ληc and M →βη M
′ then M ′ ∈ Ληc.

2. If M ∈ ΛIc and M →βI M
′ then M ′ ∈ ΛIc.

The next definition again taken from [Kri90], erases all the c’s from a Mc-
term. We extend it to paths.

Definition 2.11 (| − |c). We define |M |c and |〈M, p〉|c inductively as follows:
• |x|c = x • |λx.N |c = λx.|N |c, if x 6= c
• |cP |c = |P |c • |NP |c = |N |c|P |c if N 6= c
• |〈M, 0〉|c = 0 • |〈λx.M, 1.p〉|c = 1.|〈M, p〉|c, if x 6= c
• |〈cM, 2.p〉|c = |〈M, p〉|c • |〈NM, 2.p〉|c = 2, |〈M, p〉|c if N 6= c
• |〈MN, 1.p〉|c = 1.|〈M, p〉|c

Let F ⊆ Path then we define |〈M,F〉|c = {|〈M, p〉|c | p ∈ F}.

Now, cn is indeed erased from |cn(M)|c.

Lemma 2.12. Let n ≥ 0 then |cn(M)|c = |M |c.

Lemma 2.13. |〈cn(M),Rβη
cn(M)〉|

c = |〈M,Rβη
M 〉|c.

Lemma 2.14. |〈cn(M), 2n.p〉|c = |〈M, p〉|c.

Also, cn is erased from |cn(N)|c for any cn(N) subterm of M .

Lemma 2.15. Let |M |c = P .

• If P ∈ V then ∃n ≥ 0 such that M = cn(P ).

• If P = λx.Q then ∃n ≥ 0 such that M = cn(λx.N) and |N |c = Q.

• If P = P1P2 then ∃n ≥ 0 such that M = cn(M1M2), M1 6= c, |M1|c = P1

and |M2|c = P2.

If the c-erasure of two paths of M are equal, then these paths are also equal:

Lemma 2.16. Let r ∈ {βI, βη}. If p, p′ ∈ Rr
M and |〈M, p〉|c = |〈M, p′〉|c then

p = p′.

Inside a term, substituting x by c(cx) is undone by c-erasure.

Lemma 2.17. Let x 6= c. Then, |M [x := c(cx)]|c = |M |c.

Lemma 2.18. Let x 6= c and p ∈ Rβη
M . Then, |〈M [x := c(cx)], p〉|c = |〈M, p〉|c.
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The next lemma shows that c is definitely erased from the free variables of
|M |c.

Lemma 2.19. If M ∈Mc then fv(M) \ {c} = fv(|M |c).

Erasure propagates through substitutions.

Lemma 2.20. If M,N ∈ Mc and x 6= c then |M [x := N ]|c = |M |c[x :=
|N |c].

Now, c-erasing an ΛIc-term returns an ΛI-term.

Lemma 2.21. If M ∈ ΛIc then |M |c ∈ ΛI.

Lemma 2.22. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)} and M ∈ Mc. If p ∈ Rr
M

and M
p→r M

′ then |M |c p′

→r |M ′|c such that p′ = |〈M, p〉|c.

Lemma 2.23. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)}, M1, N1,M2, N2 ∈ Mc,
x 6= c, |〈M1,Rr

M1
〉|c ⊆ |〈M2,Rr

M2
〉|c, |〈N1,Rr

N1
〉|c ⊆ |〈N2,Rr

N2
〉|c, |M1|c =

|M2|c and |N1|c = |N2|c. Then, |〈M1[x := N1],Rr
M1[x:=N1]

〉|c ⊆ |〈M2[x :=
N2],Rr

M2[x:=N2]
〉|c.

Lemma 2.24. Let (Mc, r) ∈ {(ΛIc, βI), (Ληc, βη)}, M1,M2 ∈ Mc such that
|〈M1,Rr

M1
〉|c ⊆ |〈M2,Rr

M2
〉|c and |M1|c = |M2|c. If M1

p1→r M
′
1, M2

p2→r M
′
2

such that |〈M1, p1〉|c = |〈M2, p2〉|c then |〈M ′
1,Rr

M ′
1
〉|c ⊆ |〈M ′

2,Rr
M ′

2
〉|c.

2.3 Background on Types and Type Systems

In this section we give the background necessary for the type systems used in
this paper.

Definition 2.25. Let i ∈ {1, 2}.

1. Let A be a denumerably infinite set of type variables, let α range over A
and let Ω 6∈ A be a constant type. The sets of types Type1 ⊂ Type2 are
defined as follows:

σ ∈ Type1 ::= α | σ1 → σ2 | σ1 ∩ σ2

τ ∈ Type2 ::= α | τ1 → τ2 | τ1 ∩ τ2 | Ω

2. We let Γ ∈ B1 = {{x1 : σ1, . . . , xn : σn} | ∀i, j ∈ {1, . . . , n}. xi = xj ⇒
σi = σj} and Γ,∆ ∈ B2 = {{x1 : τ1, . . . , xn : τn} | ∀i, j ∈ {1, . . . , n}. xi =
xj ⇒ τi = τj}. We define dom(Γ) = {x | x : σ ∈ Γ}. When dom(Γ1) ∩
dom(Γ2) = ∅, we write Γ1,Γ2 for Γ1 ∪Γ2. We write Γ, x : σ for Γ, {x : σ}
and x : σ for {x : σ}. We denote Γ = xm : σm, . . . , xn : σn where
n ≥ m ≥ 0, by (xi : σi)m

n . If m = 1, we simply denote Γ by (xi : σi)n.

If Γ1 = (xi : τi)n, (yi : τ ′′i )p and Γ2 = (xi : τ ′i)n, (zi : τ ′′′i )q where x1, . . . , xn

are the only shared variables, then Γ1 uΓ2 = (xi : τi ∩ τ ′i)n, (yi : τ ′′i )p, (zi :
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τ ′′′i )q.
Let X ⊆ V. We define Γ � X = Γ′ ⊆ Γ where dom(Γ′) = dom(Γ) ∩X.
Let v be the reflexive transitive closure of the axioms τ1 ∩ τ2 v τ1 and
τ1 ∩ τ2 v τ2. If Γ = (xi : τi)n and Γ′ = (xi : τ ′i)n then Γ v Γ′ iff for all
i ∈ {1, . . . , n}, τi v τ ′i .

3. • – Let ∇1 = {(ref), (tr), (inL), (inR), (→ -∩), (mon′), (mon), (→
-η)}.

– Let ∇2 = ∇1 ∪ {(Ω), (Ω′ − lazy)}.
– Let ∇D = {(inL), (inR)}.
– Let ∇DI

= ∇D ∪ {(idem)}
• – Type∇1 = Type∇D = Type∇DI = Type1.

– Type∇2 = Type2.

• – Let ∇ be a set of axioms from Figure 1. The relation ≤∇ is
defined on types Type∇ and axioms ∇. We use ≤1 instead of
≤∇1 and ≤2 instead of ≤∇2 .

– The equivalence relation is defined by: τ1 ∼∇ τ2 ⇐⇒ τ1 ≤∇
τ2∧τ2 ≤∇ τ1. We use ∼1 instead of ∼∇1 and ∼2 instead of ∼∇2 .

• – Let λ∩1 be the type system built on Λ, Type1 and `1 such that
`1 is the type derivability relation on B1, Λ and Type1 generated
using the following typing rules of Figure 2: (ax), (→E), (→I),
(∩I) and (≤1)).

– Let λ∩2 be the type system built on Λ, Type2 and `2 such that
`2 is type derivability relation on B2, Λ and Type2 generated
using the following typing rules of Figure 2: (ax), (→E), (→I),
(∩I), (≤2) and (Ω).

– Let D be the type system built on Λ, Type1 and `βη where `βη

is the type derivability relation on B1, Λ and Type1 generated
using the following typing rules of Figure 2: (ax), (→E), (→I),
(∩I) , (∩E1) and (∩E2).

– LetDI be the type system built on Λ, Type1 and `βI where `βI is
the type derivability relation on B1, Λ and Type1 generated using
the following typing rule of Figure 2: (axI), (→EI ), (→I), (∩I)
, (∩E1) and (∩E2). Moreover, in this type system, we assume
that σ ∩ σ = σ.

3 Problems of Ghilezan and Likavec’s reducibil-
ity method [GL02]

In this section we introduce the reducibility method of [GL02] and show where
exactly it fails. Throughout, we let � = λx.xx.
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(ref) τ ≤ τ (Ω) τ ≤ Ω
(tr) (τ1 ≤ τ2 ∧ τ2 ≤ τ3) ⇒ τ1 ≤ τ3 (Ω′-lazy) τ → Ω ≤ Ω → Ω
(inL) τ1 ∩ τ2 ≤ τ1 (idem) τ ≤ τ ∩ τ
(inR) τ1 ∩ τ2 ≤ τ2 (Ω-η) Ω ≤ Ω → Ω
(→ -∩) (τ1 → τ2) ∩ (τ1 → τ3) ≤ τ1 → (τ2 ∩ τ3) (Ω-lazy) τ1 → τ2 ≤ Ω → Ω
(mon′) (τ1 ≤ τ2 ∧ τ1 ≤ τ3) ⇒ τ1 ≤ τ2 ∩ τ3
(mon) (τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2) ⇒ τ1 ∩ τ2 ≤ τ ′1 ∩ τ ′2
(→ -η) (τ1 ≤ τ ′1 ∧ τ ′2 ≤ τ2) ⇒ τ ′1 → τ ′2 ≤ τ1 → τ2

Figure 1: Ordering axioms on types

Γ, x : τ ` x : τ
(ax)

x : τ ` x : τ (axI)

Γ `M : τ1 → τ2 Γ ` N : τ1
Γ `MN : τ2

(→E)
Γ1 `M : τ1 → τ2 Γ2 ` N : τ1

Γ1 u Γ2 `MN : τ2
(→EI )

Γ, x : τ1 `M : τ2
Γ ` λx.M : τ1 → τ2

(→I)
Γ `M : τ1 Γ `M : τ2

Γ `M : τ1 ∩ τ2
(∩I)

Γ `M : τ1 ∩ τ2
Γ `M : τ1

(∩E1)
Γ `M : τ1 ∩ τ2

Γ `M : τ2
(∩E2)

Γ `M : τ1 τ1 ≤∇ τ2
Γ `M : τ2

(≤∇) Γ `M : Ω
(Ω)

Figure 2: Typing rules
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Definition 3.1 (Type systems and reducibility of [GL02]). Let i ∈ {1, 2}. Let
P range over 2Λ.

1. The type interpretation J−Ki
− ∈ Typei → 2Λ → 2Λ is defined by:

• JαKi
P = P.

• Jτ1 ∩ τ2Ki
P = Jτ1Ki

P ∩ Jτ2Ki
P .

• JΩK2P = Λ.

• Jσ1 → σ2K1P = {M | ∀N ∈ Jσ1K1P .MN ∈ Jσ2K1P}.
• Jτ1 → τ2K2P = {M ∈ P | ∀N ∈ Jτ1K2P ,MN ∈ Jτ2K2P}.

2. A valuation of term variables in Λ is a function ν ∈ V → Λ. We write
v(x := M) for the function v′ where v′(x) = M and v′(y) = v(y) if y 6= x.

3. let ν be a valuation of term variables in Λ. Then J−Kν ∈ Λ → Λ is defined
by:
JMKν = M [x1 := ν(x1), . . . , xn := ν(xn)], where FV (M) = {x1, . . . , xn}.

4. • ν |=i
P M : τ iff JMKν ∈ JτKi

P

• ν |=i
P Γ iff ∀(x : τ) ∈ Γ. ν(x) ∈ JτKi

P

• Γ |=i
P M : τ iff ∀ν ∈ V → Λ. ν |=i

P Γ ⇒ ν |=i
P M : τ

5. Let X ⊆ Λ. Let us recall the variable, saturation, closure and invariance
under abstraction predicates defined by Ghilezan and Likavec:

• VARi(P,X ) ⇐⇒ V ⊆ X .

• SAT1(P,X ) ⇐⇒
(∀M ∈ Λ. ∀x ∈ V. ∀N ∈ P. M [x := N ] ∈ X ⇒ (λx.M)N ∈ X ).

• SAT2(P,X ) ⇐⇒
(∀M,N ∈ Λ. ∀x ∈ V. M [x := N ] ∈ X ⇒ (λx.M)N ∈ X ).

• CLO1(P,X ) ⇐⇒ (∀M ∈ Λ. ∀x ∈ V. Mx ∈ X ⇒M ∈ P).

• CLO2(P,X ) ⇐⇒ CLO(P,X ) ⇐⇒
(∀M ∈ Λ. ∀x ∈ V. M ∈ X ⇒ λx.M ∈ P).

• VAR(P,X ) ⇐⇒ (∀x ∈ V. ∀n ∈ N. ∀N1, . . . , Nn ∈ P. xN1 . . . Nn ∈
X ).

• SAT(P,X ) ⇐⇒ (∀M,N ∈ Λ. ∀x ∈ V. ∀n ∈ N. ∀N1, . . . , Nn ∈ P.
M [x := N ]N1 . . . Nn ∈ X ⇒ (λx.M)NN1 . . . Nn ∈ X ).

• INV(P) ⇐⇒ (∀M ∈ Λ. ∀x ∈ V. M ∈ P ⇐⇒ λx.M ∈ P).

For R ∈ {VARi,SATi,CLOi}, let R(P) ⇐⇒ ∀τ ∈ Typei. R(P, JτKi
P).

Lemma 3.2 (Basic lemmas proved in [GL02]).

1. (a) JMKν(x:=N) ≡ JMKν(x:=x)[x := N ]
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(b) JMNKν ≡ JMKνJNKν

(c) Jλx.MKν ≡ λx.JMKν(x:=x)

2. If VAR1(P) and CLO1(P) then

(a) for all σ ∈ Type1, JσK1P ⊆ P.

(b) if SAT1(P) and Γ `1 M : σ then Γ |=1
P M : σ and M ∈ P

3. For all τ ∈ Type2, if τ 6∼2 Ω then JτK2P ⊆ P

4. If τ1 ≤2 τ2 then Jτ1K2P ⊆ Jτ2K2P .

5. If VAR2(P), SAT2(P) and CLO2(P) then Γ `2 M : τ implies Γ |=2
P M : τ

6. If VAR2(P), SAT2(P) and CLO2(P) then for all τ ∈ Type2, if τ 6∼2 Ω
and Γ `2 M : τ then M ∈ P

7. CLO(P,P) ⇒ ∀τ ∈ Type2. τ 6∼2 Ω ⇒ CLO2(P, JτK2P).

Proof. We only prove 5. By induction on Γ `2 M : τ . (ax) and (Ω) are easy.
(∩I) (resp. (→E) resp. (≤2)) is by IH (resp. IH and 1, resp. IH and 4).

(→I) By IH, Γ, x : τ1 |=2
P M : τ2. Let ν |=2

P Γ and N ∈ Jτ1K2P . Then
ν(x := N) |=2

P Γ since x 6∈ dom(Γ) and ν(x := N) |=2
P x : τ1 since

N ∈ Jτ1K2P . Therefore ν(x := N) |=2
P M : τ2, i.e. JMKν(x:=N) ∈ Jτ2K2P .

Hence, by lemma 3.2.1, JMKν(x:=x)[x := N ] ∈ Jτ2K2P . By SAT2(P), we get
(λx.JNKν(x:=x))N ∈ Jτ2K2P . Again by lemma 3.2.1, (Jλx.MKν)N ∈ Jτ2K2P .
Hence Jλx.MKν ∈ {M | ∀N ∈ Jτ1K2P . MN ∈ Jτ2K2P .

By VAR2(P), x ∈ Jτ1K2P , hence by the same argument as above we ob-
tain JMKν(x:=x) ∈ Jτ2K2P . So by CLO2(P), λx.JMKν(x:=x) ∈ P and by
lemma 3.2.1, Jλx.MKν ∈ P. Hence, we conclude that Jλx.MKν ∈ Jτ1 →
τ2K2P .

Ghilezan and Likavec claim that if CLO1(P), VAR1(P) and SAT1(P) are
true then SNβ ⊆ P (note that this result does not make any use of the type
system λ∩1).

After giving the above definitions and lemmas, [GL02] states that since the
predicates (VARi(P), SATi(P) and CLOi(P) for i ∈ {1, 2} have been shown
to be sufficient to develop the reducibility method, and since in order to prove
these predicates one needs stronger induction hypotheses which are easier to
prove, the paper sets out to show that these stronger conditions when i = 2
are the three predicates VAR(P,P), SAT(P,P) and CLO(P,P). However, as
we show below, this attempt fails. They do not develop the necessary stronger
induction hypotheses for the case when i = 1, and λ∩1 can only anyway type
strongly normalisable terms, so we will not consider the case i = 1 further.

Commutativity, associativity and idempotence w.r.t. the preorder relation
are given by the axioms (inL), (inR), (mon′), (tr) and (ref):
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• Commutativity: by (inR), τ1 ∩ τ2 ≤Ω τ2 and by (inL), τ1 ∩ τ2 ≤Ω τ1 so
by (mon′), τ1 ∩ τ2 ≤Ω τ2 ∩ τ1. By (inL), τ2 ∩ τ1 ≤Ω τ2 and by (inR),
τ2 ∩ τ1 ≤Ω τ1 so by (mon′), τ2 ∩ τ1 ≤Ω τ1 ∩ τ2. Hence, τ1 ∩ τ2 ∼2 τ2 ∩ τ1.

• Associativity: by (inR), (τ1 ∩ τ2) ∩ τ3 ≤Ω τ3, by (inL), (τ1 ∩ τ2) ∩ τ3 ≤Ω

τ1 ∩ τ2, by (inR), τ1 ∩ τ2 ≤Ω τ2, by (inL), τ1 ∩ τ2 ≤Ω τ1, so by (tr),
(τ1 ∩ τ2) ∩ τ3 ≤Ω τ1 and (τ1 ∩ τ2) ∩ τ3 ≤Ω τ2. By (mon′), (τ1 ∩ τ2) ∩
τ3 ≤Ω τ2 ∩ τ3 and again by (mon′), (τ1 ∩ τ2) ∩ τ3 ≤Ω τ1 ∩ (τ2 ∩ τ3). By
(inL), τ1 ∩ (τ2 ∩ τ3) ≤Ω τ1, by (inR), τ1 ∩ (τ2 ∩ τ3) ≤Ω τ2 ∩ τ3, by (inL),
τ2 ∩ τ3 ≤Ω τ2, by (inR), τ2 ∩ τ3 ≤Ω τ3, so by (tr), τ1 ∩ (τ2 ∩ τ3) ≤Ω τ2 and
τ1 ∩ (τ2 ∩ τ3) ≤Ω τ3. By (mon′), τ1 ∩ (τ2 ∩ τ3) ≤Ω τ1 ∩ τ2 and again by
(mon′), τ1∩(τ2∩τ3) ≤Ω (τ1∩τ2)∩τ3. Hence, (τ1∩τ2)∩τ3 ∼2 τ1∩(τ2∩τ3).

• Idempotence: by (inL), τ ∩ τ ≤Ω τ and by (ref) and (mon′), τ ≤Ω τ ∩ τ ,
hence, τ ∼2 τ ∩ τ .

Let to ∈ TypeOmega ::= Ω | to1 ∩ to2.
Let inInter(τ, τ ′) be true iff τ = τ ′ or τ ′ = τ1 ∩ τ2 and (inInter(τ, τ1) or

inInter(τ, τ2)).
By commutativity and associativity we write τ1 ∩ · · · ∩ τn, where n ≥ 1,

for any type τ such that (inInter(τ0, τ) iff there exists i ∈ {1, . . . , n} such that
τ0 = τi).

Lemma 3.3. If τ1 ≤Ω τ2 and τ1 ∈ TypeOmega then τ2 ∈ TypeOmega.

Proof. We prove the lemma by induction on the size derivation of τ1 ≤Ω τ2 and
then by case on the last rule of the derivation.

• (ref): τ ≤ τ . Then it is done since τ ∈ TypeOmega.

• (tr): (τ1 ≤Ω τ2 ∧ τ2 ≤Ω τ3) ⇒ τ1 ≤Ω τ3. By IH twice, τ3 ∈ TypeOmega.

• (inL): τ1 ∩ τ2 ≤Ω τ1. By definition τ1 ∈ TypeOmega.

• (inR): τ1 ∩ τ2 ≤Ω τ2. By definition τ2 ∈ TypeOmega.

• (→ -∩): (τ1 → τ2) ∩ (τ1 → τ3) ≤Ω τ1 → (τ2 ∩ τ3). If (τ1 → τ2) ∩ (τ1 →
τ3) ∈ TypeOmega then by definition τ1 → τ2, τ1 → τ3 ∈ TypeOmega which
is false.

• (mon′): (τ1 ≤Ω τ2∧τ1 ≤Ω τ3) ⇒ τ1 ≤Ω τ2∩τ3. By IH τ2, τ3 ∈ TypeOmega.
Hence, τ2 ∩ τ3 ∈ TypeOmega.

• (mon): (τ1 ≤Ω τ ′1 ∧ τ2 ≤Ω τ ′2) ⇒ τ1 ∩ τ2 ≤Ω τ ′1 ∩ τ ′2. By definition
τ1, τ2 ∈ TypeOmega. By IH, τ ′1, τ

′
2 ∈ TypeOmega. So τ ′1∩τ ′2 ∈ TypeOmega.

• (→ -η): (τ1 ≤Ω τ ′1 ∧ τ ′2 ≤Ω τ2) ⇒ τ ′1 → τ ′2 ≤Ω τ1 → τ2. It is done because
τ ′1 → τ ′2 6∈ TypeOmega.

• (Ω): τ ≤Ω Ω. By definition Ω ∈ TypeOmega.
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• (Ω′-lazy): τ → Ω ≤Ω Ω → Ω. It is done since τ → Ω 6∈ TypeOmega.

Lemma 3.4. If τ ≤Ω τ ′ and τ ′ 6∼2 Ω then τ 6∼2 Ω.

Proof. Let τ ≤Ω τ ′. Assume τ ∼2 Ω. Then Ω ≤Ω τ and by transitivity Ω ≤Ω τ ′.
Moreover, by (Ω), τ ′ ≤Ω Ω. So τ ′ ∼2 Ω.

Lemma 3.5. If τ ∩ τ ′ 6∼2 Ω then τ 6∼2 Ω or τ ′ 6∼2 Ω.

Proof. By (Ω), τ ∩ τ ′ ≤Ω Ω. let τ ∼2 Ω and τ ′ ∼2 Ω, so Ω ≤Ω τ and Ω ≤Ω τ ′

and by (mon′), Ω ≤Ω τ ∩ τ ′.

Lemma 3.6. If τ ′ ∼2 Ω then τ ≤Ω τ ∩ τ ′

Proof. By (Ω), τ ≤Ω Ω and by transitivity, τ ≤Ω τ ′ because Ω ≤Ω τ ′. By (ref),
τ ≤Ω τ and by (mon′), τ ≤Ω τ ∩ τ ′.

Lemma 3.7. If τ ≤Ω τ ′ and inInter(τ1 → τ2, τ
′) and τ2 6∼2 Ω then there exist

n ≥ 1 and τ ′1, τ
′′
1 , . . . , τ

′
n, τ

′′
n such that for all i ∈ {1, . . . , n}, inInter(τ ′i → τ ′′i , τ)

and τ ′′i 6∼2 Ω and τ ′′1 ∩ · · · ∩ τ ′′n ≤Ω τ2. Moreover, if τ1 ∼2 Ω then for all
i ∈ {1, . . . , n}, τ ′i ∼2 Ω.

Proof. We prove the lemma by induction on the size derivation of τ ≤Ω τ ′ and
then by case on the last rule of the derivation.

• (ref): τ ≤ τ . Then it is done with n = 1, τ ′′1 = τ2 and τ ′1 = τ1.

• (tr): (τ1 ≤Ω τ2 ∧ τ2 ≤Ω τ3) ⇒ τ1 ≤Ω τ3. Let τ, τ ′ such that inInter(τ →
τ ′, τ3) and τ ′ 6∼2 Ω. By IH there exist n ≥ 1 and τ ′1, τ

′′
1 , . . . , τ

′
n, τ

′′
n such

that for all i ∈ {1, . . . , n}, inInter(τ ′i → τ ′′i , τ2) and τ ′′i 6∼2 Ω and τ ′′1 ∩
· · · ∩ τ ′′n ≤Ω τ ′. Again by IH, for all i ∈ {1, . . . , n}, there exist mi ≥ 1
and τ ′′′1,i, τ

′′′′
1,i , . . . , τ

′′′
mi,i

, τ ′′′′mi,i
∈ Type2 such that for all j ∈ {1, . . . ,mi},

inInter(τ ′′′j,i → τ ′′′′j,i , τ1) and τ ′′′′j,i 6∼2 Ω and τ ′′′′1 ∩ · · · ∩ τ ′′′′m ≤Ω τ ′′i . Using
rule (mon), associativity and commutativity, τ ′′′′1,1∩· · ·∩ τ ′′′′m1,1∩· · ·∩ τ ′′′′1,n∩
· · · ∩ τ ′′′′mn,n ≤Ω τ ′.
Let τ ∼2 Ω. Then by IH, for all i ∈ {1, . . . , n}, τ ′i ∼2 Ω. Again by IH, for
all i ∈ {1, . . . , n}, for all j ∈ {1, . . . ,mi}, τ ′′′j,i ∼2 Ω.

• (inL): τ1 ∩ τ2 ≤Ω τ1. Let τ, τ ′ such that inInter(τ → τ ′, τ1) and τ ′ 6∼2 Ω
then it is done with n = 1, τ ′′1 = τ ′ and τ ′1 = τ .

• (inR): τ1 ∩ τ2 ≤Ω τ2. Let τ, τ ′ such that inInter(τ → τ ′, τ2) and τ ′ 6∼2 Ω
then it is done with n = 1, τ ′′1 = τ ′ and τ ′1 = τ .

• (→ -∩): (τ1 → τ2) ∩ (τ1 → τ3) ≤Ω τ1 → (τ2 ∩ τ3). Let τ, τ ′ such that
inInter(τ → τ ′, τ1 → (τ2 ∩ τ3)) and τ ′ 6∼2 Ω then τ = τ1 and τ ′ = τ2 ∩ τ3.
τ2 6∼2 Ω or τ3 6∼2 Ω because τ ′ 6∼2 Ω and using lemma 3.5. If τ2 6∼2 Ω and
τ3 6∼2 Ω then it is done with n = 2, τ ′1 = τ ′2 = τ1 and τ ′′1 = τ2 and τ ′′2 = τ3.
If τ2 6∼2 Ω and τ3 ∼2 Ω then it is done with n = 1, τ ′1 = τ1 and τ ′′1 = τ2
because τ2 ≤Ω τ2 ∩ τ3 by lemma 3.6. If τ2 ∼2 Ω and τ3 6∼2 Ω then it is
done with n = 1, τ ′1 = τ1 and τ ′′1 = τ3 because τ3 ≤Ω τ2 ∩ τ3 by lemma 3.6
and commutativity.
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• (mon′): (τ1 ≤Ω τ2 ∧ τ1 ≤Ω τ3) ⇒ τ1 ≤Ω τ2 ∩ τ3. Let τ, τ ′ such that
inInter(τ → τ ′, τ2 ∩ τ3) and τ ′ 6∼2 Ω. Either inInter(τ → τ ′, τ2) and we
conclude by IH. Or inInter(τ → τ ′, τ3) and we conclude by IH.

• (mon): (τ1 ≤Ω τ ′1 ∧ τ2 ≤Ω τ ′2) ⇒ τ1 ∩ τ2 ≤Ω τ ′1 ∩ τ ′2. Let τ, τ ′ such that
inInter(τ → τ ′, τ ′1 ∩ τ ′2). Either inInter(τ → τ ′, τ ′1) and it is done by IH.
Or inInter(τ → τ ′, τ ′2) and it is done by IH.

• (→ -η): (τ1 ≤Ω τ ′1 ∧ τ ′2 ≤Ω τ2) ⇒ τ ′1 → τ ′2 ≤Ω τ1 → τ2. Let τ, τ ′ such that
inInter(τ → τ ′, τ1 → τ2) and τ ′ 6∼2 Ω then τ = τ1 and τ ′ = τ2 and it is
done with n = 1 and τ ′′1 = τ ′2 because τ ′2 6∼2 Ω by lemma 3.4 and because
if τ1 ∼2 Ω then τ ′1 ∼2 Ω.

• (Ω): τ0 ≤Ω Ω. There is no τ, τ ′ such that inInter(τ → τ ′,Ω).

• (Ω′-lazy): τ0 → Ω ≤Ω Ω → Ω. there is no τ ′ 6∼2 Ω such that inInter(τ →
τ ′,Ω → Ω).

Lemma 3.8. For all τ, τ ′ ∈ Type2, α→ Ω → τ ′ 6∼2 Ω → τ

Proof. let τ ′ ∈ Type2.
First we prove that Ω → τ ′ 6∼2 Ω. Assume Ω → τ ′ 6∼2 Ω then Ω ≤Ω Ω → τ ′.

By lemma 3.3, Ω → τ ′ ∈ TypeOmega which is false.
Let τ ∼2 Ω. Assume α → Ω → τ ′ ∼2 Ω → τ then Ω → τ ≤Ω α → Ω → τ ′.

By lemma 3.7, τ ≤Ω Ω → τ ′ which is false.
Let τ 6∼2 Ω. Assume α → Ω → τ ′ ∼2 Ω → τ then α → Ω → τ ′ ≤Ω Ω → τ .

By lemma 3.7, α ∼2 Ω because Ω ∼2 Ω, which is false.

Lemma 3.9 (Lemma 3.16 of [GL02] is false). Lemma 3.16 of [GL02] stated
below is false: VAR(P,P) ⇒ ∀τ ∈ Type2. (∀τ ′ ∈ Type2. (τ 6∼2 Ω → τ ′) ⇒
VAR(P, JτK2P)).

Proof. To show that the above statement is false, we give the following coun-
terexample. Note that VAR(P, JτK2P) ⇒ V ⊆ JτK2P . Let x ∈ V, τ be α→ Ω → α
and P be WNβ . By lemma 3.8, for all τ ′ ∈ Type2, τ 6∼2 Ω → τ ′ and VAR(P,P) is
true. Assume VAR(P, JτK2P), then x ∈ JτK2P . Then x ∈ Jα → Ω → αK2P = JτK2P
because x ∈ P = JαK2P , and xx(��) ∈ JαK2P = P because �� ∈ Λ = JΩK2P . But
xx(��) ∈ P is false, so VAR(P, JτK2P) is false. �

The proof for Lemma 3.18 of [GL02] does not work (because of a misused of
an induction hypothesis) but we have not yet proved or disproved that lemma:

Remark 3.10 (It is not clear that Lemma 3.18 of [GL02] holds). It is not
clear whether this lemma of [GL02] holds: SAT(P,P) ⇒ ∀τ ∈ Type2. (∀τ ′ ∈
Type2. (τ 6∼2 Ω → τ ′) ⇒ SAT(P, JτK2P)).

The proof given in [GL02] does not go through and we have neither been
able to prove nor disprove this lemma. It remains that this lemma is not yet
proved and hence cannot be used in further proofs.
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Then, Ghilezan and Likavec give a proposition (Proposition 3.21) which is
the reducibility method for typable terms. However, the proof of that proposi-
tion depends on two problematic lemmas (lemma 3.16 which we showed to fail
in our lemma 3.9, and lemma 3.18 which according to remark 3.10 has not been
proved).

First, here is a lemma:

Lemma 3.11. VAR(WNβ ,WNβ), CLO(WNβ ,WNβ), INV(WNβ) and SAT(WNβ ,WNβ)
hold.

Proof.

• VAR(WNβ ,WNβ) holds because ∀x ∈ V, ∀n ≥ 0, ∀N1, . . . , Nn ∈ WNβ ,
xN1 . . . Nn ∈ WNβ .

• CLO(WNβ ,WNβ) holds, because if ∃n,m ≥ 0, ∃x0 ∈ V, ∃N1, . . . , Nm ∈
NFβ such that M →∗

β λx1. . . . λxn.x0N1 . . . Nm then ∀y ∈ V, λy.M →∗
β

λy.λx1. . . . λxn.x0N1 . . . Nm ∈ NFβ .

INV(WNβ) holds, because if ∃n,m ≥ 0, ∃x0 ∈ V, ∃N1, . . . , Nm ∈ NFβ

such that λx.M →∗
β λx1. . . . λxn.x0N1 . . . Nm then x1 = y and M →∗

β

λx2. . . . λxn.x0N1 . . . Nm .

• SAT(WNβ ,WNβ) holds, since if M [x := N ]N1 . . . Nn ∈ WNβ where n ≥ 0
and N1, . . . , Nn ∈ WNβ then ∃P ∈ NFβ such that
M [x := N ]N1 . . . Nn →∗

β P .
Hence, (λx.M)NN1 . . . Nn →β M [x := N ]N1 . . . Nn →∗

β P .

Lemma 3.12 (Proposition 3.21 of [GL02] fails). Assume VAR(P,P), SAT(P,P)
and CLO(P,P). It is not the case that: ∀τ ∈ Type2. (τ 6∼2 Ω ∧ ∀τ ′ ∈
Type2. (τ 6∼2 Ω → τ ′) ∧ Γ `2 M : τ ⇒M ∈ P).

Proof. Let P be WNβ . Note that λy.λz.�� 6∈ WNβ and ∅ `2 λy.λz.�� : α→
Ω → Ω is derivable, where α → Ω → Ω 6∼2 Ω and by lemma 3.8, α → Ω →
Ω 6∼2 Ω → τ ′, for all τ ′ ∈ Type2. Since VAR(WNβ ,WNβ), CLO(WNβ ,WNβ)
and SAT(WNβ ,WNβ) hold, we get a counterexample for Proposition 3.21 of
[GL02]. �

Finally, also Ghilezan and Likavec’s proof method for untyped terms fails.

Lemma 3.13 (Proposition 3.23 of [GL02] fails). Proposition 3.23 of [GL02]
which states that “If P ⊆ Λ is invariant under abstraction (i.e., INV(P)),
VAR(P,P) and SAT(P,P) then P = Λ” fails.

Proof. The proof given in [GL02] depends on Proposition 3.21 which fails. As
VAR(WNβ ,WNβ), SAT(WNβ ,WNβ) and INV(WNβ), we get a counterexample
for Proposition 3.23. �
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4 How much of the reducibility method of [GL02]
can we salvage ?

Because we proved that the Proposition 3.23 of [GL02] is false, we know that
the given set of properties (INV(P), VAR(P,P) and SAT(P,P)) that a set of
terms P has to fulfil to be equal to the set of terms of the untyped λ-calculus is
not the right one. So even if one works on the soundness result or on the type
interpretation (the set of realisers), to obtain the same result as the one claimed
by Ghilezan and Likavec, one should come up with a new set of properties.

Proposition 3.23 of [GL02] states a set of properties characterising the set
of terms of the untyped λ-calculus. The predicate VAR(Λ,Λ) states that the
variables (and the terms of the form xNM1 · · ·Mn ) belong to the untyped λ-
calculus. The predicate INV(Λ) states among other things that if a term is a
λ-term then the abstraction of a variable over this term is a λ-term too. To
get a full characterisation of the set of terms of the untyped λ-calculus, we
need a predicate, let us call it APP(P), stating that (λx.M)NM1 · · ·Mn ∈ P
if M,N,M1, . . . ,Mn ∈ P, to be true. Is this predicate true if VAR(P,P),
SAT(P,P) and INV(P) are true? No, because we saw that we can find a set of
terms (WNβ) which satisfies these properties but is not equal to the λ-calculus.
For example, we cannot get the non strongly normalisable terms to be in WNβ .
So, these properties are not enough to characterise the λ-calculus.

The problem with these properties is that if one tries to salvage Ghilezan
and Likavec’s reducibility method, the properties VAR(P,P) and CLO(P,P)
are going to impose a restriction on the arrow types for which the interpretation
is in P (the realisers of arrow types), as we can see in the arrow type case of the
proof of the following lemma 4.4.5 and in the arrow type case of the proof of the
following lemma 4.5. As shown at the end of this section, even if the obtained
result when considering these restrictions is different from (in some sens, is an
improvement of) the one given by Ghilezan and Likavec using the type system
λ∩1, we do not succeed in salvaging their method.

The use of the non-trivial types (we recall the definition below) introduced
by Gallier [Gal03] are not much of a help in this case, because of the precise
restriction imposed by VAR(P,P). One might also want to consider the sets of
properties (we do not recall them in this paper for lack of space) stated in his
work [Gal03], but which are unfortunately not easy to prove for CR, because
a proof of xM ∈ CR for all M ∈ Λ is required. Moreover, if one succeeds in
proving that the variables are included in the interpretation of a defined set of
types containing Ω → α, where Ω is interpreted as Λ and α as P, then one has
proved that xM ∈ P, so that in the case P = CR, M ∈ CR.

It is worth pointing out that a part of the work done by Gallier [Gal03] would
still be valid if adapted to the type system λ∩2. Gallier defines the non-trivial
types as follows:

ψ ∈ NonTrivial ::= α | τ → ψ | τ ∩ ψ | ψ ∩ τ

Types in Type2 are then interpreted as follows: JαKP = P, Jψ∩τKP = Jτ∩ψKP =
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JτKP ∩ JψKP , JτKP = Λ if τ 6∈ NonTrivial and Jτ → ψKP = {M ∈ P | ∀N ∈
JτKP . MN ∈ JψKP}. We can easily prove that if τ1 ≤2 τ2 then Jτ1KP ⊆ Jτ2KP .
Hence, considering the type system λ∩2 instead of the type system DΩ, the
method of Gallier gets a set of predicates which when satisfied by a set of terms
P implies that the set of terms typable in the system λ∩2 by a non-trivial type is
a subset of P. Gallier proved that the set of head-normalising λ-terms satisfies
each of the given predicates.

Using a method similar to Ghilezan and Likavec’s method, Gallier proved
also that the set of weakly head-normalising terms (W) is equal to the set of
terms typable by a weakly non-trivial types in the type system DΩ. The set of
weakly non-trivial types is defined as follows:

ψ ∈ WeaklyNonTrivial ::= α | τ → ψ | Ω → Ω | τ ∩ ψ | ψ ∩ τ

As explain above, we can try and salvage Ghilezan and Likavec’s method by
first restricting the set of realisers when defining the interpretation of the set of
types in Type2. The different restrictions lead us to the definition of Type3 and
the following type interpretation:

Definition 4.1. ρ ∈ Type3 ::= α | τ → ρ | ρ ∩ τ | τ ∩ ρ.

• JαK3P = P.

• Jτ1 ∩ τ2K3P = Jτ1K3P ∩ Jτ2K3P , if τ1 ∩ τ2 ∈ Type3.

• JτK3P = Λ, if τ 6∈ Type3.

• Jτ1 → τ2K3P = {M ∈ P | ∀N ∈ Jτ1K3P . MN ∈ Jτ2K3P}, if τ1 → τ2 ∈
Type3.

In order to prove the relation between the stronger induction hypotheses
(VAR, SAT and CLO, and particularly the variable one) and the ones depending
on type interpretations (VAR2, SAT2 and CLO2), and in order to be able to use
these stronger induction hypotheses in the soundness lemma, we have to impose
other restrictions.

Definition 4.2. We let ϕ ∈ Type4 ::= α | Ω | ρ→ ϕ | ϕ ∩ τ | τ ∩ ϕ.
We let Γ ∈ B3 = {{x1 : ϕ1, . . . , xn : ϕn} | ∀i, j ∈ {1, . . . , n}. xi = xj ⇒ ϕi =

ϕj}
Let `3 be the relation `2 where (ax) is replaced by (ax′) and B2 is replaced

by B3. Let λ∩3 be the type system λ∩2 where (ax) is replaced by (ax′) and
B2 is replaced by B3. Let |=3

P be the relation |=2
P where JτK2P is replaced by

JτK3P .

Due to the saturation predicates and its uses, we could have to impose some
other restrictions on the type system. Another alternative is to slightly modify
this predicate (in order to not have to burden ourselves with another notation
for the saturation predicate, we call it as the previous one):
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Definition 4.3. SAT(P,X ) ⇐⇒ (∀M,N ∈ Λ. ∀x ∈ V. ∀n ∈ N. ∀N1, . . . , Nn ∈
Λ.
M [x := N ]N1 . . . Nn ∈ X ⇒ (λx.M)NN1 . . . Nn ∈ X ).

We can prove that if P ∈ {CR,S,W} then SAT(P,P) holds.

Lemma 4.4.

1. Jτ1 ∩ τ2K3P = Jτ1K3P ∩ Jτ2K3P .

2. JρK3P ⊆ P.

3. If τ1 ≤3 τ2 and τ2 ∈ Type3 then τ1 ∈ Type3.

4. If τ1 ≤2 τ2 then Jτ1K3P ⊆ Jτ2K3P .

5. If VAR(P,P) then for all ϕ ∈ Type4, VAR(P, JϕK3P).

6. If SAT(P,P) then for all τ ∈ Type2, SAT(P, JτK3P).

Proof.

1. If τ1 ∩ τ2 ∈ Type3 then it is done by definition. Otherwise τ1, τ2 6∈ Type3,
so Jτ1 ∩ τ2K3P = Λ = Λ ∩ Λ = Jτ1K3P ∩ Jτ2K3P .

2. We prove this result by induction on the structure of τ .

• Let ρ = α then JρK3P = P.

• Let ρ = τ → ρ′, then by definition, JρK3P ⊆ P.

• Let ρ = τ ∩ ρ′, then by IH, Jρ′K3P ⊆ P. So JρK3P = JτK3P ∩ Jρ′K3P ⊆ P.

• Let ρ = ρ′ ∩ τ , then by IH, Jρ′K3P ⊆ P. So JρK3P = JτK3P ∩ Jρ′K3P ⊆ P.

3. We prove this lemma by induction on the size of the derivation of τ1 ≤2 τ2
and then by case on the last step.

• (ref): τ ≤ τ . This case is trivial.

• (Ω): τ ≤ Ω. This case is trivial since Ω 6∈ Type3.

• (tr): τ1 ≤ τ2 ∧ τ2 ≤ τ3 ⇒ τ1 ≤ τ3. We conclude using IH twice.

• (Ω′-lazy): τ → Ω ≤ Ω → Ω. This case is trivial since Ω → Ω 6∈ Type3.

• (inL): τ1 ∩ τ2 ≤ τ1. This case is trivial.

• (inR): τ1 ∩ τ2 ≤ τ2. This case is trivial.

• (→ -∩): (τ1 → τ2) ∩ (τ1 → τ3) ≤ τ1 → (τ2 ∩ τ3). if τ1 → (τ2 ∩ τ3) ∈
Type3 then τ2 ∈ Type3 or τ3 ∈ Type3. Hence τ1 → τ2 ∈ Type3 or
τ1 → τ3 ∈ Type3, so (τ1 → τ2) ∩ (τ1 → τ3) ∈ Type3.

• (mon′): τ1 ≤ τ2 ∧ τ1 ≤ τ3 ⇒ τ1 ≤ τ2 ∩ τ3. If τ2 ∩ τ3 ∈ Type3 then
τ2 ∈ Type3 or τ3 ∈ Type3, so by IH, τ1 ∈ Type3.
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• (mon): τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2 ⇒ τ1 ∩ τ2 ≤ τ ′1 ∩ τ ′2. If τ ′1 ∩ τ ′2 ∈ Type3 then
τ ′1 ∈ Type3 or τ ′2 ∈ Type3. So by IH, τ1 ∈ Type3 or τ2 ∈ Type3, hence
τ1 ∩ τ2 ∈ Type3.

• (→ -η): τ1 ≤ τ ′1 ∧ τ ′2 ≤ τ2 ⇒ τ ′1 → τ ′2 ≤ τ1 → τ2. If τ1 → τ2 ∈ Type3

then τ2 ∈ Type3, so by IH, τ ′2 ∈ Type3, hence τ ′1 → τ ′2 ∈ Type3.

4. We prove this lemma by induction on the size of the derivation of τ1 ≤2 τ2
and then by case on the last step.

• (ref): τ ≤ τ . This case is trivial.

• (Ω): τ ≤ Ω. This case is trivial since JΩK3P = Λ.

• (tr): τ1 ≤ τ2 ∧ τ2 ≤ τ3 ⇒ τ1 ≤ τ3. By IH, Jτ1K3P ⊆ Jτ2K3P and
Jτ2K3P ⊆ Jτ3K3P , so Jτ1K3P ⊆ Jτ3K3P .

• (Ω′-lazy): τ → Ω ≤ Ω → Ω. This case is trivial since Jτ → ΩK3P =
JΩ → ΩK3P = Λ.

• (inL): τ1 ∩ τ2 ≤ τ1. By 1, Jτ1 ∩ τ2K3P = Jτ1K3P ∩ Jτ2K3P ⊆ Jτ1K3P .

• (inR): τ1 ∩ τ2 ≤ τ2. By 1, Jτ1 ∩ τ2K3P = Jτ1K3 ∩ Jτ2K3P ⊆ Jτ2K3P .

• (→ -∩): (τ1 → τ2) ∩ (τ1 → τ3) ≤ τ1 → (τ2 ∩ τ3).
– If τ1 → τ2, τ1 → τ3 ∈ Type3 then τ2, τ3, τ2 ∩ τ3 ∈ Type3, so

J(τ1 → τ2) ∩ (τ1 → τ3)K3P = Jτ1 → τ2K3P ∩ Jτ1 → τ3K3P = {M ∈
P | ∀N ∈ Jτ1K3P . MN ∈ Jτ2K3P} ∩ {M ∈ P | ∀N ∈ Jτ1K3P . MN ∈
Jτ3K3P} = {M ∈ P | ∀N ∈ Jτ1K3P . MN ∈ Jτ2K3P ∩ Jτ3K3P} = {M ∈
P | ∀N ∈ JτK3P . MN ∈ Jτ2 ∩ τ3K3P} = Jτ1 → (τ2 ∩ τ3)K3P .

– If τ1 → τ2 ∈ Type3 and τ1 → τ3 6∈ Type3, then τ2, τ2 ∩ τ3 ∈ Type3

and τ3 6∈ Type3, so J(τ1 → τ2)∩(τ1 → τ3)K3P = Jτ1 → τ2K3P∩Jτ1 →
τ3K3P = {M ∈ P | ∀N ∈ Jτ1K3P . MN ∈ Jτ2K3P} = {M ∈ P | ∀N ∈
Jτ1K3P . MN ∈ Jτ2 ∩ τ3K3P} = Jτ1 → (τ2 ∩ τ3)K3P .

– If τ1 → τ2 6∈ Type3 and τ1 → τ3 ∈ Type3, then τ3, τ2 ∩ τ3 ∈ Type3

and τ2 6∈ Type3, so J(τ1 → τ2)∩(τ1 → τ3)K3P = Jτ1 → τ2K3P∩Jτ1 →
τ3K3P = {M ∈ P | ∀N ∈ Jτ1K3P . MN ∈ Jτ3K3P} = {M ∈ P | ∀N ∈
Jτ1K3P . MN ∈ Jτ2 ∩ τ3K3P} = Jτ1 → (τ2 ∩ τ3)K3P .

– If τ1 → τ2, τ1 → τ3 6∈ Type3, then τ2, τ3, τ2 ∩ τ3 6∈ Type3, so
J(τ1 → τ2) ∩ (τ1 → τ3)K3P = Jτ1 → (τ2 ∩ τ3)K3P = Λ.

• (mon′): τ1 ≤ τ2 ∧ τ1 ≤ τ3 ⇒ τ1 ≤ τ2 ∩ τ3. By IH, Jτ1K3P ⊆ Jτ2K3P and
Jτ1K3P ⊆ Jτ3K3P . So by 1, Jτ1K3P ⊆ Jτ2K3P ∩ Jτ3K3P = Jτ2 ∩ τ3K3P .

• (mon): τ1 ≤ τ ′1∧τ2 ≤ τ ′2 ⇒ τ1∩τ2 ≤ τ ′1∩τ ′2. By IH, Jτ1K3P ⊆ Jτ ′1K3P and
Jτ2K3P ⊆ Jτ ′2K3P . So by 1, Jτ1∩ τ2K3P = Jτ1K3P ∩ Jτ2K3P ⊆ Jτ ′1K3P ∩ Jτ ′2K3P =
Jτ ′1 ∩ τ ′2K3P .

• (→ -η): τ1 ≤ τ ′1 ∧ τ ′2 ≤ τ2 ⇒ τ ′1 → τ ′2 ≤ τ1 → τ2. By IH, Jτ1K3P ⊆
Jτ ′1K3P and Jτ ′2K3P ⊆ Jτ2K3P . If τ1 → τ2 ∈ Type3 then τ2 ∈ Type3 and
by 3, τ ′2 ∈ Type3, so τ ′1 → τ ′2 ∈ Type3 and Jτ ′1 → τ ′2K3P = {M ∈
P | ∀N ∈ Jτ ′1K3P . MN ∈ Jτ ′2K3P} ⊆ {M ∈ P | ∀N ∈ Jτ1K3P . MN ∈
Jτ2K3P} = Jτ1 → τ2K3P . Otherwise, Jτ ′1 → τ ′2K3P ⊆ Jτ1 → τ2K3P = Λ.
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5. Assume VAR(P,P). Let n ≥ 0, x ∈ V and for all i ∈ {1, . . . , n},Mi ∈ P.
By the hypothesis, xM1 · · ·Mn ∈ P. We prove that xM1 · · ·Mn ∈ JϕK3P
by induction on the structure of ϕ.

• If ϕ = α then xM1 · · ·Mn ∈ P = JαK3P .

• If ϕ = Ω then xM1 · · ·Mn ∈ Λ = JΩK3P .

• If ϕ = τ ∩ ϕ′. By IH, xM1 · · ·Mn ∈ Jϕ′K3P , so by 1, xM1 · · ·Mn ∈
JτK3P ∩ Jϕ′K3P = Jτ ∩ ϕ′K3P .

• If ϕ = ϕ′ ∩ τ . By IH, xM1 · · ·Mn ∈ Jϕ′K3P , so by 1, xM1 · · ·Mn ∈
Jϕ′K3P ∩ JτK3P = Jϕ′ ∩ τK3P .

• If ϕ = ρ→ ϕ′.

– If ϕ ∈ Type3 then ϕ′ ∈ Type3. Let N ∈ JρK3P , so by 2, N ∈ P.
By IH, xM1 · · ·MnN ∈ Jϕ′K3P . So xM1 · · ·Mn ∈ Jρ→ ϕ′K3P .

– If ϕ 6∈ Type3 then xM1 · · ·Mn ∈ Jρ→ ϕ′K3P = Λ.

6. Assume SAT(P,P). Let n ≥ 0, x ∈ V, M,N ∈ Λ and for all i ∈
{1, . . . , n}, Ni ∈ Λ. We prove that if M [x := N ]N1 · · ·Nn ∈ JτK3P then
(λx.M)NN1 · · ·Nn ∈ JτK3P by induction on the structure of τ .

• If τ = α then JαK3P = P and we conclude using the hypothesis
SAT(P,P).

• If τ = Ω then (λx.M)NN1 · · ·Nn ∈ Λ = JΩK3P .

• If τ = τ1 ∩ τ2. Assume M [x := N ]N1 · · ·Nn ∈ JτK3P =1 Jτ1K3 ∩ Jτ2K3,
then by IH, (λx.M)NN1 · · ·Nn ∈ Jτ1K3 ∩ Jτ2K3 =1 JτK3.

• If τ = τ1 → τ2.

– If τ ∈ Type3 then τ2 ∈ Type3. Let P ∈ Jτ1K3P and M [x :=
N ]N1 · · ·Nn ∈ JτK3P then by 2, M [x := N ]N1 · · ·Nn ∈ P. By hy-
pothesis, (λx.M)NN1 · · ·Nn ∈ P. Moreover,M [x := N ]N1 · · ·NnP ∈
Jτ2K3P . By IH, (λx.M)NN1 · · ·NnP ∈ Jτ2K3P , so (λx.M)NN1 · · ·Nn ∈
JτK3P .

– Let τ 6∈ Type3 then (λx.M)NN1 · · ·Nn ∈ JτK3P = Λ.

Lemma 4.5. If VAR(P,P), SAT(P,P), CLO(P,P) and Γ `3 M : τ then
Γ |=3

P M : τ

Proof. We prove this lemma by induction on the size of the derivation of Γ `3

M : τ and then by case on the last rule used in the derivation. In each case,
if τ 6∈ Type3, it is trivial since JτK3P = Λ. So let us consider in each case that
τ ∈ Type3.

• (ax): Let ν |=3
P Γ, x : ϕ then ν(x) ∈ JϕK3P .

• (→E): By IH, Γ |=3 M : τ1 → τ2 and Γ |=2 N : τ1, so by lemma 3.2.1,
Γ |=3

P MN : τ2 (because if τ2 ∈ Type3 then τ1 → τ2 ∈ Type3).
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• (→I): By IH, Γ, x : τ1 |=3
P M : τ2. Let ν |=3

P Γ and N ∈ Jτ1K3P . Then
ν(x := N) |=3

P Γ since x 6∈ dom(Γ) and ν(x := N) |=3
P x : τ1 since

N ∈ Jτ1K3P . Therefore ν(x := N) |=3
P M : τ2, i.e. JMKν(x:=N) ∈ Jτ2K3P .

Hence, by lemma 3.2.1, JMKν(x:=x)[x := N ] ∈ Jτ2K3P . Hence by ap-
plying SAT(P,P) and 4.4.6, we get (λx.JMKν(x:=x))N ∈ Jτ2K3P . Again
by lemma 3.2.1, (Jλx.MKν)N ∈ Jτ2K3P . Hence Jλx.MKν ∈ {M | ∀N ∈
Jτ1K3P . MN ∈ Jτ2K3P}.
Since τ1 ∈ Type4, by VAR(P,P) and 4.4.5, x ∈ Jτ1K3P , hence by the same
argument as above we obtain JMKν(x:=x) ∈ Jτ2K3P . Since τ1 → τ2 ∈ Type3

then τ2 ∈ Type3, so by CLO(P,P) and 4.4.2, λx.JMKν(x:=x) ∈ P and by
lemma 3.2.1, Jλx.MKν ∈ P. Hence, we conclude that Jλx.MKν ∈ Jτ1 →
τ2K3P .

• (≤3): We conclude by IH and 4.4.4

• (Ω): This case is trivial because Ω 6∈ Type3.

The next lemma states that the set of terms satisfying the Church-Rosser, the
weak head normalisation or the standardisation properties satisfies the variable,
saturation and closure predicates.

Lemma 4.6. Let P ∈ {CR,S,W}. Then VAR(P,P), SAT(P,P) and CLO(P,P).

We obtain the following proof method. However, we strongly believe that
the set of terms typable in our type system with a type ρ is no more than the
set of strongly normalisable terms.

Proposition 4.7. If Γ `3 M : ρ then M ∈ CR, M ∈ S, and M ∈ W.

Proof. By lemma 4.6, lemma 4.4.2 and lemma 4.5

5 Adapting the CR proof of Koletsos and Stavri-
nos [KS08] to βI-reduction

[KS08] gave a proof of Church-Rosser for β-reduction for the intersection type
system D of Definition 2.25 (studied in detail in [Kri90]) and showed that this
can be used to establish confluence of β-developments without using strong
normalisation. In this section, we adapt his proof to βI and at the same time,
set the formal ground for generalising the method for βη in the next section.
First, we adapt and formalise a number of definitions and lemmas given in
[Kri90] in order to make them applicable to βI-developments. Then, we define
type interpretations for both βI and βη, establish the soundness and Church-
Rosser of both systems D and DI (for βη- resp. βI-reduction), and finally, adapt
[KS08] to establish the confluence of βI-developments.

All proofs from this section are located in appendix B.
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5.1 Formalising βI-developments

The next definition, taken from [Kri90] (and used in [KS08]) uses the variable
c to destroy the βI-redexes of M which are not in the set F of βI-redex occur-
rences in M , and to neutralise applications so that they cannot be transformed
into redexes after βI-reduction. For example, in c(λx.x)y, c is used to destroy
the βI-redex (λx.x)y.

Definition 5.1 (Φc(−,−)). Let M ∈ ΛI, such that c 6∈ fv(M) and F ⊆ RβI
M .

1. If M = x then F = ∅ and Φc(x,F) = x

2. If M = λx.N such that x 6= c and F ′ = {p | 1.p ∈ F} ⊆ RβI
N then

Φc(λx.N,F) = λx.Φc(N,F ′)

3. If M = NP , F1 = {p | 1.p ∈ F} ⊆ RβI
N and F2 = {p | 2.p ∈ F} ⊆ RβI

P

then

Φc(NP,F) =
{
cΦc(N,F1)Φc(P,F2) if 0 6∈ F
Φc(N,F1)Φc(P,F2) otherwise

The next lemma is an adapted version of a lemma which appears in [KS08]
and which in turns adapts a lemma from [Kri90].

Lemma 5.2.

1. If M ∈ ΛI, c 6∈ fv(M), and F ⊆ RβI
M then

(a) fv(M) = fv(Φc(M,F)) \ {c}.
(b) Φc(M,F) ∈ ΛIc.

(c) |Φc(M,F)|c = M .

(d) |〈Φc(M,F),RβI
Φc(M,F)〉|

c = F .

2. Let M ∈ ΛIc.

(a) |〈M,RβI
M 〉|c ⊆ RβI

|M |c and M = Φc(|M |c, |〈M,RβI
M 〉|c).

(b) 〈|M |c, |〈M,RβI
M 〉|c〉 is the one and only pair 〈N,F〉 such that N ∈ ΛI,

c 6∈ fv(N), F ⊆ RβI
N and Φc(N,F) = M .

The next lemma is needed to define βI-developments.

Lemma 5.3. Let M ∈ ΛI, such that c 6∈ fv(M), F ⊆ RβI
M , p ∈ F and

M
p→βI M

′. Then, there exists a unique set F ′ ⊆ RβI
M ′ such that Φc(M,F)

p′

→βI

Φc(M ′,F ′) and |〈Φc(M,F), p′〉|c = p.
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We follow [Kri90] and define the set of βI-residuals of a set of βI-redexes F
relative to a sequence of βI-redexes. First, we give the definition relative to one
redex.

Definition 5.4. Let M ∈ ΛI, such that c 6∈ fv(M), F ⊆ RβI
M , p ∈ F and

M
p→βI M ′. By lemma 5.3, there exists a unique F ′ ⊆ RβI

M ′ such that

Φc(M,F)
p′

→βI Φc(M ′,F ′) and |〈Φc(M,F), p′〉|c = p. We call F ′ the set of
βI-residuals in M ′ of the set of βI-redexes F in M relative to p.

Definition 5.5 (βI-development). Let M ∈ ΛI where c 6∈ fv(M) and F ⊆ RβI
M .

A one-step βI-development of 〈M,F〉, denoted 〈M,F〉 →βId 〈M ′,F ′〉, is a βI-
reduction M

p→βI M
′ where p ∈ F and F ′ is the set of βI-residuals in M ′ of the

set of βI-redexes F in M relative to p. A βI-development is the transitive
closure of a one-step βI-development. We write also M F→βId Mn for the βI-
development 〈M,F〉 →∗

βId 〈Mn,Fn〉.

The next two lemmas are informative about developments.

Lemma 5.6. Let M ∈ ΛI, such that c 6∈ fv(M) and F ⊆ RβI
M . Then:

〈M,F〉 →∗
βId 〈M ′,F ′〉 ⇐⇒ Φc(M,F) →∗

βI Φc(M ′,F ′).

Lemma 5.7. Let M ∈ ΛI, such that c 6∈ fv(M) and F1 ⊆ F2 ⊆ RβI
M . If

〈M,F1〉 →βId 〈M ′,F ′
1〉 then there exists F ′

2 ⊆ RβI
M ′ such that F1 ⊆ F ′

2 and
〈M,F2〉 →βId 〈M ′,F ′

2〉.

5.2 Confluence of βI-developments, hence of βI-reduction

Definition 5.8. 1. Let r ∈ {βI, βη}. We define the type interpretation
J−Kr : Type1 → 2Λ by:

• JαKr = CRr, where α ∈ A.

• Jσ ∩ τKr = JσKr ∩ JτKr.

• Jσ → τKr = {M ∈ CRr | ∀N ∈ JσKr. MN ∈ JτKr}.

2. A set X ⊆ Λ is saturated iff ∀n ≥ 0. ∀M,N,M1, . . . ,Mn ∈ Λ. ∀x ∈ V.

M [x := N ]M1 . . .Mn ∈ X ⇒ (λx.M)NM1 . . .Mn ∈ X

3. A set X ⊆ ΛI is I-saturated iff ∀n ≥ 0. ∀M,N,M1, . . . ,Mn ∈ Λ. ∀x ∈ V.

x ∈ fv(M) ⇒M [x := N ]M1 . . .Mn ∈ X ⇒ (λx.M)NM1 . . .Mn ∈ X

Here is a background lemma:

Lemma 5.9.

1. If Γ `βI M : σ then M ∈ ΛI and fv(M) = dom(Γ).
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2. Let Γ `βη M : σ. Then fv(M) ⊆ dom(Γ) and if Γ ⊆ Γ′ then Γ′ `βη M : σ.

3. Let r ∈ {βI, βη}. If Γ `r M : σ, σ v σ′ and Γ′ v Γ then Γ′ `r M : σ′.

The next lemma states that the interpretations of types are saturated and
only contain terms that are Church-Rosser. Krivine [Kri90] proved a similar
result for r = β and where CRr

0 and CRr were replaced by the corresponding sets
of strongly normalising terms. Koletsos and Stavrinos [KS08] adapted Krivine’s
lemma for Church-Rosser w.r.t. β-reduction instead of strong normalisation.
Here, we adapt the result to βI and βη.

Lemma 5.10. Let r ∈ {βI, βη}.

1. ∀σ ∈ Type1. CRr
0 ⊆ JσKr ⊆ CRr.

2. CRβI is I-saturated.

3. CRβη is saturated.

4. ∀σ ∈ Type1. JσKβI is I-saturated.

5. ∀σ ∈ Type1. JσKβη is saturated.

Next we adapt the soundness lemma of [Kri90] to both `βI and `βη.

Lemma 5.11. Let r ∈ {βI, βη}. If x1 : σ1, . . . , xn : σn `r M : σ and ∀i ∈
{1, . . . , n}, Ni ∈ JσiKr then M [(xi := Ni)n

1 ] ∈ JσKr.

Finally, we adapt a corollary from [KS08] to show that every term of Λ
typable in system D has the βη Church-Rosser property and every term of Λ
typable in system DI has the βI Church-Rosser property.

Corollary 5.12. Let r ∈ {βI, βη}. If Γ `r M : σ then M ∈ CRr.

Proof. Let Γ = (xi : σi)n. By lemma 5.10, ∀i ∈ {1, . . . , n}, xi ∈ JσiKr, so by
lemma 5.11 and again by lemma 5.10, M ∈ JσKr ⊆ CRr.

In order to accommodate βI- and βη-reduction, the next lemma generalises
a lemma given in [Kri90] (and used in [KS08]). Basically this lemma states that
every term of ΛIc is typable in system D and every term of Ληc is typable in
DI .

Lemma 5.13. Let fv(M) \ {c} = {x1, . . . , xn} ⊆ dom(Γ) where c 6∈ dom(Γ).

1. If M ∈ ΛIc then for Γ′ = Γ � fv(M), ∃σ, τ ∈ Type1 such that
if c ∈ fv(M) then Γ′, c : σ `βI M : τ , and if c 6∈ fv(M) then Γ′ `βI M : τ .

2. If M ∈ Ληc then ∃σ, τ ∈ Type1 such that Γ, c : σ `βη M : τ .

The next lemma is an adaptation of the main theorem in [KS08] where as
far as we know appears for the first time.
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Lemma 5.14 (confluence of the βI-developments). Let M ∈ ΛI, such that
c 6∈ fv(M). If M F1→βId M1 and M

F2→βId M2, then there exist F ′
1 ⊆ RβI

M1
,

F ′
2 ⊆ RβI

M2
and M3 ∈ ΛI such that M1

F ′
1→βId M3 and M2

F ′
2→βId M3.

We follow [Bar84] and [KS08] and define one reduction as follows:

Notation 5.15. Let M,M ′ ∈ ΛI, such that c 6∈ fv(M). We define one reduction
by: M →1I M

′ ⇐⇒ ∃F ,F ′, (M,F) →∗
βId (M ′,F ′).

Lemma 5.16. Let c 6∈ fv(M). Then, RβI
Φc(M,∅) = ∅.

Lemma 5.17. Let c 6∈ fv(MN) and x 6= c. Then, RβI
Φc(M,∅)[x:=Φc(N,∅)] =

∅.

Lemma 5.18. Let c 6∈ fv(M). If p ∈ RβI
M and Φc(M, {p}) →βI M ′ then

RβI
M ′ = ∅.

Lemma 5.19. Let M ∈ ΛI such that c 6∈ fv(M). If M
p→βI M

′ then 〈M, {p}〉 →βId

〈M ′,∅〉.

Lemma 5.20. →∗
βI=→∗

1I .

Finally, we achieve what we started to do: the confluence of βI-reduction
on ΛI.

Lemma 5.21. ΛI ⊆ CRβI .

6 Generalisation of the method to βη-reduction

In this section, we generalise the method of [KS08] to handle βη-reduction. This
generalisation is not trivial since we needed to develop developments involving η-
reduction and to establish the important result of the closure under η-reduction
of a defined set of frozen terms. It is for reasons like this that we extended
the various definitions related to developments. For example, clause (R4) of the
definition of Ληc in Definition 2.3 aims to ensure closure under η-reduction. The
definition of Λc in [Kri90] exluded such a rule and hence we lose closure under
η-reduction as can be seen in the following example: Let M = λx.cNx ∈ Λc

where x 6∈ fv(N) and N ∈ Λc, then M →η cN 6∈ Λc.
Again here, the proofs are moved to appendix C.
A full common definition of a βη-residual is given by Curry and Feys [CF58]

(p. 117, 118). Another definition of βη-residual (called λ-residual) is presented
by Klop [Klo80] (definition 2.4, p. 254). Klop [Klo80] shows that both def-
initions enable to prove different properties of developments. Following the
definition of a βη-residual given by Curry and Feys [CF58] (and as pointed out
in [CF58, Klo80, BBKV76]), if the η-redex λx.(λy.M)x, where x 6∈ fv(λy.M),
is reduced in the term P = (λx.(λy.M)x)N to give the term Q = (λy.M)N ,
then Q is not a βη-residual of P in P (note that following the definition of a
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λ-residual given by Klop [Klo80], Q is a λ-residual of the redex (λy.M)x in
P since the λ of the redex Q is the same than the λ of the redex (λy.M)x
in P ). Moreover, if the β-redex (λy.My)x, where y 6∈ fv(M), is reduced in
the term P = λx.(λy.My)x to give the term Q = λx.Mx, then Q is not a
βη-residual of P in P (note that following the definition of a λ-residual given
by Klop [Klo80], Q is a λ-residual of the redex P in P since the λ of the
redex Q is the same than the λ of the redex P in P ). Our definition 6.5 dif-
fers from the common one stated by Curry and Feys [CF58] by these cases
as we illustrate in the following example: Ψc((λx.(λy.M)x)N, {1, 1.0, 1.1.0}) =
{cn((λx.(λy.P [y := c(cy)])x)Q) | n ≥ 0 ∧ P ∈ Ψc(M,∅) ∧ Q ∈ Ψc(N,∅)},
where x 6∈ fv(λy.M). Let p = 1.0 then (λx.(λy.M)x)N

p→βη (λy.M)N . More-

over, P0 = cn((λx.(λy.P [y := c(cy)])x)Q)
p′

→βη cn((λy.P [y := c(cy)])Q) such
that n ≥ 0, P ∈ Ψc(M,∅), Q ∈ Ψc(N,∅), |〈P0, p′〉|c = |〈P0, 2n.1.0〉|c = p
(using a lemma stated and proved in the long version of this article) and
cn((λy.P [y := c(cy)])Q) ∈ Ψc((λy.M)N, {0}).

The next two definitions adapt definition 5.1 to deal with βη-reduction. The
variable c enables to destroy the βη-redexes of M which are not in the set F
of βη-redex occurrences in M ; to neutralise applications so that they cannot be
transformed into redexes after βη-reduction; and to neutralise bound variables
so λ-abstraction cannot be transformed into redexes after βη-reduction. For
example, in λx.y(c(cx)) (x 6= x), c is used to destroy the η-redex λx.yx.

Definition 6.1 (Ψc(−,−),Ψc
0(−,−)). Let c 6∈ fv(M) and F ⊆ Rβη

M .

(P1) If M ∈ V \ {c} then F =2.6 ∅ and

Ψc(M,F) = {cn(M) | n > 0}

Ψc
0(M,F) = {M}

(P2) If M = λx.N and x 6= c and F ′ = {p | 1.p ∈ F} ⊆2.6 Rβη
N :

Ψc(M,F) =
{
{cn(λx.P [x := c(cx)]) | n ≥ 0 ∧ P ∈ Ψc(N,F ′)} if 0 6∈ F
{cn(λx.N ′) | n ≥ 0 ∧N ′ ∈ Ψc

0(N,F ′)} otherwise

Ψc
0(M,F) =

{
{λx.N ′[x := c(cx)] | N ′ ∈ Ψc(N,F ′)} if 0 6∈ F
{λx.N ′ | N ′ ∈ Ψc

0(N,F ′)} otherwise

(P3) If M = NP , F1 = {p | 1.p ∈ F} ⊆2.6 Rβη
N and F2 = {p | 2.p ∈ F} ⊆2.6

Rβη
P then:

Ψc(M,F) ={
{cn(cN ′P ′) | n ≥ 0 ∧N ′ ∈ Ψc(N,F1) ∧ P ′ ∈ Ψc(P,F2)} if 0 6∈ F
{cn(N ′P ′) | n ≥ 0 ∧N ′ ∈ Ψc

0(N,F1) ∧ P ′ ∈ Ψc(P,F2)} otherwise

Ψc
0(M,F) =

{
{cN ′P ′ | N ′ ∈ Ψc(N,F1) ∧ P ′ ∈ Ψc

0(P,F2)} if 0 6∈ F
{N ′P ′ | N ′ ∈ Ψc

0(N,F1) ∧ P ′ ∈ Ψc
0(P,F2) otherwise

29



Lemma 6.2. If M ∈ Ληc and n ≥ 0 then cn(M) ∈ Ληc.

Proof. By induction on n ≥ 0 using (R4).

Lemma 6.3.

1. Let c 6∈ fv(M) and F ⊆ Rβη
M . We have:

(a) Ψc
0(M,F) ⊆ Ψc(M,F).

(b) ∀N ∈ Ψc(M,F). fv(M) = fv(N) \ {c}.
(c) Ψc(M,F) ⊆ Ληc.

(d) Let M = Nx such that x 6∈ fv(N) ∪ {c} and P ∈ Ψc
0(M,F). Then,

Rβη
λx.P = {0} ∪ {1.p | p ∈ Rβη

P }.
(e) Let M = Nx. If Px ∈ Ψc(Nx,F) then Px ∈ Ψc

0(Nx,F).

(f) ∀N ∈ Ψc(M,F). ∀n ≥ 0. cn(N) ∈ Ψc(M,F).

(g) ∀N ∈ Ψc(M,F). |N |c = M .

(h) ∀N ∈ Ψc(M,F). F = |〈N,Rβη
N 〉|c.

2. Let M ∈ Ληc. We have:

(a) |〈M,Rβη
M 〉|c ⊆ Rβη

|M |c and M ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c).

(b) 〈|M |c, |〈M,Rβη
M 〉|c〉 is the one and only pair 〈N,F〉 such that c 6∈

fv(N), F ⊆ Rβη
N and M ∈ Ψc(N,F).

Lemma 6.4. Let M ∈ Λ, such that c 6∈ fv(M), F ⊆ Rβη
M , p ∈ F and M

p→βη

M ′. Then, there exists a unique set F ′ ⊆ Rβη
M ′ , such that for all N ∈ Ψc(M,F)

there exists N ′ ∈ Ψc(M ′,F ′) and p′ ∈ Rβη
N such that N

p′

→βη N
′ and |〈N, p′〉|c =

p.

Definition 6.5. Let M ∈ Λ, F ⊆ Rβη
M , p ∈ F and M

p→βη M
′. By lemma 6.4,

there exists a unique F ′ ⊆ Rβη
M ′ , such that for all N ∈ Ψc(M,F), there exist

N ′ ∈ Ψc(M ′,F ′) and p′ ∈ Rβη
N such that N

p′

→βη N
′ and |〈N, p′〉|c = p. We call

F ′ the set of βη-residuals in M ′ of the set of βη-redexes F in M relative
to p.

Definition 6.6 (βη-development). LetM ∈ Λ, where c 6∈ fv(M), and F ⊆ Rβη
M .

A one-step βη-development of 〈M,F〉, denoted 〈M,F〉 →βηd 〈M ′,F ′〉, is a βη-
reduction M

p→βη M ′ where p ∈ F and F ′ is the set of βη-residuals in M ′

of the set of βη-redexes F in M relative to p. A βη-development is the
transitive closure of a one-step βη-development. We write also M F→βηd M

′ for
the βη-development 〈M,F〉 →∗

βηd 〈M ′,F ′〉.
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Remark 6.7. Let us now compare our definition of βη-residuals to the one
given by Klop [Klo80] (λ-residuals). We believe that we accept more redexes as
residuals of a set of redexes than Curry and Feys [CF58] (as our examples given
at the beginning of section 6, tend to prove) and less than Klop.

In order to do so, let us introduce the two calculus Λ̄ and Λ̄ηc which are
labelled versions of the two calculus Λ and Ληc:

t ∈ Λ̄ ::= x | λnx.t | t1t2
v ∈ ABSc ::= λnx̄.wx̄ | λnx̄.u[x̄ := c(cx̄)], where x̄ 6∈ fv(w)
w ∈ APPc ::= v | cu
u ∈ Λ̄ηc ::= x̄ | v | wu | cu

where x̄, ȳ ∈ V \ {c}. Note that ABSc ⊆ APPc ⊆ Λ̄ηc ⊆ Λ̄.
The labels enable to distinguish two different occurrences of a λ.
Since these two calculus are only labelled versions of Λ and Ληc, let us assume

in this remark that the work done so far is true when Λ ans Ληc are replaced
by Λ̄ and Λ̄ηc.

Klop [Klo80] defines his λ-residuals as follows:

“Let R = M0 → M1 → . . . → Mk → . . . be a βη-reduction, R0

a redex in M0 and Rk a redex in Mk such that the head-λ of Rk

descends from that of R0.
Then, regardless whether R0, Rk are β- or η-redexes, Rk is called

a λ-residual of R0 via R.”

We are now going to our own definition of the head-λ of a βη-redex, slightly
different from Klop’s ones, as we intend to prove below.

Let us define the head-λ of a βη-redex as follows: headlam((λnx.t1)t2) =
〈1, n〉 and headlam(λnx.t0x) = 〈2, n〉, if x 6∈ fv(t0). If F ⊆ Rβη

t we define
headlamred(t,F) to be {〈i, n〉 | ∃p ∈ F . headlam(t|p) = 〈i, n〉}. We define
hlr(t) to be headlamred(t,Rβη

t ).
Let c 6∈ fv(t), F ⊆ Rβη

t and t
p→βη t

′ then by definition 6.5, there exists a
unique F ′ ⊆ Rβη

t′ , such that for all u ∈ Ψc(t,F) (by lemma 6.3.1c, u ∈ Λ̄ηc),

there exist u′ ∈ Ψc(t′,F ′) and p′ ∈ Rβη
u such that u

p′

→βη u
′ and |〈u, p′〉|c = p.

The set F ′ is the set of βη-residuals in t′ of the set of redexes F in t relative
to p. By lemma 2.2.3, c 6∈ fv(t′). By definition Ψc(t,F) is not empty. Let

u ∈ Ψc(t,F) then there exist u′ ∈ Ψc(t′,F ′) and p′ ∈ Rβη
u such that u

p′

→βη

u′ and |〈u, p′〉|c = p. By lemma 6.10, hlr(u′) ⊆ hlr(u). So, by lemma 6.8,
headlamred(t′,F ′) ⊆ headlamred(t,F).

However we can find t and F such that, following Klop’s definition [Klo80],
p0 ∈ Rβη

t′ and p0 is a λ-residual of F via p but p0 6∈ F ′.
For example: Let t = (λ0x.xy)(λ1z.yz)

0→βη (λ1z.yz)y = t′. Let F =
{0, 2.0}. Then Ψc(t,F) = {cn1((λ0x.c

n2(c3(x)y))(cn3(λ1z.c
n4+1(y)z))) | n1, n2, n3, n4 ≥

0}. Let u ∈ Ψc(t,F), then u = cn1((λ0x.c
n2(c3(x)y))(cn3(λ1z.c

n4+1(y)z))) such
that n1, n2, n3, n4 ≥ 0. We obtain u = cn1((λ0x.c

n2(c3(x)y))(cn3(λ1z.c
n4+1(y)z)))

p0→βη

cn1+n2(cn3+3(λ1z.c
n4+1(y)z)y) = u′ such that p0 = 2n1 .0. Then F ′ = {1.0} is
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the set of βη-residuals in t′ of the set of redexes F in t relative to p. But 0 is a
λ-residual of F via 0 and 0 6∈ F ′.

We could think that our definition of βη-redexes capture the Klop’s defini-
tion without the condition: “regardless whether R0, Rk are β- or η-redexes”,
But it is not the case . For example: t = λnx̄.(λmȳ.zȳ)x̄

1.0→β λnx̄.zx̄ =
t′ and 0 ∈ Rβη

t′ , but u = λnx̄.(λmȳ.cz(c(cȳ)))x̄ ∈ Ψc(t, {0, 1.0}) and u =
λnx̄.(λmȳ.cz(c(cȳ)))x̄

1.0→βη λnx̄.cz(c(cx̄)) = u′ and 0 6∈ Rβη
u′ .

So, we believe that our βη-residuals are only a subset of Klop’s λ-residuals (in
its definition and without “regardless whether R0, Rk are β- or η-redexes”).

Let now show that our definition of βη-residuals corresponds to a restriction
(in the sense that we believe we accept more redexes as residuals of a set of re-
dexes than Curry and Feys [CF58] and less than Klop [Klo80] ) of the definition
of λ-residuals given by Klop [Klo80].

In order to do so, let us introduce the two calculus Λ̄ and Λ̄ηc which are
labelled versions of the two calculus Λ and Ληc:

t ∈ Λ̄ ::= x | λnx.t | t1t2
v ∈ ABSc ::= λnx̄.wx̄ | λnx̄.u[x̄ := c(cx̄)], where x̄ 6∈ fv(w)
w ∈ APPc ::= v | cu
u ∈ Λ̄ηc ::= x̄ | v | wu | cu

where x̄, ȳ ∈ V \ {c}. Note that ABSc ⊆ APPc ⊆ Λ̄ηc ⊆ Λ̄.
The labels enable to distinguish two different occurrences of a λ.
Since these two calculus are only labelled versions of Λ and Ληc, let us assume

here that the work done so far is true when Λ ans Ληc are replaced by Λ̄ and
Λ̄ηc.

Klop [Klo80] defines his λ-residuals as follows:

“Let R = M0 → M1 → . . . → Mk → . . . be a βη-reduction, R0

a redex in M0 and Rk a redex in Mk such that the head-λ of Rk

descends from that of R0.
Then, regardless whether R0, Rk are β- or η-redexes, Rk is called

a λ-residual of R0 via R.”

Let us define the head-λ of a βη-redex as follows: headlam((λnx.t1)t2) =
〈1, n〉 and headlam(λnx.t0x) = 〈2, n〉, if x 6∈ fv(t0). If F ⊆ Rβη

t we define
headlamred(t,F) to be {〈i, n〉 | ∃p ∈ F . headlam(t|p) = 〈i, n〉}. We define
hlr(t) to be headlamred(t,Rβη

t ).

Lemma 6.8. Let c 6∈ fv(t) and F ⊆ Rβη
t . If u ∈ Ψc(t,F) then hlr(u) =

headlamred(t,F).

Proof. We prove this lemma by induction on the structure of t.

• Let t = x 6= c then by lemma 2.5, F = ∅ and u = cn(x) such that n ≥ 0.
Then, hlr(u) =6.13 ∅ = headlamred(t,F).

• Let t = λnx.t1 such that x 6= c and F1 = p | 1.p ∈ F .
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– If 0 ∈ F then t1 = t′1x such that x 6∈ fv(t′1), and u = cn(λnx.u1) such
that n ≥ 0 and u1 ∈ Ψc

0(t1,F1). By IH and lemma 6.3.1a, hlr(u1) =
headlamred(t1,F1). Then, hlr(u) =6.3.1d,6.13 hlr(u1) ∪ {〈2, n〉} =
headlamred(t1,F1) ∪ {〈2, n〉} =6.13 headlamred(t,F).

– Else, u = cn(λnx.u1[x := c(cx)]) such that n ≥ 0 and u1 ∈ Ψc(t1,F1).
By IH, hlr(u1) = headlamred(t1,F1). Then, hlr(u) =6.13 hlr(u1) =
headlamred(t1,F1) =6.13 headlamred(t,F).

• Let t = t1t2, F1 = {p | 1.p ∈ F} and F2 = {p | 2.p ∈ F}.

– If 0 ∈ F then t1 = λny.t
′
1, and u = cn(u1u2) such that n ≥ 0,

u1 ∈ Ψc
0(t1,F1) and u2 ∈ Ψc(t2,F2). By definition, u1 = λny.u

′
1. By

IH and lemma 6.3.1a, hlr(u1) = headlamred(t1,F1) and hlr(u2) =
headlamred(t2,F2). Then, hlr(u) =6.13 hlr(u1)∪ hlr(u2)∪ {〈1, n〉} =
headlamred(t1,F1)∪headlamred(t2,F2)∪{〈1, n〉} =6.13 headlamred(t,F).

– Else, u = cn(cu1u2) such that n ≥ 0, u1 ∈ Ψc(t1,F1) and u2 ∈
Ψc(t2,F2). By IH, hlr(u1) = headlamred(t1,F1) and hlr(u2) =
headlamred(t2,F2). Then, hlr(u) =6.13 hlr(u1)∪hlr(u2) = headlamred(t1,F1)∪
headlamred(t2,F2) =6.13 headlamred(t,F).

Lemma 6.9. If |u|c = t, p ∈ Rβη
u , p′ ∈ Rβη

t and |〈u, p〉|c = p′ then headlam(t|p′) =
headlam(u|p).

Lemma 6.10. If u ∈ Λ̄ηc and u
p→βη u

′ then hlr(u′) ⊆ hlr(u).

Proof. We prove this lemma by induction on the size of u and then by case on
the structure of u.

• Let u = x̄ then it is done because x̄ does not reduce by →βη.

• Let u = λnx̄.u1[x̄ := c(cx̄)]. Because u
p→βη u′, then by lemma 2.2.8,

lemma 2.7.3 and lemma 2.4.12a, p = 1.p′, u′ = λnx̄.u
′
1[x̄ := c(cx̄)] and

u1
p′

→βη u′1. By IH, hlr(u′1) ⊆ hlr(u1). So, by lemma 6.13, hlr(u′) =
hlr(u′1) ⊆ hlr(u1) = hlr(u).

• Let u = λnx̄.wx̄ and x̄ 6∈ fv(w). Because u
p→βη u

′, by lemma 2.2.8 and
lemma 2.5:

– Either p = 0 and u′ = w. So hlr(u′) ⊆6.14 hlr(u).

– Or p = 1.p′, wx̄
p′

→βη u
′
1 and u′ = λnx̄.u

′
1. By IH, hlr(u′1) ⊆ hlr(wx̄).

So, hlr(u′) ⊆6.13 hlr(u′1) ∪ {〈2, n〉} ⊆ hlr(wx̄) ∪ {〈2, n〉} =6.13 hlr(t).

• Let u = (λnx̄.wx̄)u1 such that x̄ 6∈ fv(w). Because u
p→βη u

′, by lemma 2.2.8
and lemma 2.5:

– Either p = 0. So u′ = wu1. By case on w:
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∗ Either w is a v and so u′ ∈ Rβη. Let 〈1,m〉 = headlam(u′) then
hlr(u′) =6.13 hlr(w) ∪ hlr(u1) ∪ {〈1,m〉} ⊆6.13 hlr(u).

∗ Or w = cu2 and so u′ 6∈ Rβη. Then hlr(u′) =6.13 hlr(w) ∪
hlr(u1) ⊆6.13 hlr(u).

– Or p = 1.p′ such that p′ ∈ Rβη
λnx̄.wx̄. So u′ = u′1u1 such that

λnx̄.wx̄
p′

→βη u
′
1. By IH, hlr(u′1) ⊆ hlr(λnx̄.wx̄). By lemma 2.5:

∗ Either p′ = 0 and u′1 = w, so u′ = wu1. By case on w:
· Either w is a v and so u′ ∈ Rβη. Let 〈1,m〉 = headlam(u′)

then hlr(u′) =6.13 hlr(w) ∪ hlr(u1) ∪ {〈1,m〉} ⊆6.13 hlr(u).
· Or w = cu2 and so u′ 6∈ Rβη. Then hlr(u′) =6.13 hlr(w) ∪

hlr(u1) ⊆6.13 hlr(u).

∗ Or p′ = 1.p′′, u′1 = λnx̄.u2 and wx̄
p′′

→βη u2. Then, hlr(u′) =6.13

hlr(u′1)∪hlr(u1)∪{〈1, n〉} ⊆ hlr(λnx̄.wx̄)∪hlr(u1)∪{〈1, n〉} =6.13

hlr(t).
– Or p = 2.p′ such that p′ ∈ Rβη

u1
. So u′ = (λnx̄.wx)u′1 such that

u1
p′

→βη u
′
1. By IH, hlr(u′1) ⊆ hlr(u1). So, hlr(u′) =6.13 hlr(λnx̄.wx̄)∪

hlr(u′1) ∪ {〈1, n〉} ⊆ hlr(λnx̄.wx̄) ∪ hlr(u1) ∪ {〈1, n〉} =6.13 hlr(u).

• Let u = (λnx̄.u1[x̄ := c(cx̄)])u2. Because u
p→βη u

′, by lemma 2.2.8 and
lemma 2.5:

– Either p = 0. So u′ = u1[x̄ := c(cu2)]. By lemma 6.11, hlr(u′) ⊆
hlr(u).

– Or p = 1.p′ such that p′ ∈ Rβη
λnx̄.u1[x̄:=c(cx̄)]. So u′ = u′1u2 such

that λnx̄.u1[x̄ := c(cx̄)]
p′

→βη u
′
1. By IH, hlr(u′1) ⊆ hlr(λnx̄.u1[x̄ :=

c(cx̄)]). By lemma 2.2.8, lemma 2.7.3, lemma 2.7.4 and lemma 2.4.12a,

p′ = 1.p′′, u′1 = λnx̄.u
′′
1 [x̄ := c(cx̄)] and u1

p′′

→βη u
′′
1 . Then, hlr(u′) =6.13

hlr(u′1) ∪ hlr(u2) ∪ {〈1, n〉} ⊆ hlr(λnx̄.u1[x̄ := c(cx̄)]) ∪ hlr(u2) ∪
{〈1, n〉} =6.13 hlr(u).

– Or p = 2.p′ such that p′ ∈ Rβη
u2

. So u′ = (λnx̄.u1[x̄ := c(cx̄)])u′2
such that u2

p′

→βη u′2. By IH, hlr(u′2) ⊆ hlr(u2). So, hlr(u′) =6.13

hlr(λnx̄.u1[x̄ := c(cx̄)])∪hlr(u′2)∪{〈1, n〉} ⊆ hlr(λnx̄.u1[x̄ := c(cx̄)])∪
hlr(u2) ∪ {〈1, n〉} =6.13 hlr(u).

• Let u = cu1u2. Because u
p→βη u

′, by lemma 2.2.8 and lemma 2.5:

– Either p = 1.2.p′ such that p′ ∈ Rβη
u1

. So u′ = cu′1u2 such that

u1
p′

→βη u′1. By IH, hlr(u′1) ⊆ hlr(u1). So, hlr(u′) =6.13 hlr(u′1) ∪
hlr(u2) ⊆ hlr(u1) ∪ hlr(u2) =6.13 hlr(u).

– Or p = 2.p′ such that p′ ∈ Rβη
u2

. So u′ = cu1u
′
2 such that u2

p′

→βη

u′2. By IH, hlr(u′2) ⊆ hlr(u2). So, hlr(u′) =6.13 hlr(u1) ∪ hlr(u′2) ⊆
hlr(u1) ∪ hlr(u2) =6.13 hlr(u).
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• Let u = cu1. Because u
p→βη u

′, by lemma 2.2.8 and lemma 2.5 p = 2.p′

such that p′ ∈ Rβη
u1

. So u′ = cu′1 such that u1
p′

→βη u
′
1. By IH, hlr(u′1) ⊆

hlr(u1). So, hlr(u′) =6.13 hlr(u′1) ⊆ hlr(u1) =6.13 hlr(u).

Lemma 6.11. hlr(u1[x̄ := c(cu2)]) ⊆ hlr((λnx̄.u1[x̄ := c(cx̄)])u2).

Proof. We prove the lemma by induction on the size of u1 and then by case on
the structure of u1.

• Let u1 ∈ V. Either u1 = x̄ then hlr(u1[x̄ := c(cu2)]) = hlr(c(cu2)) =6.13

hlr(u2) ⊆6.14 hlr((λnx̄.u1[x̄ := c(cx̄)])u2). Or u1 = y 6= x̄ then hlr(u1[x̄ :=
c(cu2)]) = hlr(u1) ⊆6.14,6.13 hlr((λnx̄.u1[x̄ := c(cx̄)])u2).

• Let u1 = λmȳ.u
′
1[ȳ := c(cȳ)]. Then hlr(u1[x̄ := c(cu2)]) = hlr((λmȳ.u

′
1[ȳ :=

c(cȳ)])[x̄ := c(cu2)]) = hlr(λmȳ.u
′
1[x̄ := c(cu2)][ȳ := c(cȳ)]) =6.13 hlr(u′1[x̄ :=

c(cu2)]) ⊆IH hlr((λnx̄.u
′
1[x̄ := c(cx̄)])u2) =6.13 hlr(u′1)∪hlr(u2)∪{〈1, n〉} =6.13

hlr(λmȳ.u
′
1[ȳ := c(cȳ)])∪hlr(u2)∪{〈1, n〉} =6.13 hlr((λnx̄.u1[x̄ := c(cx̄)])u2)

such that ȳ 6∈ fv(u2) ∪ {x̄}.

• Let u1 = λmȳ.wȳ such that ȳ 6∈ fv(w). Then, hlr(u1[x̄ := c(cu2)]) =
hlr(λmȳ.(wȳ)[x̄ := c(cu2)]) =6.13 hlr((wȳ)[x̄ := c(cu2)]) ∪ {〈2,m〉} ⊆IH

hlr((λnx̄.(wȳ)[x̄ := c(cx̄)])u2)∪{〈2,m〉} =6.13 hlr(wȳ)∪hlr(u2)∪{〈1, n〉, 〈2,m〉} =6.13

hlr((λnx̄.(λmȳ.wȳ)[x̄ := c(cx̄)])u2) such that ȳ 6∈ fv(u2) ∪ {x̄}.

• Let u1 = cu′1u
′′
1 . Then, hlr(u1[x̄ := c(cu2)]) = hlr(cu′1[x̄ := c(cu2)]u′′1 [x̄ :=

c(cu2)]) =6.13 hlr(u′1[x̄ := c(cu2)])∪hlr(u′′1 [x̄ := c(cu2)]) ⊆IH hlr((λnx̄.u
′
1[x̄ :=

c(cx̄)])u2)∪ hlr((λnx̄.u
′′
1 [x̄ := c(cx̄)])u2) =6.13 hlr(u′1)∪ hlr(u′′1)∪ hlr(u2)∪

{〈1, n〉} =6.13 hlr((λnx̄.(cu′1u
′′
1)[x̄ := c(cx̄)])u2).

• Let u1 = vu′′1 (such that v = λmȳ.wȳ and ȳ 6∈ fv(w) or v = λmȳ.u
′
1[ȳ :=

c(cȳ)]). Then, hlr(u1[x̄ := c(cu2)]) = hlr(v[x̄ := c(cu2)]u′′1 [x̄ := c(cu2)]) =6.13

hlr(v[x̄ := c(cu2)]) ∪ hlr(u′′1 [x̄ := c(cu2)]) ∪ {〈1,m〉} ⊆IH hlr((λnx̄.v[x̄ :=
c(cx̄)])u2)∪ hlr((λnx̄.u

′′
1 [x̄ := c(cx̄)])u2)∪{〈1,m〉} =6.13 hlr(v)∪ hlr(u′′1)∪

hlr(u2) ∪ {〈1, n〉, 〈1,m〉} =6.13 hlr((λnx̄.(vu′′1)[x̄ := c(cx̄)])u2).

• Let u1 = cu′1. Then, hlr(u1[x̄ := u2]) = hlr(cu′1[x̄ := c(cu2)]) =6.13

hlr(u′1[x̄ := c(cu2)]) ⊆IH hlr((λnx̄.u
′
1[x̄ := c(cx̄)])u2) =6.13 hlr(u′1) ∪

hlr(u2) ∪ {〈1, n〉} =6.13 hlr((λnx̄.(cu′1)[x̄ := c(cx̄)])u2).

Lemma 6.12. If p ∈ Rβη
t then headlam(t|p [x̄ := c(cx̄)]) = headlam(t|p).

Proof. We prove this lemma by induction on the structure of t.

• Let t ∈ V then by lemma 2.5, Rβη
t = ∅.

• Let t = λny.t
′ then by lemma 2.5:

– Either p = 0 if t′ = t′′y and y 6∈ fv(t′′). Then headlam(t|p [x̄ :=
c(cx̄)]) = headlam(t[x̄ := c(cx̄)]) = headlam(λny.t

′′[x̄ := c(cx̄)]y) =
〈2, n〉 = headlam(t) such that y 6∈ {c, x̄}.
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– Or p = 1.p′ such that p′ ∈ Rβη
t′ . Then headlam(t|p [x̄ := c(cx̄)]) =

headlam(t′|p′ [x̄ := c(cx̄)]) =IH headlam(t′|p′) = headlam(t|p).

• Let t = t1t2 then by lemma 2.5:

– Either p = 0 if t1 = λny.t0. Then headlam(t|p [x̄ := c(cx̄)]) =
headlam(t[x̄ := c(cx̄)]) = headlam((λny.t0[x̄ := c(cx̄)])t2[x̄ := c(cx̄)]) =
〈1, n〉 = headlam(t) such that y 6∈ {c, x̄}.

– Or p = 1.p′ such that p′ ∈ Rβη
t1 . Then headlam(t|p [x̄ := c(cx̄)]) =

headlam(t1|p′ [x̄ := c(cx̄)]) =IH headlam(t1|p′) = headlam(t|p).

– Or p = 2.p′ such that p′ ∈ Rβη
t2 . Then headlam(t|p [x̄ := c(cx̄)]) =

headlam(t2|p′ [x̄ := c(cx̄)]) =IH headlam(t2|p′) = headlam(t|p).

Lemma 6.13. Let t ∈ Λ̄ and F ⊆ Rβη
t .

• If t = x then headlamred(t,F) = hlr(t) = ∅.

• If t = λnx.t1 then if t ∈ Rβη then hlr(t) = hlr(t1) ∪ {〈2, n〉} else hlr(t) =
hlr(t1).

• If t = λnx.t1 and F1 = {p | 1.p ∈ F} then if 0 ∈ F then headlamred(t,F) =
headlamred(t1,F1)∪{〈2, n〉} else headlamred(t,F) = headlamred(t1,F1).

• If t = t1t2 then if t ∈ Rβη then hlr(t) = hlr(t1) ∪ hlr(t2) ∪ {headlam(t)}
else hlr(t) = hlr(t1) ∪ hlr(t2).

• If t = t1t2, F1 = {p | 1.p ∈ F} and F2 = {p | 2.p ∈ F} then if
0 ∈ F then headlamred(t,F) = headlamred(t1,F1)∪headlamred(t2,F2)∪
{headlam(t)} else headlamred(t,F) = headlamred(t1,F1)∪headlamred(t2,F2).

• If t = λnx̄.t1[x̄ := c(cx̄)] then hlr(t) = hlr(t1).

• If t = cn(t1), then hlr(t) = hlr(t1).

Proof. By definition hlr(t) = {〈i, n〉 | ∃p ∈ Rβη
t . headlam(t|p) = 〈i, n〉} and

headlamred(t,F) = {〈i, n〉 | ∃p ∈ F . headlam(t|p) = 〈i, n〉}. We prove the frist
three items of this lemma by induction on the size of t and then by case on the
structure of t.

• Let t = x. By lemma 2.5, F = Rβη
x = ∅, then headlamred(x,F) =

hlr(x) = ∅.

• Let t = λnx.t1.

– Let t ∈ Rβη then t1 = t0x such that x 6∈ fv(t0).

∗ Let 〈j,m〉 ∈ hlr(t) then there exists p ∈ Rβη
t such that headlam(t|p) =

〈j,m〉. By lemma 2.5:
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· Either p = 0, so 〈j,m〉 = headlam(t|0) = headlam(t) =
〈2, n〉.

· Or p = 1.p′ such that p′ ∈ Rβη
t1 . Then, 〈j,m〉 = headlam(t|p) =

headlam(t1|p′). So 〈j,m〉 ∈ hlr(t1).
∗ Let 〈j,m〉 ∈ hlr(t1) ∪ {〈2, n〉}.

· Either 〈j,m〉 ∈ hlr(t1). Then there exists p ∈ Rβη
t1 such

that headlam(t1|p) = 〈j,m〉. By lemma 2.5, 1.p ∈ Rβη
t and

〈j,m〉 = headlam(t1|p) = headlam(t|1.p). So 〈j,m〉 ∈ hlr(t).

· Or 〈j,m〉 = 〈2, n〉. By lemma 2.5, 0 ∈ Rβη
t and headlam(t|0) =

headlam(t) = 〈2, n〉. So 〈j,m〉 ∈ hlr(t).

– Let t 6∈ Rβη.

∗ Let 〈j,m〉 ∈ hlr(t) then there exists p ∈ Rβη
t such that headlam(t|p) =

〈j,m〉. By lemma 2.5, p = 1.p′ such that p′ ∈ Rβη
t1 . Then,

〈j,m〉 = headlam(t|p) = headlam(t1|p′). So 〈j,m〉 ∈ hlr(t1).

∗ Let 〈j,m〉 ∈ hlr(t1) then there exists p ∈ Rβη
t1 such that headlam(t1|p) =

〈j,m〉. By lemma 2.5, 1.p ∈ Rβη
t and 〈j,m〉 = headlam(t1|p) =

headlam(t|1.p). So 〈j,m〉 ∈ hlr(t).

• Let t = λnx.t1 and F1 = {p | 1.p ∈ F}.

– Let 0 ∈ F then t ∈ Rβη.

∗ Let 〈j,m〉 ∈ headlamred(t,F) then there exists p ∈ F such that
headlam(t|p) = 〈j,m〉. By lemma 2.6:
· Either p = 0, so 〈j,m〉 = headlam(t|0) = headlam(t) =
〈2, n〉.

· Or p = 1.p′ such that p′ ∈ F1. Then, 〈j,m〉 = headlam(t|p) =
headlam(t1|p′). So 〈j,m〉 ∈ headlamred(t1,F1).

∗ Let 〈j,m〉 ∈ headlamred(t1,F1) ∪ {〈2, n〉}.
· Either 〈j,m〉 ∈ headlamred(t1,F1). Then there exists p ∈
F1 such that headlam(t1|p) = 〈j,m〉. So, 1.p ∈ F and
〈j,m〉 = headlam(t1|p) = headlam(t|1.p). Hence, 〈j,m〉 ∈
headlamred(t,F).

· Or 〈j,m〉 = 〈2, n〉. Because 0 ∈ F and headlam(t|0) =
headlam(t) = 〈2, n〉 then 〈j,m〉 ∈ headlamred(t,F).

– Let 0 6∈ F .

∗ Let 〈j,m〉 ∈ headlamred(t,F) then there exists p ∈ F such that
headlam(t|p) = 〈j,m〉. By lemma 2.6, p = 1.p′ such that p′ ∈
F1. Then, 〈j,m〉 = headlam(t|p) = headlam(t1|p′). So 〈j,m〉 ∈
headlamred(t1,F1).

∗ Let 〈j,m〉 ∈ headlamred(t1,F1) then there exists p ∈ F1 such
that headlam(t1|p) = 〈j,m〉. By lemma 2.6, 1.p ∈ F and
〈j,m〉 = headlam(t1|p) = headlam(t|1.p). So 〈j,m〉 ∈ headlamred(t,F).
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• Let t = t1t2.

– Let t ∈ Rβη then t1 = λnx.t0. So 〈1, n〉 = headlam(t).

∗ Let 〈j,m〉 ∈ hlr(t) then there exists p ∈ Rβη
t such that headlam(t|p) =

m. By lemma 2.5:
· Either p = 0, so 〈j,m〉 = headlam(t|0) = headlam(t) =
〈1, n〉.

· Or p = 1.p′ such that p′ ∈ Rβη
t1 . Then, 〈j,m〉 = headlam(t|p) =

headlam(t1|p′). So 〈j,m〉 ∈ hlr(t1).

· Or p = 2.p′ such that p′ ∈ Rβη
t2 . Moreover, 〈j,m〉 = headlam(t|p) =

headlam(t2|p′). So 〈j,m〉 ∈ hlr(t2).
∗ Let 〈j,m〉 ∈ hlr(t1) ∪ hlr(t2) ∪ {〈1, n〉}.

· Either 〈j,m〉 ∈ hlr(t1). Then there exists p ∈ Rβη
t1 such

that headlam(t1|p) = 〈j,m〉. By lemma 2.5, 1.p ∈ Rβη
t and

〈j,m〉 = headlam(t1|p) = headlam(t|1.p). So 〈j,m〉 ∈ hlr(t).

· Or 〈j,m〉 ∈ hlr(t2). Then there exists p ∈ Rβη
t2 such that

headlam(t2|p) = 〈j,m〉. By lemma 2.5, 2.p ∈ Rβη
t and

〈j,m〉 = headlam(t2|p) = headlam(t|2.p). So 〈j,m〉 ∈ hlr(t).

· Or 〈j,m〉 = 〈1, n〉. By lemma 2.5, 0 ∈ Rβη
t and headlam(t|0) =

headlam(t) = 〈1, n〉. So 〈j,m〉 ∈ hlr(t).

– Let t 6∈ Rβη.

∗ Let 〈j,m〉 ∈ hlr(t) then there exists p ∈ Rβη
t such that headlam(t|p) =

〈j,m〉. By lemma 2.5:
· Either p = 1.p′ such that p′ ∈ Rβη

t1 . Moreover, 〈j,m〉 =
headlam(t|p) = headlam(t1|p′). So 〈j,m〉 ∈ hlr(t1).

· Or p = 2.p′ such that p′ ∈ Rβη
t2 . Moreover, 〈j,m〉 = headlam(t|p) =

headlam(t2|p′). So 〈j,m〉 ∈ hlr(t2).
∗ Let 〈j,m〉 ∈ hlr(t1) ∪ hlr(t2).

· Either 〈j,m〉 ∈ hlr(t1). Then there exists p ∈ Rβη
t1 such

that headlam(t1|p) = 〈j,m〉. By lemma 2.5, 1.p ∈ Rβη
t and

〈j,m〉 = headlam(t1|p) = headlam(t|1.p). So 〈j,m〉 ∈ hlr(t).

· Or 〈j,m〉 ∈ hlr(t2). Then there exists p ∈ Rβη
t2 such that

headlam(t2|p) = 〈j,m〉. By lemma 2.5, 2.p ∈ Rβη
t and

〈j,m〉 = headlam(t2|p) = headlam(t|2.p). So 〈j,m〉 ∈ hlr(t).

• Let t = t1t2, F1 = {p | 1.p ∈ F} and F2 = {p | 2.p ∈ F}.

– Let 0 ∈ F then t ∈ Rβη.

∗ Let 〈j,m〉 ∈ headlamred(t,F) then there exists p ∈ F such that
headlam(t|p) = m. By lemma 2.6:
· Either p = 0, so 〈j,m〉 = headlam(t|0) = headlam(t).
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· Or p = 1.p′ such that p′ ∈ F1. Then, 〈j,m〉 = headlam(t|p) =
headlam(t1|p′). So 〈j,m〉 ∈ headlamred(t1,F1).

· Or p = 2.p′ such that p′ ∈ F2. Then, 〈j,m〉 = headlam(t|p) =
headlam(t2|p′). So 〈j,m〉 ∈ headlamred(t2,F2).

∗ Let 〈j,m〉 ∈ headlamred(t1,F1)∪headlamred(t2,F2)∪{headlam(t)}.
· Either 〈j,m〉 ∈ headlamred(t1,F1). Then there exists p ∈
F1 such that headlam(t1|p) = 〈j,m〉. So, 1.p ∈ F and
〈j,m〉 = headlam(t1|p) = headlam(t|1.p). Hence, 〈j,m〉 ∈
headlamred(t,F).

· Or 〈j,m〉 ∈ headlamred(t2,F2). Then there exists p ∈ F2

such that headlam(t2|p) = 〈j,m〉. So, 2.p ∈ F and 〈j,m〉 =
headlam(t2|p) = headlam(t|2.p). Hence, 〈j,m〉 ∈ headlamred(t,F).

· Or 〈j,m〉 = headlam(t). Because 0 ∈ F and headlam(t|0) =
headlam(t), then 〈j,m〉 ∈ headlamred(t,F).

– Let 0 6∈ F .

∗ Let 〈j,m〉 ∈ headlamred(t,F) then there exists p ∈ F such that
headlam(t|p) = 〈j,m〉. By lemma 2.6:
· Either p = 1.p′ such that p′ ∈ F1. Moreover, 〈j,m〉 =

headlam(t|p) = headlam(t1|p′). So 〈j,m〉 ∈ headlamred(t1,F1).
· Or p = 2.p′ such that p′ ∈ F2. Moreover, 〈j,m〉 = headlam(t|p) =

headlam(t2|p′). So 〈j,m〉 ∈ headlamred(t2,F2).
∗ Let 〈j,m〉 ∈ headlamred(t1,F1) ∪ headlamred(t2,F2).

· Either 〈j,m〉 ∈ headlamred(t1,F1). Then there exists p ∈
F1 such that headlam(t1|p) = 〈j,m〉. So, 1.p ∈ F and
〈j,m〉 = headlam(t1|p) = headlam(t|1.p). Hence, 〈j,m〉 ∈
headlamred(t,F).

· Or 〈j,m〉 ∈ headlamred(t2,F2). Then there exists p ∈ F2

such that headlam(t2|p) = 〈j,m〉. So, 2.p ∈ F and 〈j,m〉 =
headlam(t2|p) = headlam(t|2.p). Hence, 〈j,m〉 ∈ headlamred(t,F).

Let t = λnx̄.t1[x̄ := c(cx̄)].

• Let 〈j,m〉 ∈ hlr(t) then there exists p ∈ Rβη
t such that headlam(t|p) =

〈j,m〉. By lemma 2.7.3 and lemma 2.7.4, p = 1.p′ such that p′ ∈ Rβη
t1 .

Moreover, 〈j,m〉 = headlam(t|p) = headlam(t1[x̄ := c(cx̄)]|p′) =2.7.2

headlam(t1|p′ [x̄ := c(cx̄)]) =6.12 headlam(t1|p′). So 〈j,m〉 ∈ hlr(t1).

• Let 〈j,m〉 ∈ hlr(t1) then there exists p ∈ Rβη
t1 such that headlam(t1|p) =

〈j,m〉. By lemma 2.7.3 and lemma 2.7.4, 1.p ∈ Rβη
t . Moreover, 〈j,m〉 =

headlam(t1|p) =6.12 headlam(t1|p [x̄ := c(cx̄)]) =2.7.2 headlam(t1[x̄ :=
c(cx̄)]|p) = headlam(t|1.p). So 〈j,m〉 ∈ hlr(t).

Let t = cn(t1). We prove that hlr(t) = hlr(t1) by induction on n.

• Let n = 0 then it is done.
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• Let n = m+ 1 such that m ≥ 0 then hlr(t) =6.13 hlr(cm(t1)) =IH hlr(t1).

Lemma 6.14. If t1 ⊆ t2 then hlr(t1) ⊆ hlr(t2).

Proof. We prove the lemma by induction on the structure of t2.

• Let t2 = x, then it is done because by definition t1 = x.

• Let t2 = λnx.t0 then by definition:

– Either t1 = t2 so it is done.
– Or t1 ⊆ t0. Then hlr(t1) ⊆IH hlr(t0) ⊆6.13 hlr(t2).

• Let t2 = t3t4 then by definition:

– Either t1 = t2 so it is done.
– Or t1 ⊆ t3. Then hlr(t1) ⊆IH hlr(t3) ⊆6.13 hlr(t2).
– Or t1 ⊆ t4. Then hlr(t1) ⊆IH hlr(t4) ⊆6.13 hlr(t2).

Lemma 6.15. Let M ∈ Λ, where c 6∈ fv(M), and F ⊆ Rβη
M . Then:

〈M,F〉 →∗
βηd 〈M ′,F ′〉 ⇐⇒ ∃N ∈ Ψc(M,F). ∃N ′ ∈ Ψc(M ′,F ′). N →∗

βη N
′

and

〈M,F〉 →∗
βηd 〈M ′,F ′〉 ⇐⇒ ∀N ∈ Ψc(M,F). ∃N ′ ∈ Ψc(M ′,F ′). N →∗

βη N
′

Lemma 6.16. Let M ∈ Λ, such that c 6∈ fv(M) and F1 ⊆ F2 ⊆ Rβη
M . If

〈M,F1〉 →βηd 〈M ′,F ′
1〉 then there exists F ′

2 ⊆ Rβη
M ′ such that F1 ⊆ F ′

2 and
〈M,F2〉 →βηd 〈M ′,F ′

2〉.
Lemma 6.17 (confluence of the βη-developments). Let M ∈ Λ such that c 6∈
fv(M). If M F1→βηd M1 and M F2→βηd M2, then there exist F ′

1 ⊆ Rβη
M1

, F ′
2 ⊆ Rβη

M2

and M3 ∈ Λ such that M1
F ′

1→βηd M3 and M2
F ′

2→βηd M3.

Notation 6.18. Let c 6∈ fv(M). M →1 M ′ ⇐⇒ ∃F ,F ′, 〈M,F〉 →∗
βηd

〈M ′,F ′〉.

Lemma 6.19. Let c 6∈ fv(M). ∀P ∈ Ψc(M,∅). Rβη
P = ∅.

Lemma 6.20. Let c 6∈ fv(M) ∪ fv(N) and x 6= c. ∀P ∈ Ψc(M,∅). ∀Q ∈
Ψc(N,∅). Rβη

P [x:=Q] = ∅.

Lemma 6.21. Let c 6∈ fv(M). If p ∈ Rβη
M , P ∈ Ψc(M, {p}) and P →βη Q then

Rβη
Q = ∅.

Lemma 6.22. Let c 6∈ fv(M). If M
p→βη M

′ then 〈M, {p}〉 →βηd 〈M ′,∅〉.
Lemma 6.23. →∗

βη=→∗
1.

Lemma 6.24. Λ ⊆ CRβη.
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7 Conclusion

Reducibility is a powerful method and has been applied to prove using a single
method, a number of properties of the λ-calculus (Church-Rosser, strong nor-
malisation, etc.). This paper studied two reducibility methods which exploit
the passage from typed (in an intersection type system) to untyped terms. We
showed that a first method given by Ghilezan and Likavec [GL02] fails in its
aim and we have only been able to provide a partial solution. We adapted a
second method given by Koletsos and Stavrinos [KS08] from β to βI-reduction
and we generalised it to βη-reduction. There are differences in the type systems
chosen and the methods of reducibility used by Ghilezan and Likavec on one
side and by Koletsos and Stavrinos on the other. Koletsos and Stavrinos use
system D [Kri90], which has elimination rules for intersection types whereas
Ghilezan and Likavec use λ∩ and λ∩Ω with subtyping. Moreover, Koletsos and
Stavrinos’s method depends on the inclusion of typable λ-terms in the set of
λ-terms possessing the Church-Rosser property, whereas Ghilezan and Likavec’s
method (the working part of their method) is to prove the inclusion of typable
terms in an arbitrary subset of the untyped λ-calculus closed by some properties.
Moreover, Ghilezan and Likavec consider the VAR(P), SAT(P) and CLO(P)
predicates whereas Koletsos and Stavrinos use standard reducibility methods
through saturated sets. Koletsos and Stavrinos prove the confluence of develop-
ments using the confluence of typable λ-terms in system D (the authors prove
that even a simple type system is sufficient). The advantage of Koletsos and
Stavrinos’s proof of confluence of developments is that strong normalisation is
not needed.
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A Proofs of section 2

Lemma 2.2 . 1 We prove the lemma by induction on p.

– Let p = 0.

Let M 0→βη M ′ then either M = (λx.P )Q and M ′ = P [x := Q]
and so M

0→β M ′. Or M = λx.M ′x such that x 6∈ fv(M ′) and so
M

0→η M
′.

Let M →η 0M ′ then M = λx.M ′x such that x 6∈ fv(M ′) and so
M

0→βη M
′.

Let M →β 0M ′ then M = (λx.P )Q and M ′ = P [x := Q] and so
M

0→βη M
′.

– Let p = 1.p′.

Let M
p→βη M

′ then either M = λx.N , M ′ = λx.N ′ and N
p′

→βη N
′.

By IH, N
p→β N ′ or N

p′

→η N ′. So M
p→β M ′ or M

p→η M ′. Or

M = PQ, M ′ = P ′Q and P
p′

→βη P
′. By IH, P

p→β P
′ or P

p′

→η P
′.

So M
p→β M

′ or M
p→η M

′.

Let M
p→η M

′ then either M = λx.N , M ′ = λx.N ′ and N
p′

→η N
′.

By IH, N
p→βη N ′, so M

p→βη M ′. Or M = PQ, M ′ = P ′Q and

P
p′

→η P
′. By IH, P

p→βη P
′, so M

p→βη M
′.

Let M
p→β M

′ then either M = λx.N , M ′ = λx.N ′ and N
p′

→β N
′.

By IH, N
p→βη N ′, so M

p→βη M ′. Or M = PQ, M ′ = P ′Q and

P
p′

→β P
′. By IH, P

p→βη P
′, so M

p→βη M
′.

– Let p = 2.p′.

Let M
p→βη M

′ then M = PQ, M ′ = PQ′ and Q
p′

→βη Q
′. By IH,

Q
p→β Q

′ or Q
p′

→η Q
′. So M

p→β M
′ or M

p→η M
′.

Let M
p→η M ′ then M = PQ, M ′ = PQ′ and Q

p′

→η Q′. By IH,
Q

p→βη Q
′, so M

p→βη M
′.

Let M
p→β M ′ then M = PQ, M ′ = PQ′ and Q

p′

→β Q′. By IH,
Q

p→βη Q
′, so M

p→βη M
′.

2 We prove this lemma by induction on the structure of M1.

– Either M1 = x, then fv((λx.M1)M2) = fv(M2) = fv(M1[x := M2]).
If (λx.M1)M2 ∈ ΛI then M2 = M1[x := M2] ∈ ΛI.

– OrM1 = λy.M0 then fv((λx.λy.M0)M2) = fv((λx.M0)M2)\{y} =IH

fv(M0[x := M2])\{y} = fv(M1[x := M2]) such that y 6∈ fv(M2)∪{x}.
If (λx.λy.M0)M2 ∈ ΛI then M0,M2 ∈ ΛI and x, y ∈ fv(M0). So
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(λx.M0)M2 ∈ ΛI. By IH, M0[x := M2] ∈ ΛI. Hence, M1[x := M2] ∈
ΛI such that y 6∈ fv(M2) ∪ {x}.

– OrM1 = PQ then fv((λx.PQ)M2) = fv(λx.P )M2∪fv((λx.Q)M2) =IH

fv(P [x := M2]) ∪ fv(Q[x := M2]) = fv((PQ)[x := M2]).

3. We prove the lemma by induction on the length of the reduction M →∗
βη

M ′.

– If M = M ′ then fv(M) = fv(M ′)

– Let M →∗
βη M

′′ →βη M
′. By IH, fv(M) ⊆ fv(M ′′). By definition

there exists p such that M ′′ p→βη M ′. We prove that fv(M ′′) ⊆
fv(M ′) by induction on p.

∗ Let p = 0.
· either M ′′ = (λx.M1)M2 and M ′ = M1[x := M2]. We prove

that fv(M ′) ⊆ (fv(M1)\{x})∪fv(M2) = fv(M ′′) by induction
on the structure of M1.
1. Let M1 = y. If y = x then M ′ = M2 and fv(M ′) =

fv(M ′′). If y 6= x then M ′ = y and fv(M ′) = {y} ⊆
{y} ∪ fv(M2) = fv(M ′′).

2. LetM1 = λy.M ′
1 thenM ′ = λy.M ′

1[x := M2] such that y 6∈
fv(M2) ∪ {x}. By IH, fv(M ′

1[x := M2]) ⊆ fv((λx.M ′
1)M2).

Hence, fv(M ′) = fv(M ′
1[x := M2])\{y} ⊆ fv((λx.M ′

1)M2)\
{y} = (fv(M ′

1) \ {x, y}) ∪ (fv(M2) \ {y}) = fv(M ′′).
3. Let M1 = M ′

1M
′′
1 then M ′ = M ′

1[x := M2]M ′′
1 [x :=

M2]. By IH, fv(M ′
1[x := M2]) ⊆ fv((λx.M ′

1)M2) and
fv(M ′′

1 [x := M2]) ⊆ fv((λx.M ′′
1 )M2). Hence, fv(M ′) =

fv(M ′
1[x := M2]) ∪ fv(M ′′

1 [x := M2]) ⊆ fv((λx.M ′
1)M2) ∪

fv((λx.M ′′
1 )M2) = ((fv(M ′

1) ∪ fv(M ′′
1 )) \ {x}) ∪ fv(M2) =

fv(M ′′).
· Or M ′′ = λx.M ′x such that x 6∈ fv(M ′), so fv(M ′′) =

fv(M ′).

∗ Let p = 1.p′ then eitherM ′′ = λx.M1, M ′ = λx.M2 andM1
p′

→βη

M2. By IH, fv(M1) ⊆ fv(M2), so fv(M ′′) = fv(M1) \ {x} ⊆
fv(M2) \ {x} = fv(M ′). Or M ′′ = M1M2, M ′ = M ′

1M2 and

M1
p′

→βη M
′
1. By IH, fv(M1) ⊆ fv(M ′

1), so fv(M ′′) = fv(M1) ∪
fv(M2) ⊆ fv(M ′

1) ∪ fv(M2) = fv(M ′).

∗ Let p = 2.p′ then M ′′ = M1M2, M ′ = M1M
′
2 and M2

p′

→βη

M ′
2. By IH, fv(M2) ⊆ fv(M ′

2), so fv(M ′′) = fv(M1) ∪ fv(M2) ⊆
fv(M1) ∪ fv(M ′

2) = fv(M ′).

4. We prove the lemma by induction on the length of the reduction M →∗
βI

M ′.

– If M = M ′ then fv(M) = fv(M ′)
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– Let M →∗
βI M

′′ →βI M
′. By IH, fv(M) = fv(M ′′) and if M ∈ ΛI

then M ′′ ∈ ΛI. By definition there exists p such that M ′′ p→βI M
′.

We prove that fv(M ′′) = fv(M ′) and that if M ′′ ∈ ΛI then M ′ ∈ ΛI
by induction on p.

∗ Let p = 0 then M ′′ = (λx.M1)M2 and M ′ = M1[x := M2] such
that x ∈ fv(M1). So, by lemmma 2.2.2, fv(M ′) = fv(M ′′) and if
M ′′ ∈ ΛI then M ′ ∈ ΛI.

∗ Let p = 1.p′ then eitherM ′′ = λx.M1, M ′ = λx.M2 andM1
p′

→βI

M2. By IH, fv(M1) = fv(M2) and if M1 ∈ ΛI then M2 ∈ ΛI, so
fv(M ′′) = fv(M1)\{x} = fv(M2)\{x} = fv(M ′) and if M ′′ ∈ ΛI
then x ∈ fv(M1) = fv(M2) and so M ′ ∈ ΛI. Or M ′′ = M1M2,

M ′ = M ′
1M2 and M1

p′

→βη M ′
1. By IH, fv(M1) = fv(M ′

1) and
if M1 ∈ ΛI then M ′

1 ∈ ΛI, so fv(M ′′) = fv(M1) ∪ fv(M2) =
fv(M ′

1) ∪ fv(M2) = fv(M ′) and if M ′′ ∈ ΛI then M ′ ∈ ΛI.

∗ Let p = 2.p′ then M ′′ = M1M2, M ′ = M1M
′
2 and M2

p′

→βη M
′
2.

By IH, fv(M2) = fv(M ′
2) and if M2 ∈ ΛI then M ′

2 ∈ ΛI, so
fv(M ′′) = fv(M1) ∪ fv(M2) = fv(M1) ∪ fv(M ′

2) = fv(M ′) and if
M ′′ ∈ ΛI then M ′ ∈ ΛI.

5. ⇒) Let λx.M
p→βη P . We prove the result by case on p. Either p = 0

and M = Px such that x 6∈ fv(P ). Or p = 1.p′, P = λx.M ′ and

M
p′

→βη M
′.

⇐) If P = λx.M ′ andM →βη pM ′. So, λx.M
1.p→βη P and λx.M →βη P .

If M = Px and x 6∈ fvP then λx.M = λx.Px
0→βη P , so λx.M →βη

P .

6a. If k = 0 then P = (λx.M)N1N1 . . . Nn is a direct r-reduct of (λx.M)N0N1 . . . Nn,
absurd. So k ≥ 1. Assume k = 1, we prove P = M [x := N0]N1 . . . Nn by
induction on n ≥ 0.

– Let n = 0 and r = βI. By definition there exists p such that
(λx.M)N0

p→βI P . We prove the result by case on p.

∗ Let p = 0 then P = M [x := N0] and x ∈ fv(M).

∗ Let p = 1.p′ then λx.M
p′

→βI λx.M
′ and P = (λx.M ′)N0 is a

direct βI-reduct of (λx.M)N0, absurd.

∗ Let p = 2.p′ then N0
p′

→βI N ′ and P = (λx.M)N ′ is a direct
βI-reduct of (λx.M)N0, absurd.

– Let n = 0 and r = βη. By definition there exists p such that
(λx.M)N0

p→βI P . We prove the result by case on p.

∗ Let p = 0 then P = M [x := N0].

∗ Let p = 1.p′ then λx.M
p′

→βη Q and P = QN0. By lemma 2.2.5:
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· Either p′ = 1.p′′, Q = λx.M ′ and M
p′′

→βη M
′. Hence P =

(λx.M ′)N0 is a direct βη-reduct of (λx.M)N0, absurd.
· Or p = 0, M = Qx and x 6∈ fv(Q). Hence, P = QN0 =
M [x := N0].

∗ Let p = 2.p′ then N0
p′

→βη N ′ and P = (λx.M)N ′ is a direct
βη-reduct of (λx.M)N0, absurd.

– Let n = m + 1 where m ≥ 0. By definition there exists p such that
(λx.M)N0 . . . Nm+1

p→r P . We prove the result by case on p.

∗ Either p = 1.p′ then (λx.M)N0 . . . Nm
p′

→r Q and P = QNm+1.
· If Q is a direct r-reduct of (λx.M)N0 . . . Nm then P is a

direct r-reduct of (λx.M)N0 . . . Nm+1, absurd.
· If Q is not a direct r-reduct of (λx.M)N0 . . . Nm then it is

done by IH.

∗ Or p = 2.p′ thenNm+1
p′

→r N
′
m+1 and P = (λx.M)N0 . . . NmN

′
m+1

which is a direct r-reduct of (λx.M)N0 . . . Nm+1, absurd.

6b. By 6a, k ≥ 1. We prove the statement by induction on k ≥ 1.

– If k = 1 then we conclude by 6a.
– Let (λx.M)N0 . . . Nn →∗

r Q→r P .
∗ IfQ is a direct r-reduct of (λx.M)N0 . . . Nn, thenQ = (λx.M ′)N ′

0 . . . N
′
n,

such that M →∗
r M

′ and ∀i ∈ {0, . . . , n}, Ni →∗
r N

′
i . Since P

is not a direct r-reduct of (λx.M)N0 . . . Nn, P is not a direct
r-reduct of Q. Hence by 6a, P = M ′[x := N ′

0]N
′
1 . . . N

′
n.

∗ If Q is not a direct r-reduct of (λx.M)N0 . . . Nn, then by IH,
there exists a direct r-reduct (λx.M ′)N ′

0 . . . N
′
n of (λx.M)N0 . . . Nn

such that M ′[x := N ′
0]N

′
1 . . . N

′
n →∗

r Q→r P .

7. If P is a direct r-reduct of (λx.M)N0 . . . Nn then P = (λx.M ′)N ′
0 . . . N

′
n

such that M →∗
r M

′ and ∀i ∈ {0, . . . , n}, Ni →∗
r N

′
i . So P →r M

′[x :=
N ′

0]N
′
1 . . . N

′
n (if r = βI, note that x ∈ fv(M ′) by lemma 2.2.4) and

M [x := N0]N1 . . . Nn →∗
r M ′[x := N ′

0]N
′
1 . . . N

′
n . If P is not a direct

r-reduct of (λx.M)N0 . . . Nn then by lemma 6.6b, there exists a direct r-
reduct, (λx.M ′)N ′

0 . . . N
′
n, such thatM →∗

r M
′ and ∀i ∈ {0, . . . , n}, Ni →∗

r

N ′
i , of (λx.M)N0 . . . Nn. We have M [x := N0]N1 . . . Nn →∗

r M ′[x :=
N ′

0]N
′
1 . . . N

′
n →∗

r P .

8 We prove this lemma by induction on ths structure of p.

– Let p = 0 it is done by definition.
– Let p = 1.p′. Then:

∗ Either M = λx.M1
1.p′

→ r λx.M
′
1 = M ′ such that M1

p′

→r M
′
1. By

IH, p′ ∈ Rr
M1

. So p ∈ Rr
M . If p ∈ Rr

M then M |p = M1|p′ ∈ Rr.

By IH, there exists M ′
1 such that M1

p′

→r M
′
1, so M

p→r λx.M
′
1.
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∗ Or M = M1M2
1.p→r M

′
1M2 = M ′ such that M1

p′

→r M
′
1. By IH,

p′ ∈ Rr
M1

. So p ∈ Rr
M . If p ∈ Rr

M then M |p = M1|p′ ∈ Rr. By

IH, there exists M ′
1 such that M1

p′

→r M
′
1, so M

p→r M
′
1M2.

– Let p = 2.p′. Then, M = M1M2
1.p→r M1M

′
2 = M ′ such that M2

p′

→r

M ′
2. By IH, p′ ∈ Rr

M2
. So p ∈ Rr

M . If p ∈ Rr
M then M |p = M2|p′ ∈

Rr. By IH, there exists M ′
2 such that M2

p′

→r M
′
2, so M

p→r M1M
′
2.

9 We prove this lemma by induction on ths structure of p.

– Let p = 0 it is done by definition.

– Let p = 1.p′. Then either M = λx.M ′ 1.p′

→ r λx.M
′
1 = M1 such that

M ′ p′

→r M
′
1. By definition, M2 = λx.M ′

2 and M ′ p′

→r M
′
2. By IH,

M ′
1 = M ′

2, so M1 = M2. Or M = M ′N
1.p→r M

′
1N = M1 such that

M ′ p′

→r M ′
1. By definition, M2 = M ′

2N and M ′ p′

→r M ′
2. By IH,

M ′
1 = M ′

2, so M1 = M2.

– Let p = 2.p′. ThenM = NM ′ 1.p→r NM
′
1 = M1 such thatM ′ p′

→r M
′
1.

By definition, M2 = NM ′
2 and M ′ p′

→r M
′
2. By IH, M ′

1 = M ′
2, so

M1 = M2.

Lemma 2.4 .

1. We prove the lemma by induction on the structure of M .

• Let M = y.

– Either y = x then M [x := c(cx)] = c(cx) 6= x and for any N ,
M [x := c(cx)] = c(cx) 6= Nx because cx 6= x.

– Or y 6= x then M [x := c(cx)] = y 6= x and for any N ,
M [x := c(cx)] = y 6= Nx.

• Let M = λy.P . Then, M [x := c(cx)] = λy.P [x := c(cx)] 6= x (such
that y 6∈ {c, x}) and for any N , M [x := c(cx)] 6= Nx.

• Let M = PQ. Then, M [x := c(cx)] = P [x := c(cx)]Q[x := c(cx)] 6=
x. Assume M [x := c(cx)] = Nx, so Q[x := c(cx)] = x and by IH,
absurd.

2. We prove this lemma by induction on the structure of M .

• Let M = z.

– Either z = y then M [y := c(cx)] = c(cx) 6= x and for any N ,
M [y := c(cx)] = c(cx) 6= Nx because cx 6= x.

– Or z 6= y then M [y := c(cx)] = z 6= x by hypothesis and for any
N , M [y := c(cx)] = z 6= Nx.
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• Let M = λz.P . Then, M [y := c(cx)] = λz.P [y := c(cx)] 6= x (such
that y 6∈ {c, x, y}) and for any N , M [y := c(cx)] 6= Nx.

• Let M = PQ. Then, M [y := c(cx)] = P [x := c(cx)]Q[x := c(cx)] 6=
x. Assume M [y := c(cx)] = Nx, so Q[y := c(cx)] = x and by IH,
absurd.

3. By cases on the derivation of M ∈Mc.

4. By cases on the structure of M using 3.

5. By cases on the derivation of MN ∈Mc.

6. We prove this result by induction on n.

• If n = 0 then it is done.

• Let n = m+ 1 such that m ≥ 0. By lemma 2.4.5, cm(M) ∈Mc then
by IH, M ∈Mc.

7. By cases on the derivation of λx.P ∈ Ληc.

8. By cases on the derivation of λx.P ∈ ΛIc.

9. We prove the lemma by induction on the structure of M ∈Mc.

• Case (R1)1. Either M = x then M [x := N ] = N ∈ Mc. Or M =
y 6= x then M [x := N ] = M ∈Mc.

• Case (R1)2. Let M = λy.P ∈ ΛIc such that y 6= c, P ∈ ΛIc and
y ∈ fv(P ). We have M [x := N ] = λy.M [x := N ] such that y 6∈
fv(N) ∪ {x}. By IH, P [x := N ] ∈ ΛIc, so M [x := N ] ∈ ΛIc.

• Case (R1)3. Let M = λy.P [y := c(cy)] ∈ Ληc such that y 6= c and
P ∈ Ληc. By IH, P [x := N ] ∈ Ληc. So by (R1).3 M [x := N ] =
λy.P [y := c(cy)][x := N ] = λy.P [x := N ][y := c(cy)] ∈ Ληc such
that y 6∈ fv(N) ∪ {x}.

• Case (R1)4. Let M = λy.Py such that Py ∈ Ληc, y 6∈ fv(P ) ∪ {c}
and P 6= c. We have M [x := N ] = λy.(Py)[x := N ] = λy.P [x :=
N ]y, such that y 6∈ fv(N) ∪ {x}. By IH, P [x := N ]y ∈ Ληc. By
lemma 2.4.4, P [x := N ] 6= c. Hence, because y 6∈ fv(P [x := N ]),
M [x := N ] ∈ Ληc.

• Case (R2) Let M = cM1M2 such that M1,M2 ∈ Mc. Then by IH,
M1[x := N ],M2[x := N ] ∈ Mc. Hence, cM1[x := N ]M2[x := N ] ∈
Mc.

• Case (R3) Let M = M1M2 such that M1,M2 ∈ Mc and M1 is a
λ-abstraction. Then by IH, M1[x := N ],M2[x := N ] ∈ Mc. Hence,
M1[x := N ]M2[x := N ] ∈Mc, since M1[x := N ] is a λ-abstraction.

• Case (R4) Let M = cP such that P ∈ Ληc. Then by IH, P [x := N ] ∈
Ληc and by (R4), M [x := N ] ∈ Ληc.
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10. By case on the structure of M .

• let M ∈ V.

– Either M = x then, M [x := c(cx)] = c(cx). Hence, c(cx) 6= y,
c(cx) 6= Py since cx 6= y, c(cx) 6= λy.P and c(cx) 6= (λy.P )Q. If
M [x := c(cx)] = PQ then P = c and Q = cx.

– Or M = z 6= x then M [x := c(cx)] = z. Hence, if z = y then
M = y, z 6= Py, z 6= λy.P , z 6= PQ and z 6= (λy.P )Q.

• Let M = λz.M ′ then M [x := c(cx)] = λz.M ′[x := c(cx)], where
z 6∈ {x, c}. Hence, λz.M ′[x := c(cx)] 6= y, λz.M ′[x := c(cx)] 6= Py,
λz.M ′[x := c(cx)] 6= PQ and λz.M ′[x := c(cx)] 6= (λy.P )Q. Let
λz.M ′[x := c(cx)] = λy.P . By α-converions, assume y = z. So
M ′[x := c(cx)] = P .

• Let M = M1M2 then M [x := c(cx)] = M1[x := c(cx)]M2[x :=
c(cx)]. Hence, M1[x := c(cx)]M2[x := c(cx)] 6= y and M1[x :=
c(cx)]M2[x := c(cx)] 6= λy.P . If M1[x := c(cx)]M2[x := c(cx)] = Py
then P = M1[x := c(cx)] and M2[x := c(cx)] = y. So M2 = y. If
M1[x := c(cx)]M2[x := c(cx)] = PQ then P = M1[x := c(cx)] and
Q = M2[x := c(cx)]. If M1[x := c(cx)]M2[x := c(cx)] = (λy.P )Q
then λy.P = M1[x := c(cx)] and Q = M2[x := c(cx)]. So M1 =
λy.M0 and P = M0[x := c(cx)]

11. (a) By definition, x 6= c. By lemma 2.4.7, either P = Nx where Nx ∈
Ληc or P = N [x := c(cx))] where N ∈ Ληc. In the second case since
by (R4) c(cx) ∈ Ληc, we get by lemma 2.4.9 that N [x := c(cx))] ∈
Ληc.

(b) By lemma 2.4.1 and lemma 2.4.7.

12. (a) ⇒) We prove the lemma by induction on the structure of p.
• Let p = 0 then:

– either M [x := c(cx)] = (λy.P )Q and M ′ = P [y := Q]. By
lemma 2.4.10, M = (λy.P ′)Q′, P = P ′[x := c(cx)] and
Q = Q′[x := c(cx)] such that y 6∈ {c, x}. So M ′ = P ′[y :=
Q′][x := c(cx)] and M 0→βη P

′[y := Q′].
– Or M [x := c(cx)] = λy.M ′y such that y 6∈ fv(M ′). By

lemma 2.4.10, M = λy.N and M ′y = N [x := c(cx)] such
that y 6∈ {x, c}. Again by lemma 2.4.10, N = N ′y and
M ′ = N ′[x := c(cx)]. Because y 6∈ fv(M ′), we obatin
y 6∈ fv(N ′) and so M = λy.N ′y

0→βη N
′.

• Let p = 1.p′. Then:

– Either M [x := c(cx)] = λy.P
1.p′

→ βη λy.P
′ = M ′ such that

P
p′

→βη P
′. By lemma 2.4.10, M = λy.N and P = N [x :=

c(cx)] such that y 6∈ {c, x}. By IH, P ′ = N ′[x := c(cx)]
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and N
p′

→βη N
′. So M ′ = (λy.N ′)[x := c(cx)] and M

1.p→βη

λy.N ′.

– Or M [x := c(cx)] = PQ
1.p′

→ βη P ′Q = M ′ such that

P
p′

→βη P ′. Then by lemma 2.4.10, either M = x and

P = c and Q = cx but then P
p′

→βη P ′ is wrong. Or
M = P0Q0, P = P0[x := c(cx)] and Q = Q0[x := c(cx)].

By IH, P ′ = P ′0[x := c(cx)] and P0
p′

→βη P ′0. So M ′ =

(P ′0Q0)[x := c(cx)] and P0Q0
1.p′

→ βη P
′
0Q0.

• Let p = 2.p′ then M [x := c(cx)] = PQ
2.p′

→ βη PQ′ = M ′

such that Q
p′

→βη Q
′. Then by lemma 2.4.10, either M = x

and P = c and Q = cx but then Q
p′

→βη Q′ is wrong. Or
M = P0Q0, P = P0[x := c(cx)] and Q = Q0[x := c(cx)].

By IH, Q′ = Q′
0[x := c(cx)] and Q0

p′

→βη Q′
0. So M ′ =

(P0Q
′
0)[x := c(cx)] and P0Q0

2.p′

→ βη P0Q
′
0.

⇐) We prove the lemma by induction on the structure of p.
• Let p = 0 then:

– Either M = λy.Ny such that y 6∈ fv(N). Then M [x :=
c(cx)] = λy.N [x := c(cx)]y 0→βη N [x := c(cx)] such that
y 6∈ {c, x}.

– Or M = (λy.P )Q and M ′ = P [y := Q]. Then M [x :=
c(cx)] = (λy.P [x := c(cx)])Q[x := c(cx)] 0→βη P [x :=
c(cx)][y := Q[x := c(cx)]] = P [y := Q][x := c(cx)] such
that y 6∈ {c, x}.

• Let p = 1.p′.

– Either M = λy.N
p→βη λy.N

′ = M ′ such that N
p′

→βη N
′.

By IH, N [x := c(cx)]
p′

→βη N ′[x := c(cx)]. So, M [x :=
c(cx)]

p→βη M
′[x := c(cx)] such that y 6∈ {c, x}.

– Or M = PQ
p→βη P

′Q = M ′ such that P
p′

→βη P
′. By IH,

P [x := c(cx)]
p′

→βη P
′[x := c(cx)]. So, M [x := c(cx)]

p→βη

M ′[x := c(cx)].

• Let p = 2.p′ then M = PQ
p→βη PQ′ = M ′ such that

Q
p′

→βη Q′. By IH, Q[x := c(cx)]
p′

→βη Q′[x := c(cx)]. So,
M [x := c(cx)]

p→βη M
′[x := c(cx)].

(b) We prove this lemma by induction on n.

• Let n = 0 then it is done.
• Let n = m+ 1 such that m ≥ 0. Then cn(M) = c(cm(M))

p→βη

M ′. By case on p we obtain that p = 2.p′ and M ′ = c(N ′) and
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cm(M)
p′

→βη N
′. By IH, p′ = 2m.p′′ and there exists N ′′ ∈ Ληc

such that N ′ = cm(N ′′) and M
p′′

→βη N ′′. So p = 2n.p′′ and
M ′ = cn(N ′′).

Lemma 2.5. We prove this lemma by case on the structure of M .

• Let M ∈ V and p ∈ Rr
M . So M |p ∈ Rr. We prove by case on the structure

of p that there is no such p.

– Let p = 0 then M |p = M 6∈ Rr.

– Let p = 1.p′ then M |p is undefined.

– Let p = 2.p′ then M |p is undefined.

• Let M = λx.N .

– Let M ∈ Rr. We prove by case on the structure of p that if p ∈ Rr
M

then p ∈ {0} ∪ {1.p′ | p′ ∈ Rr
N}.

∗ Let p = 0 then M |p = M ∈ Rr.
∗ Let p = 1.p′ then M |p = N |p′ ∈ Rr, so p′ ∈ Rr

N .
∗ Let p = 2.p′ then M |p is undefined.

Let p ∈ {0} ∪ {1.p | p ∈ Rr
N}, we prove that p ∈ Rr

M .

∗ Let p = 0. Since M = M |p ∈ Rr, by definition, p ∈ Rr
M .

∗ Let p = 1.p′ such that p′ ∈ Rr
N . By definition M |p = N |p′ ∈ Rr.

– Let M 6∈ Rr. We prove by case on the structure of p that if p ∈ Rr
M

then p ∈ {1.p′ | p′ ∈ Rr
N}.

∗ Let p = 0 then M |p = M 6∈ Rr.
∗ Let p = 1.p′ then M |p = N |p′ ∈ Rr, so p′ ∈ Rr

N .
∗ Let p = 2.p′ then M |p is undefined.

Let p ∈ {1.p′ | p′ ∈ Rr
N}, we prove that p ∈ Rr

M . Then, p = 1.p′

such that p′ ∈ Rr
N . By definition M |p = N |p′ ∈ Rr.

• Let M = PQ.

– Let M ∈ Rr. We prove by case on the structure of p that if p ∈ Rr
M

then p ∈ {0} ∪ {1.p′ | p′ ∈ Rr
P } ∪ {2.p′ | p′ ∈ Rr

Q}.
∗ Let p = 0 then M |p = M ∈ Rr.
∗ Let p = 1.p′ then M |p = P |p′ ∈ Rr, so p′ ∈ Rr

P .
∗ Let p = 2.p′ then M |p = Q|p′ ∈ Rr, so p′ ∈ Rr

Q.

Let p ∈ {0} ∪ {1.p′ | p′ ∈ Rr
P } ∪ {2.p′ | p′ ∈ Rr

Q}, we prove that
p ∈ Rr

M .

∗ Let p = 0. Since M |p = M ∈ Rr, so p ∈ Rr
M .
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∗ Let p = 1.p′ such that p′ ∈ Rr
P . Since M |p = P |p′ ∈ Rr,

p ∈ Rr
M

∗ Let p = 2.p′ such that p′ ∈ Rr
Q. Since M |p = Q|p′ ∈ Rr,

p ∈ Rr
M

– Let M 6∈ Rr. We prove by induction on the structure of p that if
p ∈ Rr

M then p ∈ {1.p′ | p′ ∈ Rr
P } ∪ {1.p′ | p′ ∈ Rr

Q}.
∗ Let p = 0 then M |p = M 6∈ Rr.
∗ Let p = 1.p′ then M |p = P |p′ ∈ Rr, so p′ ∈ Rr

P .
∗ Let p = 2.p′ then M |p = Q|p′ ∈ Rr, so p′ ∈ Rr

Q.

Let p ∈ {1.p′ | p′ ∈ Rr
P } ∪ {2.p′ | p′ ∈ Rr

Q}, we prove that p ∈ Rr
M .

∗ Let p = 1.p′ such that p′ ∈ Rr
P . Since M |p = P |p′ ∈ Rr,

p ∈ Rr
M

∗ Let p = 2.p′ such that p′ ∈ Rr
Q. Since M |p = Q|p′ ∈ Rr,

p ∈ Rr
M

Lemma 2.6. We prove the statement by case on the structure of M .

• Let M ∈ V, by lemma 2.5, Rr
M = ∅, so F = ∅.

• Let M = λy.N then by lemma 2.5:

– If M ∈ Rr thenRr
M = {0}∪{1.p | p ∈ Rr

N}. Let F ′ = {p | 1.p ∈ F}.
Let p ∈ F ′ then 1.p ∈ F , so p ∈ Rr

N .

∗ Let p ∈ F \ {0} then p = 1.p′ such that p′ ∈ Rr
N . So p′ ∈ F ′

and it is done.
∗ Let p ∈ {1.p′ | p′ ∈ F ′} then p = 1.p′ such that p′ ∈ F ′. So

1.p′ = p ∈ F \ {0}.
– If M 6∈ Rr then Rr

M = {1.p | p ∈ Rr
N}. Let F ′ = {p | 1.p ∈ F}. Let

p ∈ F ′ then 1.p ∈ F , so p ∈ Rr
N .

∗ Let p ∈ F then p = 1.p′ such that p′ ∈ Rr
N . So p′ ∈ F ′ and it

is done.
∗ Let p ∈ {1.p′ | p′ ∈ F ′} then p = 1.p′ such that p′ ∈ F ′. So

1.p′ = p ∈ F .

• Let M = PQ then by lemma 2.5:

– If M ∈ Rr then Rr
M = {0} ∪ {1.p | p ∈ Rr

P } ∪ {2.p | p ∈ Rr
Q}.

Let F1 = {p | 1.p ∈ F} and F2 = {2.p | p ∈ F}. Let p ∈ F1 then
1.p ∈ F , so p ∈ Rr

P . Let p ∈ F2 then 2.p ∈ F , so p ∈ Rr
Q.

∗ Let p ∈ F \ {0}. Either p = 1.p′ such that p′ ∈ Rr
P , so p′ ∈ F1

and it is done. Or p = 2.p′ such that p′ ∈ Rr
Q, so p′ ∈ F2 and it

is done.
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∗ Let p ∈ {1.p′ | p′ ∈ F1} ∪ {2.p′ | p′ ∈ F2}. Either p = 1.p′ such
that p′ ∈ F1, so 1.p′ ∈ F \ {0}. Or p = 2.p′ such that p′ ∈ F2,
so 2.p′ ∈ F \ {0}.

– If M 6∈ Rr then Rr
M = {1.p | p ∈ Rr

P } ∪ {2.p | p | p ∈ Rr
Q}. Let

F1 = {p | 1.p ∈ F} and F2 = {p | 2.p ∈ F}. Let p ∈ F1 then
1.p ∈ F , so p ∈ Rr

P . Let p ∈ F2 then 2.p ∈ F , so p ∈ Rr
Q.

∗ Let p ∈ F . Either p = 1.p′ such that p′ ∈ Rr
P , so p′ ∈ F1 and

it is done. Or p = 2.p′ such that p′ ∈ Rr
Q, so p′ ∈ F2 and it is

done.
∗ Let p ∈ {1.p′ | p′ ∈ F1} ∪ {2.p′ | p′ ∈ F2}. Either p = 1.p′ such

that p′ ∈ F1, so 1.p′ ∈ F . Or p = 2.p′ such that p′ ∈ F2, so
2.p′ ∈ F .

Lemma 2.7.

1. By case on the structure of M .

• Let M ∈ V then M,M [x := c(cx)] 6∈ Rβη.

• Let M = λy.N then M [x := c(cx)] = λy.N [x := c(cx)], where
y 6∈ {x, c}.

– If M ∈ Rβη then N = Py such that y 6∈ fv(P ). N [x := c(cx)] =
P [x := c(cx)]y and y 6∈ fv(P [x := c(cx)]), so M [x := c(cx)] ∈
Rβη.

– If M [x := c(cx)] ∈ Rβη then N [x := c(cx)] = Py such that
y 6∈ fv(P ). By 2.4.10, N = Qy and P = Q[x := c(cx)]. So
M = λy.Qy. Because y 6∈ fv(P ), we obtain y 6∈ fv(Q) and so
M ∈ Rβη.

• Let M = M1M2 then M [x := c(cx)] = M1[x := c(cx)]M2[x := c(cx)].

– If M ∈ Rβη then M1 = λy.M0. So M [x := c(cx)] = (λy.M0[x :=
c(cx)])M2[x := c(cx)] ∈ Rβη, where y 6∈ {x, c}.

– If M [x := c(cx)] ∈ Rβη then M1[x := c(cx)] = λy.P . By 2.4.10,
M1 = λy.M0 and P = M0[x := c(cx)] such that y 6∈ {c, x}. So,
M ∈ Rβη

2. We prove this result by inducion on the structure of M .

• If M ∈ V then by lemma 2.5, Rβη
M = ∅.

• Let M = λy.M ′. Then M [x := c(cx)] = λy.M ′[x := c(cx)] where
y 6∈ {x, c}. By lemma 2.5:

– If M ∈ Rβη then let p = 0. Then, M [x := c(cx)]|p = M [x :=
c(cx)] = M |p [x := c(cx)]

– Let p = 1.p′ such that p′ ∈ Rβη
M ′ . Then, M [x := c(cx)]|p =

M ′[x := c(cx)]|p′ =IH M ′|p′ [x := c(cx)] = M |p [x := c(cx)].
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• Let M = M1M2. Then M [x := c(cx)] = M1[x := c(cx)]M2[x :=
c(cx)]. By lemma 2.5:

– If M ∈ Rβη then let p = 0. Then, M [x := c(cx)]|p = M [x :=
c(cx)] = M |p [x := c(cx)]

– Let p = 1.p′ such that p′ ∈ Rβη
M1

. Then, M [x := c(cx)]|p =
M1[x := c(cx)]|p′ =IH M1|p′ [x := c(cx)] = M |p [x := c(cx)].

– Let p = 2.p′ such that p′ ∈ Rβη
M2

. Then, M [x := c(cx)]|p =
M2[x := c(cx)]|p′ =IH M2|p′ [x := c(cx)] = M |p [x := c(cx)].

3. ⇒) Let p ∈ Rβη
λx.M [x:=c(cx)]. By lemma 2.4.1, λx.M [x := c(cx)] 6∈ Rβη so

by lemma 2.5, p = 1.p′ such that p′ ∈ Rβη
M [x:=c(cx)].

⇐) Let p ∈ Rβη
M [x:=c(cx)]. By lemma 2.5, 1.p ∈ Rβη

λx.M [x:=c(cx)].

4. ⇒) Let p ∈ Rβη
M [x:=c(cx)]. We prove the statement by induction on the

structure of M

– M 6∈ V since by lemma 2.5, Rβη
M [x:=c(cx)] = ∅.

– Let M = λy.N so M [x := c(cx)] = λy.N [x := c(cx)], where
y 6∈ {x, c}. By lemma 2.5:
∗ Either if M [x := c(cx)] ∈ Rβη, p = 0. By 1, M ∈ Rβη, so

p ∈ Rβη
M .

∗ Or p = 1.p′ such that p′ ∈ Rβη
N [x:=c(cx)]. By IH, p′ ∈ Rβη

N .

Hence by lemma 2.5, p = 1.p′ ∈ Rβη
M .

– Let M = M1M2 so M [x := c(cx)] = M1[x := c(cx)]M2[x :=
c(cx)]. By lemma 2.5:
∗ Either if M [x := c(cx)] ∈ Rβη, p = 0. By 1, M ∈ Rβη, so

0 ∈ Rβη
M .

∗ Or p = 1.p′ such that p′ ∈ Rβη
M1[x:=c(cx)]. By IH, p′ ∈ Rβη

M1
.

Hence by lemma 2.5, p = 1.p′ ∈ Rβη
M .

∗ Or p = 2.p′ such that p′ ∈ Rβη
M2[x:=c(cx)]. By IH, p′ ∈ Rβη

M2
.

Hence by lemma 2.5, p = 2.p′ ∈ Rβη
M .

⇐) Let p ∈ Rr
M . Then by definition M |p ∈ Rβη. By 1, M |p [x :=

c(cx)] ∈ Rβη. By 2, M [x := c(cx)]|p ∈ Rβη. So p ∈ Rβη
M [x:=c(cx)].

5. We prove this statement by induction on n ≥ 0.

• Let n = 0 then trivial.

• Let n = m+1 such that m ≥ 0. By lemma 2.5, Rβη
cm(M) = {1.p | p ∈

Rβη
c } ∪ {2.p | p ∈ Rβη

cm(M)} =IH {2n.p | p ∈ Rβη
M }.
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Lemma 2.8. We prove the statement by case on r.

• Either r = βI. Since M ∈ ΛIc, M ∈ ΛI, so λx.P,Q ∈ ΛI. Hence,
x ∈ fv(P ) and M ∈ RβI .

• Or r = βη. Trivial.

Lemma 2.9. We prove the statement by induction on the structure of M .

• Let M ∈ V \ {c}. By lemma 2.5, Rr
M = ∅.

• Let M = λx.N ∈ ΛIc such that N ∈ ΛIc and let p ∈ RβI
M . Since M 6∈ RβI ,

by lemma 2.5, p = 1.p′ such that p′ ∈ RβI
N . So by IH, M |p = N |p′ ∈ ΛIc.

• Let M = λx.N [x := c(cx)] ∈ Ληc such that N ∈ Ληc and let p ∈ Rβη
M . By

lemma 2.7.3, p = 1.p′ and p′ ∈ Rβη
N [x:=c(cx)]. By lemma 2.7.4, p′ ∈ Rβη

N .
By IH, N |p′ ∈ Ληc. So, M |p = N [x := c(cx)]|p′ =2.7.2 N |p′ [x := c(cx)].
By lemma 2.4.9, N |p′ [x := c(cx)] ∈ Ληc.

• Let M = λx.Nx ∈ Ληc such that Nx ∈ Ληc, x 6∈ fv(N) and c 6= N . Let
p ∈ Rβη

M . Since M ∈ Rβη, by lemma 2.5:

– Either p = 0 so M |p = M ∈ Ληc.

– Or p = 1.p′ such that p′ ∈ Rβη
Nx. By IH, M |p = (Nx)|p′ ∈ Ληc.

• Let M = cNP ∈Mc such that N,P ∈Mc. Let p ∈ Rr
M . Since M, cN 6∈

Rr, by lemma 2.5:

– Either p = 1.2.p′ such that p′ ∈ Rr
N . By IH, M |p = N |p′ ∈Mc.

– Or p = 2.p′ such that p′ ∈ RP
r . By IH, M |p = P |p′ ∈Mc.

• Let M = (λx.N)P ∈ Mc such that λx.N, P ∈ Mc. Let p ∈ Rr
M . Since

by lemma 2.8, M ∈ Rr, by lemma 2.5:

– Either p = 0 so M |p = M ∈Mc.

– Or p = 1.p′ such that p′ ∈ Rr
λx.N . By IH, M |p = (λx.N)|p′ ∈Mc.

– Or p = 2.p′ such that p′ ∈ Rr
P . By IH, M |p = P |p′ ∈Mc.

• Let M = cN ∈ Ληc such that N ∈ Ληc. Let p ∈ Rβη
M . Since M 6∈ Rβη, by

lemma 2.5, p = 2.p′ such that p′ ∈ Rβη
N . By IH, M |p = N |p′ ∈ Ληc.

Lemma 2.10.

1. Let M ∈ Ληc and M →βη M
′. Then there exists p such that M

p→βη M
′.

We prove that M ′ ∈ Ληc by induction on the structure of p.

• Let p = 0. Then:

– either M = λx.M ′x such that x 6∈ fv(M ′). Because M ∈ Ληc,
then M ′x ∈ Ληc and x 6= c. By lemma 2.4.7, M ′ ∈ Ληc.
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– or M = (λx.N)P and M ′ = N [x := P ]. Since M ∈ Ληc then
λx.N, P ∈ Ληc. By definition and lemmas 2.4.9, N ∈ Ληc and
x 6= c. By lemma 2.4.9, M ′ ∈ Ληc.

• Let p = 1.p′. Then:

– either M = λx.N
p→βη λx.N

′ = M ′ such that N
p′

→βη N
′. Since

M ∈ Ληc:
∗ Either N = P [x := c(cx)] where P ∈ Ληc and x 6= c. So by

lemma 2.4.12a, N ′ = N ′′[x := c(cx)] and P →βη N
′′. By IH,

N ′′ ∈ Ληc so by (R1).3, M ′ = λx.N ′′[x := c(cx)] ∈ Ληc.
∗ Or N = Px where Px ∈ Ληc, x 6∈ fv(P ) ∪ {c}, P 6= c. By

IH, N ′ ∈ Ληc. By lemma 2.4.7, P ∈ Ληc. By case on p′:
· Either p′ = 0, P = (λy.Q) and N ′ = Q[y := x]. Hence
M ′ = λx.Q[y := x] = P ∈ Ληc.

· Or p′ = 1.p′′, N ′ = P ′x and P
p′′

→βη P
′. By lemma 2.2.3,

x 6∈ fv(P ′). By IH, P ′ ∈ Ληc, so by lemma 2.4.3, P ′ 6= c.
Hence, M ′ = λx.P ′x ∈ Ληc.

– or M = M1M2
p→βη M ′

1M2 = M ′ such that M1
p′

→βη M ′
1. By

lemma 2.4.5, M2 ∈ Ληc and because M1 6= c we obtain:
∗ Either M1 = cM0 and M0 ∈ Ληc. By case on p′ we obtain

p′ = 2.p′′, M ′
1 = cM ′

0 and M0
p′′

→βη M
′
0. By IH, M ′

0 ∈ Ληc,
so by (R2), M ′ = cM ′

0M2 ∈ Ληc.
∗ Or M1 = λx.M0 and M1 ∈ Ληc. By IH, M ′

1 ∈ Ληc. By
lemma 2.4.11a, M0 ∈ Ληc. lemma 2.4.7, x 6= c. By case on
p′:
· Either p′ = 0 and M0 = M ′

1x such that x 6∈ fv(M ′
1).

Because M0 = M ′
1x ∈ Ληc, by definition and lemma 2.4.5

we obtain M ′ = M ′
1M2 ∈ Ληc.

· Or p′ = 1.p′′ and M ′
1 = λx.M ′

0 such that M0
p′′

→βη M
′
0. So

M ′ = (λx.M ′
0)M2 ∈ Ληc.

• Let p = 2.p′. Then M = M1M2
p→βη M1M

′
2 = M ′ such that

M2
p′

→βη M ′
2. By lemma 2.4.5, M2 ∈ Ληc so by IH, M ′

2 ∈ Ληc.
Because M = M1M2 ∈ Ληc, again by lemma 2.4.5 M ′ = M1M

′
2 ∈

Ληc.

2. By induction on M →βI M
′ in a similar fashion to the above.

Lemma 2.12. We prove the statement by induction on n ≥ 0.

• Let n = 0 then by definition |cn(M)|c = |M |c.

• Let n = m+1 such thatm ≥ 0 then |cn(M)|c = |c(cm(M))|c = |cm(M)|c =IH

|M |c.
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Lemma 2.13. We prove the lemma by induction on n.

• If n = 0 then it is done.

• Let n = m+1 such thatm ≥ 0. Then, |〈cn(M),Rβη
cn(M)〉|

c = {|〈cn(M), p〉|c |
p ∈ Rβη

cn(M)} =2.5 {|〈cn(M), 2.p〉|c | p ∈ Rβη
cm(M)} = {|〈cm(M), p〉|c | p ∈

Rβη
cm(M)} =IH |〈M,Rβη

M 〉|c.

Lemma 2.14. We prove the lemma by induction on n.

• If n = 0 then it is done.

• Let n = m+1 such thatm ≥ 0. Then, |〈cn(M), 2n.p〉|c = |〈cm(M), 2m.p〉|c =IH

|〈M, p〉|c

Lemma 2.15.

• let P ∈ V. We prove the statement by induction on the structure of M .

– Let M ∈ V then |M |c = M = P .

– Let M = λx.N then |M |c = λx.|N |c 6= P .

– Let M = M1M2. If M1 = c then |M |c = |M2|c. By IH, ∃n ≥ 0 such
that M2 = cn(P ). If M1 6= c then |M |c = |M1|c|M2|c 6= P .

• Let P = λx.Q. We prove the statement by induction on the structure of
M .

– Let M ∈ V then |M |c = M 6= λx.Q.

– Let M = λx.N then |M |c = λx.|N |c so |N |c = Q.

– Let M = M1M2. If M1 = c then |M |c = |M2|c. By IH, ∃n ≥ 0
such that M2 = cn(λx.N) and |N |c = Q. If M1 6= c then |M |c =
|M1|c|M2|c 6= λx.Q.

• Let P = P1P2. We prove the statement by induction on the structure of
M .

– Let M ∈ V then |M |c = M 6= P1P2.

– Let M = λx.N then |M |c = λx.|N |c 6= P1P2.

– Let M = M1M2. If M1 = c then |M |c = |M2|c. By IH, ∃n ≥ 0
such that M2 = cn(M ′

2M
′′
2 ), M ′

2 6= c, |M ′
2|c = P1 and |M ′′

2 |c = P2.
If M1 6= c then |M |c = |M1|c|M2|c = P1P2 so |M1|c = P1 and
|M2|c = P2.

Lemma 2.16. We prove the statement by induction on M .

• Let M ∈ V then by lemma 2.5, Rr
M = ∅.
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• Let M = λx.N then by lemma 2.5:

– Either M ∈ Rr then:

∗ Either p = p′ = 0 so it is done.
∗ Or p = 0 and p′ = 1.p′1 such that p′1 ∈ Rr

N . Then, |〈M, 0〉|c =
0 6= |〈M, p′〉|c = 1.|〈N, p′1〉|c.

∗ Or p = 1.p1 and p′ = 1.p′1 such that p1, p1 ∈ Rr
N . By hy-

pothesis, |〈M, p〉|c = 1.|〈N, p1〉|c = 1.|〈N, p′1〉|c = |〈M, p′〉|c. So
|〈N, p1〉|c = |〈N, p′1〉|c and by IH, p1 = p′1 so p = p′.

– Or M 6∈ Rr then p = 1.p1 and p′ = 1.p′1 such that p1, p1 ∈ Rr
N . By

hypothesis, |〈M, p〉|c = 1.|〈N, p1〉|c = 1.|〈N, p′1〉|c = |〈M, p′〉|c. So
|〈N, p1〉|c = |〈N, p′1〉|c and by IH, p1 = p′1 so p = p′.

• Let M = PQ then by lemma 2.5:

– Either M ∈ Rr, so P is a λ-abstraction and:

∗ Either p = p′ = 0 so it is done.
∗ Or p = 0 and p′ = 1.p′1 such that p′1 ∈ Rr

P . Then |〈M, 0〉|c =
0 6= |〈M, p′〉|c = 1.|〈P, p′1〉|c.

∗ Or p = 0 and p′ = 2.p′1 such that p′1 ∈ Rr
Q. Since P is a

λ-abstraction, |〈M, 0〉|c = 0 6= |〈M, p′〉|c = 2.|〈Q, p′1〉|c.
∗ Or p = 1.p1 and p′ = 1.p′1 such that p1, p′1 ∈ Rr

P . Since by
hypothesis, |〈M, p〉|c = 1.|〈P, p1〉|c = 1.|〈P, p′1〉|c = |〈M, p′〉|c,
then |〈P, p1〉|c = |〈P, p′1〉|c. By IH, p1 = p′1 so p = p′.

∗ Or p = 1.p1 and p′ = 2.p′1 such that p1 ∈ Rr
P and p′1 ∈ Rr

Q. Since
P is a λ-abstraction, |〈M, p〉|c = 1.|〈P, p1〉|c 6= 2.|〈Q, p′1〉|c =
|〈M, p′〉|c.

∗ Or p = 2.p1 and p′ = 2.p′1 such that p1, p′1 ∈ Rr
Q. Since

P is a λ-abstraction, by hypothesis, |〈M, p〉|c = 2.|〈Q, p1〉|c =
2.|〈Q, p′1〉|c = |〈M, p′〉|c so |〈Q, p1〉|c = |〈Q, p′1〉|c. By IH, p1 = p′1
so p = p′.

– Or M 6∈ Rr, then:

∗ Or p = 1.p1 and p′ = 1.p′1 such that p1, p′1 ∈ Rr
P . Since by

hypothesis, |〈M, p〉|c = 1.|〈P, p1〉|c = 1.|〈P, p′1〉|c = |〈M, p′〉|c,
then |〈P, p1〉|c = |〈P, p′1〉|c. By IH, p1 = p′1 so p = p′.

∗ Or p = 1.p1 and p′ = 2.p′1 such that p1 ∈ Rr
P and p′1 ∈

Rr
Q. P =6= c, otherwise, by lemma 2.5, Rr

P = ∅. Moreover,
|〈M, p〉|c = 1.|〈P, p1〉|c 6= 2.|〈Q, p′1〉|c = |〈M, p′〉|c.

∗ Or p = 2.p1 and p′ = 2.p′1 such that p1, p′1 ∈ Rr
Q. If P 6= c

then, by hypothesis, |〈M, p〉|c = 2.|〈Q, p1〉|c = 2.|〈Q, p′1〉|c =
|〈M, p′〉|c so |〈Q, p1〉|c = |〈Q, p′1〉|c. By IH, p1 = p′1 so p = p′. If
P = c then, by hypothesis, |〈M, p〉|c = |〈Q, p1〉|c = |〈Q, p′1〉|c =
|〈M, p′〉|c so |〈Q, p1〉|c = |〈Q, p′1〉|c. By IH, p1 = p′1 so p = p′.
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Lemma 2.17. We prove the statement by induction on the structure of M .

• Let M ∈ V

– Let M = x then |M [x := c(cx)]|c = |c(cx)|c = |x|c.
– Let M = y 6= x then |M [x := c(cx)]|c = |M |c.

• LetM = λy.N then |M [x := c(cx)]|c = λy.|N [x := c(cx)]|c =IH λy.|N |c =
|M |c, where y 6∈ {x, c}.

• Let M = NP .

– Either N = c, so N [x := c(cx)] = c. Then, |M [x := c(cx)]|c =
|P [x := c(cx)]|c =IH |P |c = |M |c.

– Or N 6= c, so N [x := c(cx)] 6= c. Then, |M [x := c(cx)]|c = |N [x :=
c(cx)]|c|P [x := c(cx)]|c =IH |N |c|P |c = |M |c.

Lemma 2.18. We prove the statement by induction on the structure of M

• Let M = y then by lemma 2.5, Rβη
M = ∅.

• Let M = λy.N . Then by lemma 2.5:

– Either p = 0 if M ∈ Rβη. Then, |〈M [x := c(cx)], 0〉|c = 0 =
|〈M, 0〉|c.

– Or p = 1.p′ such that p′ ∈ Rβη
N . Then |〈M [x := c(cx)], p〉|c =

1.|〈N [x := c(cx)], p′〉|c =IH 1.|〈N, p′〉|c = |〈M, p〉|c such that y 6∈
{x, c}.

• Let M = M1M2. Then by lemma 2.5:

– Either p = 0 if M ∈ Rβη. Then, |〈M [x := c(cx)], 0〉|c = 0 =
|〈M, 0〉|c.

– Or p = 1.p′ such that p′ ∈ Rβη
M1

. Then |〈M [x := c(cx)], p〉|c =
1.|〈M1[x := c(cx)], p′〉|c =IH 1.|〈M1, p′〉|c = |〈M, p〉|c.

– Or p = 2.p′ such that p′ ∈ Rβη
M2

.

∗ If M1 = c then M1[x := c(cx)] = c and |〈M [x := c(cx)], p〉|c =
|〈M2[x := c(cx)], p′〉|c =IH |〈M2, p′〉|c = |〈M, p〉|c.

∗ If M1 6= c then M1[x := c(cx)] 6= c and |〈M [x := c(cx)], p〉|c =
2.|〈M2[x := c(cx)], p′〉|c =IH 2.|〈M2, p′〉|c = |〈M, p〉|c.

Lemma 2.19. We prove this lemma by induction on the structure of M .
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• Let M ∈ V \ {c} then |M |c = M and fv(M) \ {c} = {M} = fv(|M |c).

• Let M = λy.P ∈ ΛIc such that P ∈ ΛIc and y 6= c. Then |M |c = λy.|P |c
and fv(M) \ {c} = fv(P ) \ {y, c} =IH fv(|P |c) \ {y} = fv(|M |c).

• Let M = λy.P [y := c(cy)] ∈ Ληc such that P ∈ Ληc and y 6= c. Then
|M |c = λy.|P [y := c(cy)]|c =2.17 λy.|P |c and fv(M) \ {c} = fv(P [y :=
c(cy)]) \ {c, y} = fv(P ) \ {c, y} =IH fv(|P |c) \ {y} = fv(|M |c).

• Let M = λy.Py ∈ Ληc such that Py ∈ Ληc, y 6∈ fv(P ) ∪ {c} and c 6= N .
Then |M |c = λy.|Py|c and fv(M) \ {c} = fv(Py) \ {c, y} =IH fv(|Py|c) \
{y} = fv(|M |c).

• Let M = cPQ ∈ Mc such that P,Q ∈ Mc. Then |M |c = |P |c|Q|c and
fv(M) \ {c} = (fv(P ) ∪ fv(Q)) \ {c} = (fv(P ) \ {c}) ∪ (fv(Q) \ {c}) =IH

fv(|P |c) ∪ fv(|Q|c) = fv(|M |c).

• Let M = (λy.P )Q ∈ Mc such that λy.P,Q ∈ Mc. Then |M |c =
|λy.P |c|Q|c and fv(M) \ {c} = (fv(λy.P ) ∪ fv(Q)) \ {c} = (fv(λy.P ) \
{c}) ∪ (fv(Q) \ {c}) =IH fv(|λy.P |c) ∪ fv(|Q|c) = fv(|M |c).

• Let M = cP ∈ Ληc such that N ∈ Ληc. Then |M |c = |P |c and fv(M) \
{c} = fv(P ) \ {c} =IH fv(|P |c) = fv(|M |c).

Lemma 2.20. We prove this lemma by induction on the structure of M .

• Let M ∈ V \ {c}.

– Either M = x then |M [x := N ]|c = |N |c = M [x := |N |c] =
|M |c[x := |N |c].

– Or M = y 6= x then |M [x := N ]|c = |M |c = M = M [x := |N |c] =
|M |c[x := |N |c].

• Let M = λy.P ∈ ΛIc such that P ∈ ΛIc and y 6= c. Then |M [x :=
N ]|c = λy.|P [x := N ]|c =IH λy.|P |c[x := |N |c] = |M |c[x := |N |c], where
y 6∈ fv(N) ∪ {x} and so by lemma 2.19, y 6∈ fv(|N |c).

• Let M = λy.P [y := c(cy)] ∈ Ληc such that P ∈ Ληc and y 6= c. Then
|M [x := N ]|c = λy.|P [y := c(cy)][x := N ]|c = λy.|P [x := N ][y :=
c(cy)]|c =2.17 λy.|P [x := N ]|c =IH λy.|P |c[x := |N |c] =2.17 λy.|P [y :=
c(cy)]|c[x := |N |c] = |M |c[x := |N |c], where y 6∈ fv(N) ∪ {x} and so by
lemma 2.19, y 6∈ fv(|N |c).

• Let M = λy.Py ∈ Ληc such that Py ∈ Ληc, y 6∈ fv(P ) ∪ {c} and c 6= P .
|M [x := N ]|c = λy.|(Py)[x := N ]|c =IH λy.|Py|c[x := |N |c] = |M |c[x :=
|N |c], where y 6∈ fv(N) ∪ {x} and so by lemma 2.19, y 6∈ fv(|N |c).

• Let M = cPQ ∈ Mc such that P,Q ∈ Mc. |M [x := N ]|c = |P [x :=
N ]|c|Q[x := N ]|c =IH |P |c[x := |N |c]|Q|c[x := |N |c] = (|P |c|Q|c)[x :=
|N |c] = |M |c[x := |N |c].
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• Let M = (λy.P )Q ∈ Mc such that λy.P,Q ∈ Mc. |M [x := N ]|c =
|(λy.P )[x := N ]|c|Q[x := N ]|c =IH |λy.P |c[x := |N |c]|Q|c[x := |N |c] =
(|λy.P |c|Q|c)[x := |N |c] = |M |c[x := |N |c].

• Let M = cP ∈ Ληc such that N ∈ Ληc. |M [x := N ]|c = |P [x := N ]|c =IH

|P |c[x := |N |c] = |M |c[x := |N |c].

Lemma 2.21. We prove the lemma by induction on the structure of M .

• Let M ∈ V \ {c} then |M |c = M ∈ V \ {c} ⊆ ΛI.

• let M = λx.N such that N ∈ ΛIc and x ∈ fv(N) and x 6= c. Then
|M |c = λx.|N |c and by IH |N |c ∈ ΛI. Since x ∈ fv(N), by lemma 2.19,
x ∈ fv(|N |c), so |M |c ∈ ΛI.

• Let M = cPQ such that P,Q ∈ ΛIc then |M |c = |P |c|Q|c and by IH,
|P |c, |Q|c ∈ ΛI, hence |M |c ∈ ΛI.

• Let M = (λx.P )Q such that λx.P,Q ∈ ΛIc then |M |c = |λx.P |c|Q|c and
by IH, |λx.P |c, |Q|c ∈ ΛI, hence |M |c ∈ ΛI.

Lemma 2.22. Let p ∈ Rr
M , then by definition, M |p ∈ Rr. We prove the result

by induction on the structure of p.

• Let p = 0.

– Let r = βI then M = (λx.M1)M2 such that x ∈ fv(M1) and
λx.M1,M2 ∈ ΛIc and M ′ = M1[x := M2]. By definition M1 ∈
ΛIc, x ∈ fv(M1) and x 6= c. Then |M |c = (λx.|M1|c)|M2|c and
|M ′|c = |M1[x := M2]|c =2.20 |M1|c[x := |M2|c]. By lemma 2.19,
x ∈ fv(|M1|c). So, |M |c 0→βI |M ′|c and |〈M, 0〉|c = 0.

– Let r = βη.

∗ Either M = (λx.M1)M2 such that λx.M1,M2 ∈ Ληc and M ′ =
M1[x := M2]. By lemma 2.4, M1 ∈ ΛIc and x 6= c. Then |M |c =
(λx.|M1|c)|M2|c and |M ′|c = |M1[x := M2]|c =2.20 |M1|c[x :=
|M2|c]. So, |M |c 0→β |M ′|c and |〈M, 0〉|c = 0.

∗ Or M = λx.M ′x such that M ′x ∈ Ληc, x 6∈ fv(M ′), x 6= c and
M ′ 6= c. Then |M |c = λx.|M ′|cx. By lemma 2.19, x ∈ fv(|M ′|c).
So, |M |c 0→β |M ′|c and |〈M, 0〉|c = 0.

• Let p = 1.p′.

– Either M = λx.M1 and M ′ = λx.M ′
1 such that M1

p′

→r M ′
1. By

lemma 2.5, p′ ∈ Rr
M1

. By lemma 2.4, M1 ∈ Mc and x 6= c . By IH,

|M1|c
p′′

→r |M ′
1|c such that p′′ = |〈M1, p′〉|c. So |M |c 1.p′′

→ r |M ′|c and
1.p′′ = |〈M, p〉|c.
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– Or M = M1M2 and M ′ = M ′
1M2 such that M1

p′

→r M ′
1. By

lemma 2.5, p′ ∈ Rr
M1

. By lemma 2.5, M1 6= c. By lemma 2.4.5:

∗ Either M1 = cM0 where M0 ∈ Mc. By lemma 2.5, p′ = 2.p′0
such that p′0 ∈ Rr

M0
. So by definition M ′

1 = cM ′
0 such that

M0
p′
0→r M

′
0. By IH, |M0|c

p′′
0→r |M ′

0|c such that p′′0 = |〈M0, p′0〉|c.

Hence |M |c 1.p′′
0→ r |M ′|c and |〈M, p〉|c = |〈cM0M2, 1.2.p′0〉|c =

1.|〈cM0, 2.p′0〉|c = 1.|〈M0, p′0〉|c = 1.p′′0

∗ Or M1 = λx.M0 ∈ Mc. By IH, |M1|c
p′′

→r |M ′
1|c such that

p′′ = |〈M1, p′〉|c. By lemma 2.10, M ′
1 ∈Mc and by lemma 2.4.3,

M ′
1 6= c. So, |M |c 1.p′′

→ r |M ′|c and |〈M, p〉|c = 1.|〈M1, p′〉|c =
1.p′′.

• Let p = 2.p′ then M = M1M2 and M ′ = M1M
′
2 such that M2

p′

→r M
′
2. By

lemma 2.5, p′ ∈ Rr
M2

. By lemma 2.4.5, M2 ∈Mc. By IH, |M2|c
p′′

→r |M ′
2|c

such that p′′ = |〈M2, p′〉|c.

– If M1 = c then |M |c p′′

→r |M ′|c and |〈M, p〉|c = |〈M2, p′〉|c = p′′.

– Otherwise |M |c 2.p′′

→ r |M ′|c and |〈M, p〉|c = 2.|〈M2, p′〉|c = 2.p′′.

Lemma 2.23. The proof is by induction on the structure of M1.

• Let M1 ∈ V \ {c}. Then M1 = |M1|c = |M2|c. By lemma 2.15, M2 =
cn(M1).

– Either M1 = x, then M1[x := N1] = N1 and M2[x := N2] = cn(N2).
By hypothesis |〈N1,Rr

N1
〉|c ⊆ |〈N2,Rr

N2
〉|c =2.13 |〈cn(N2),Rr

cn(N2)
〉|c

– Or M1 = y 6= x then M1[x := N1] = y and M2[x := N2] = cn(y). We
conclude using lemma 2.13.

• Let M1 = λy.M ′
1 ∈ ΛIc such that y ∈ fv(M ′

1), y 6= c and M ′
1 ∈ ΛIc

then |M1|c = λy.M ′
1 = |M2|c. By lemma 2.15 and because M2 ∈ ΛIc,

M2 = λy.M ′
2, y ∈ fv(M ′

2), M
′
2 ∈ ΛIc and |M ′

2|c = |M ′
1|c. By lemma 2.5,

RβI
M1

= {1.p | p ∈ RβI
M ′

1
} and RβI

M2
= {1.p | p ∈ RβI

M ′
2
}. So, |〈M1,RβI

M1
〉|c =

{1.p | p ∈ |〈M ′
1,R

βI
M ′

1
〉|c} and |〈M2,RβI

M2
〉|c = {1.p | p ∈ |〈M ′

2,R
βI
M ′

2
〉|c}.

Let p ∈ |〈M ′
1,R

βI
M ′

1
〉|c, then 1.p ∈ |〈M1,RβI

M1
〉|c ⊆ |〈M2,RβI

M2
〉|c. So

p ∈ |〈M ′
2,R

βI
M ′

2
〉|c, i.e. |〈M ′

1,R
βI
M ′

1
〉|c ⊆ |〈M ′

2,R
βI
M ′

2
〉|c. By IH, |〈M ′

1[x :=

N1],RβI
M ′

1[x:=N1]
〉|c ⊆ |〈M ′

2[x := N2],RβI
M ′

2[x:=N2]
〉|c.

Since M1[x := N1] = λy.M ′
1[x := N1] and M2[x := N2] = λy.M ′

2[x := N2]
where y 6∈ fv(N1) ∪ fv(N2), by lemma 2.5, RβI

M1[x:=N1]
= {1.p | p ∈
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RβI
M ′

1[x:=N1]
} and RβI

M2[x:=N2]
= {1.p | p ∈ RβI

M ′
2[x:=N2]

}. So |〈M1[x :=

N1],RβI
M1[x:=N1]

〉|c = {1.p | p ∈ |〈M ′
1[x := N1],RβI

M ′
1[x:=N1]

〉|c} and |〈M2[x :=

N2],RβI
M2[x:=N2]

〉|c = {1.p | p ∈ |〈M ′
2[x := N2],RβI

M ′
2[x:=N2]

〉|c}. Let

p ∈ |〈M1[x := N1],RβI
M1[x:=N1]

〉|c then p = 1.p′ such that p′ ∈ |〈M ′
1[x :=

N1],RβI
M ′

1[x:=N1]
〉|c ⊆ |〈M ′

2[x := N2],RβI
M ′

2[x:=N2]
〉|c. So p ∈ |〈M2[x :=

N2],RβI
M2[x:=N2]

〉|c.

• Let M1 = λy.M ′
1[y := c(cy)] ∈ Ληc such that M ′

1 ∈ Ληc and y 6= c, then
|M1|c =2.17 λy.|M ′

1|c. Because |M2|c = λy.|M ′
1|c, then by lemma 2.15,

M2 = cn(λy.P ) such that |P |c = |M ′
1|c. By lemma 2.4.6, λy.P ∈ Ληc. By

lemma 2.4.11a, P ∈ Ληc. We prove the lemma by case on λy.P .

– Either λy.P = λy.M ′
2[y := c(cy)] such that M ′

2 ∈ Ληc. Hence
|M ′

2|c =2.17 |M ′
2[y := c(cy)]|c = |M ′

1|c. We also have Rβη
M1

=2.7.3

{1.p | p ∈ Rβη
M ′

1[y:=c(cy)]} =2.7.4 {1.p | p ∈ Rβη
M ′

1
} and Rβη

λy.P =2.7.3

{1.p ∈ Rβη
M ′

2[y:=c(cy)]} =2.7.4 {1.p | p ∈ Rβη
M ′

2
}. So |〈M1,Rβη

M1
〉|c =2.18

{1.p | p ∈ |〈M ′
1,R

βη
M ′

1
〉|c} and |〈M2,Rβη

M2
〉|c =2.13 |〈λy.P,Rβη

λy.P 〉|c =2.18

{1.p | p ∈ |〈M ′
2,R

βη
M ′

2
〉|c}. Let p ∈ |〈M ′

1,R
βη
M ′

1
〉|c then 1.p ∈ |〈M1,Rβη

M1
〉|c ⊆

|〈M2,Rβη
M2
〉|c, so p ∈ |〈M ′

2,R
βη
M ′

2
〉|c, i.e. |〈M ′

1,R
βη
M ′

1
〉|c ⊆ |〈M ′

2,R
βη
M ′

2
〉|c.

By IH, |〈M ′
1[x := N1],Rβη

M ′
1[x:=N1]

〉|c ⊆ |〈M ′
2[x := N2],Rβη

M ′
2[x:=N2]

〉|c.
Because M1[x := N1] = λy.M ′

1[y := c(cy)][x := N1] = λy.M ′
1[x :=

N1][y := c(cy)] and (λy.P )[x := N2] = λy.M ′
2[y := c(cy)][x := N2] =

λy.M ′
2[x := N2][y := c(cy)] such that y 6∈ fv(N1) ∪ fv(N2) ∪ {x}, we

obtain Rβη
M1[x:=N1]

=2.7.3 {1.p | p ∈ Rβη
M ′

1[x:=N1][y:=c(cy)]} =2.7.4 {1.p |
p ∈ Rβη

M ′
1[x:=N1]

} andRβη
(λy.P )[x:=N2]

=2.7.3 {1.p | p ∈ Rβη
M ′

2[x:=N2][y:=c(cy)]} =2.7.4

{1.p | p ∈ Rβη
M ′

2[x:=N2]
}. So |〈M1[x := N1],Rβη

M1[x:=N1]
〉|c =2.18 {1.p |

p ∈ |〈M ′
1[x := N1],Rβη

M ′
1[x:=N1]

〉|c} and |〈M2[x := N2],Rβη
M2[x:=N2]

〉|c =2.13

|〈(λy.P )[x := N2],Rβη
(λy.P )[x:=N2]

〉|c =2.18 {1.p | p ∈ |〈M ′
2[x :=

N2],Rβη
M ′

2[x:=N2]
〉|c}. Let p ∈ |〈M1[x := N1],RβI

M1[x:=N1]
〉|c then

p = 1.p′ such that p′ ∈ |〈M ′
1[x := N1],RβI

M ′
1[x:=N1]

〉|c ⊆ |〈M ′
2[x :=

N2],RβI
M ′

2[x:=N2]
〉|c. Hence, p ∈ |〈M2[x := N2],RβI

M2[x:=N2]
〉|c.

– Let λy.P = λy.M ′
2y such that P = M ′

2y ∈ Ληc, y 6∈ fv(M ′
2) and

M ′
2 6= c. So we have |M ′

2y|c = |M ′
1|c. We already showed that

Rβη
M1

= {1.p | p ∈ Rβη
M ′

1
}. Since λy.P ∈ Rβη, by lemma 2.5,

Rβη
λy.P = {0} ∪ {1.p | p ∈ Rβη

M ′
2y}. So |〈M1,Rβη

M1
〉|c =2.18 {1.p |

p ∈ |〈M ′
1,R

βη
M ′

1
〉|c} and |〈M2,Rβη

M2
〉|c =2.13 |〈λy.P,Rβη

λy.P 〉|c = {0} ∪
{1.p | p ∈ |〈M ′

2y,R
βη
M ′

2y〉|
c}. Let p ∈ |〈M ′

1,R
βη
M ′

1
〉|c then 1.p ∈

|〈M1,Rβη
M1
〉|c ⊆ |〈M2,Rβη

M2
〉|c, so p ∈ |〈M ′

2y,R
βη
M ′

2y〉|
c, i.e. |〈M ′

1,R
βη
M ′

1
〉|c ⊆
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|〈M ′
2y,R

βη
M ′

2y〉|
c. By IH, |〈M ′

1[x := N1],Rβη
M ′

1[x:=N1]
〉|c = |〈(M ′

2y)[x :=

N2],Rβη
(M ′

2y)[x:=N2]
〉|c.

Because M1[x := N1] = λy.M ′
1[y := c(cy)][x := N1] = λy.M ′

1[x :=
N1][y := c(cy)], (λy.P )[x := N2] = λy.(M ′

2y)[x := N2] = λy.M ′
2[x :=

N2]y such that y 6∈ fv(N1) ∪ fv(N2) ∪ {x}, we obtain (λy.P )[x :=
N2] ∈ Rβη, Rβη

M1[x:=N1]
=2.7.3 {1.p | p ∈ Rβη

M ′
1[x:=N1][y:=c(cy)]} =2.7.4

{1.p | p ∈ Rβη
M ′

1[x:=N1]
} and Rβη

(λy.P )[x:=N2]
= {0} ∪ {1.p | p ∈

Rβη
(M ′

2y)[x:=N2]
}. So |〈M1[x := N1],Rβη

M1[x:=N1]
〉|c =2.18 {1.p | p ∈

|〈M ′
1[x := N1],Rβη

M ′
1[x:=N1]

〉|c} and |〈M2[x := N2],Rβη
M2[x:=N2]

〉|c =2.13

|〈(λy.P )[x := N2],Rβη
(λy.P )[x:=N2]

〉|c = {0} ∪ {1.p | p ∈ |〈(M ′
2y)[x :=

N2],Rβη
(M ′

2y)[x:=N2]
〉|c}. Let p ∈ |〈M1[x := N1],RβI

M1[x:=N1]
〉|c then

p = 1.p′ such that p′ ∈ |〈M ′
1[x := N1],RβI

M ′
1[x:=N1]

〉|c ⊆ |〈(M ′
2y)[x :=

N2],RβI
(M ′

2y)[x:=N2]
〉|c. So p ∈ |〈M2[x := N2],RβI

M2[x:=N2]
〉|c.

• Let M1 = λy.M ′
1y ∈ Ληc such that M ′

1y ∈ Ληc, M ′
1 6= c and y 6∈

fv(M ′
1) ∪ {c}, then |M1|c = λy.|M ′

1y|c. Because |M2|c = λy.|M ′
1y|c, then

by lemma 2.15, M2 = cn(λy.P ) such that |P |c = |M ′
1y|c. By lemma 2.4.6,

λy.P ∈ Ληc. By lemma 2.4.11a, P ∈ Ληc. We prove the lemma by case
on λy.P .

– Either λy.P = λy.M ′
2[y := c(cy)] such that M ′

2 ∈ Ληc. Since
M1 ∈ Rβη,Rβη

M1
=2.5 {0}∪{1.p | p ∈ Rβη

M ′
1y}. Moreover,Rβη

λy.P =2.7.3

{1.p | p ∈ Rβη
M ′

2[y:=c(cy)]}, so |〈M1,Rβη
M1
〉|c = {0} ∪ {1.p | p ∈

|〈M ′
1y,R

βη
M ′

1y〉|
c} and |〈M2,Rβη

M2
〉|c =2.13 |〈λy.P,Rβη

λy.P 〉|c = {1.p |
p ∈ |〈M ′

2[y := c(cy)],Rβη
M ′

2[y:=c(cy)]〉|
c}. We have 0 ∈ |〈M1,Rβη

M1
〉|c

but 0 6∈ |〈M2,Rβη
M2
〉|c.

– Or λy.P = λy.M ′
2y such that M ′

2y ∈ Ληc, y 6∈ fv(M ′
2) ∪ {x} and

M ′
2 6= c. So we have |M ′

2y|c = |M ′
1y|c. Because M1, λy.P ∈ Rβη, by

lemma 2.5, Rβη
M1

= {0} ∪ {1.p | p ∈ Rβη
M ′

1y} and Rβη
λy.P = {0} ∪ {1.p |

p ∈ Rβη
M ′

2y}. So |〈M1,Rβη
M1
〉|c = {0}∪{1.p | p ∈ |〈M ′

1y,R
βη
M ′

1y〉|
c} and

|〈M2,Rβη
M2
〉|c =2.13 |〈λy.P,Rβη

λy.P 〉|c = {0}∪{1.p | p ∈ |〈M ′
2y,R

βη
M ′

2y〉|
c}.

Let p ∈ |〈M ′
1y,R

βη
M ′

1y〉|
c then 1.p ∈ |〈M1,Rβη

M1
〉|c ⊆ |〈M2,Rβη

M2
〉|c, so

p ∈ |〈M ′
2y,R

βη
M ′

2y〉|
c, i.e. |〈M ′

1y,R
βη
M ′

1y〉|
c ⊆ |〈M ′

2y,R
βη
M ′

2y〉|
c. By IH,

|〈(M ′
1y)[x := N1],Rβη

(M ′
1y)[x:=N1]

〉|c = |〈(M ′
2y)[x := N2],Rβη

(M ′
2y)[x:=N2]

〉|c.
Because M1[x := N1] = λy.(M ′

1y)[x := N1] = λy.M ′
1[x := N1]y,

(λy.P )[x := N2] = λy.(M ′
2y)[x := N2] = λy.M ′

2[x := N2]y and
y 6∈ fv(N1) ∪ fv(N2) such that y 6∈ fv(N1) ∪ fv(N2) ∪ {x}, we have
M1[x := N1], (λy.P )[x := N2] ∈ Rβη, Rβη

M1[x:=N1]
= {0} ∪ {1.p | p ∈

Rβη
(M ′

1y)[x:=N1]
} and Rβη

M2[x:=N2]
= {0} ∪ {1.p | p ∈ Rβη

(M ′
2y)[x:=N2]

}.
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So |〈M1[x := N1],Rβη
M1[x:=N1]

〉|c = {0} ∪ {1.p | p ∈ |〈(M ′
1y)[x :=

N1],Rβη
(M ′

1y)[x:=N1]
〉|c} and |〈M2[x := N2],Rβη

M2[x:=N2]
〉|c =2.13 |〈(λy.P )[x :=

N2],Rβη
(λy.P )[x:=N2]

〉|c = {0}∪{1.p | p ∈ |〈(M ′
2y)[x := N2],Rβη

(M ′
2y)[x:=N2]

〉|c}.
Let p ∈ |〈M1[x := N1],RβI

M1[x:=N1]
〉|c then either p = 0 ∈ |〈M2[x :=

N2],Rβη
M2[x:=N2]

〉|c or p = 1.p′ such that p′ ∈ |〈(M ′
1y)[x := N1],RβI

(M ′
1y)[x:=N1]

〉|c ⊆
|〈(M ′

2y)[x := N2],RβI
(M ′

2y)[x:=N2]
〉|c. So p ∈ |〈M2[x := N2],RβI

M2[x:=N2]
〉|c.

• Let M1 = cP1Q1 ∈Mc such that P1, Q2 ∈Mc then |M1|c = |P1|c|Q1|c =
|M2|c. Note thatM1 6∈ Rr. Because |M2|c = |P1|c|Q1|c, then by lemma 2.15,
M2 = cn(PQ) such that P 6= c, |P |c = |P1|c and |Q|c = |Q1|c. By
lemma 2.4.6, PQ ∈Mc. We prove the lemma by case on PQ.

– Either P,Q ∈ Mc and P is a λ-abstraction λy.P ′. Because PQ ∈
Mc, by lemma 2.8, PQ = (λy.P ′)Q ∈ Rr. By lemma 2.5, Rr

M1
=

{1.2.p | p ∈ Rr
P1
} ∪ {2.p | p ∈ Rr

Q1
} and Rr

PQ = {0} ∪ {1.p | p ∈
Rr

P } ∪ {2.p | p ∈ Rr
Q}. So |〈M1,Rr

M1
〉|c = {1.p | p ∈ |〈P1,Rr

P1
〉|c} ∪

{2.p | p ∈ |〈Q1,Rr
Q1
〉|c} and |〈M2,Rr

M2
〉|c =2.13 |〈PQ,Rr

PQ〉|c =
{0} ∪ {1.p | p ∈ |〈P,Rr

P 〉|c} ∪ {2.p | p ∈ |〈Q,Rr
Q〉|c}. Let p ∈

|〈P1,Rr
P1
〉|c then 1.p ∈ |〈M1,Rr

M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. So p ∈ |〈P,Rr

P 〉|c,
i.e. |〈P1,Rr

P1
〉|c ⊆ |〈P,Rr

P 〉|c. Let p ∈ |〈Q1,Rr
Q1
〉|c then 2.p ∈

|〈M1,Rr
M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. So p ∈ |〈Q,Rr

Q〉|c, i.e. |〈Q1,Rr
Q1
〉|c ⊆

|〈Q,Rr
Q〉|c. By IH, |〈P1[x := N1],Rr

P1[x:=N1]
〉|c ⊆ |〈P [x := N2],Rr

P [x:=N2]
〉|c

and |〈Q1[x := N1],Rr
Q1[x:=N1]

〉|c ⊆ |〈Q[x := N2],Rr
Q[x:=N2]

〉|c.
Because M1[x := N1] = cP1[x := N1]Q1[x := N1] and (PQ)[x :=
N2] = (λy.P ′[x := N2])Q[x := N2] ∈2.4.9 Mc such that y 6∈ fv(N2),
we obtain M1[x := N1] 6∈ Rr and (PQ)[x := N2] ∈2.8 Rr. So by
lemma 2.5 we have Rr

M1[x:=N1]
= {1.2.p | p ∈ Rr

P1[x:=N1]
}∪{2.p | p ∈

Rr
Q1[x:=N1]

} and Rr
(PQ)[x:=N2]

= {0} ∪ {1.p | p ∈ Rr
P [x:=N2]

} ∪ {2.p |
p ∈ Rr

Q[x:=N2]
}. So |〈M1[x := N1],Rr

M1[x:=N1]
〉|c = {1.p | p ∈

|〈P1[x := N1],Rr
P1[x:=N1]

〉|c}∪{2.p | p ∈ |〈Q1[x := N1],Rr
Q1[x:=N1]

〉|c}
and |〈M2[x := N2],Rr

M2[x:=N2]
〉|c =2.13 |〈(PQ)[x := N2],Rr

(PQ)[x:=N2]
〉|c =

{0} ∪ {1.p | p ∈ |〈P [x := N2],Rr
P [x:=N2]

〉|c} ∪ {2.p | p ∈ |〈Q[x :=
N2],Rr

Q[x:=N2]
〉|c}. Let p ∈ |〈M1[x := N1],Rr

M1[x:=N1]
〉|c then ei-

ther p = 1.p′ such that p′ ∈ |〈P1[x := N1],Rr
P1[x:=N1]

〉|c ⊆ |〈P [x :=
N2],Rr

P [x:=N2]
〉|c. So p ∈ |〈M2[x := N2],Rr

M2[x:=N2]
〉|c. Or p = 2.p′

such that p′ ∈ |〈Q1[x := N1],Rr
Q1[x:=N1]

〉|c ⊆ |〈Q[x := N2],Rr
Q[x:=N2]

〉|c.
So p ∈ |〈M2[x := N2],Rr

M2[x:=N2]
〉|c.

– Or P = cP ′ such that P ′, Q ∈ Mc, then |P |c = |P ′|c = |P1|c.
Since M1, PQ 6∈ Rr, by lemma 2.5, Rr

M1
= {1.2.p | p ∈ Rr

P1
} ∪

{2.p | p ∈ Rr
Q1
} and Rr

PQ = {1.2.p | p ∈ Rr
P ′} ∪ {2.p | p ∈

Rr
Q}. So |〈M1,Rr

M1
〉|c = {1.p | p ∈ |〈P1,Rr

P1
〉|c} ∪ {2.p | p ∈

|〈Q1,Rr
Q1
〉|c} and |〈M2,Rr

M2
〉|c =2.13 |〈PQ,Rr

PQ〉|c = {1.p | p ∈
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|〈P ′,Rr
P ′〉|c}∪{2.p | p ∈ |〈Q,Rr

Q〉|c}. Let p ∈ |〈P1,Rr
P1
〉|c then 1.p ∈

|〈M1,Rr
M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. So p ∈ |〈P ′,Rr

P ′〉|c, i.e. |〈P1,Rr
P1
〉|c ⊆

|〈P ′,Rr
P ′〉|c. Let p ∈ |〈Q1,Rr

Q1
〉|c then 2.p ∈ |〈M1,Rr

M1
〉|c ⊆ |〈M2,Rr

M2
〉|c.

So p ∈ |〈Q,Rr
Q〉|c, i.e. |〈Q1,Rr

Q1
〉|c ⊆ |〈Q,Rr

Q〉|c. By IH, |〈P1[x :=
N1],Rr

P1[x:=N1]
〉|c ⊆ |〈P ′[x := N2],Rr

P ′[x:=N2]
〉|c and |〈Q1[x := N1],Rr

Q1[x:=N1]
〉|c ⊆

|〈Q[x := N2],Rr
Q[x:=N2]

〉|c.
Because M1[x := N1] = cP1[x := N1]Q1[x := N1] and (PQ)[x :=
N2] = cP ′[x := N2]Q[x := N2], we obtain M1[x := N1], (PQ)[x :=
N2] 6∈ Rr. So by lemma 2.5 we have Rr

M1[x:=N1]
= {1.2.p | p ∈

Rr
P1[x:=N1]

}∪{2.p | p ∈ Rr
Q1[x:=N1]

} and Rr
(PQ)[x:=N2]

= {1.2.p | p ∈
Rr

P ′[x:=N2]
}∪{2.p | p ∈ Rr

Q[x:=N2]
}. So |〈M1[x := N1],Rr

M1[x:=N1]
〉|c =

{1.p | p ∈ |〈P1[x := N1],Rr
P1[x:=N1]

〉|c} ∪ {2.p | p ∈ |〈Q1[x :=
N1],Rr

Q1[x:=N1]
〉|c} and |〈M2[x := N2],Rr

M2[x:=N2]
〉|c =2.13 |〈(PQ)[x :=

N2],Rr
(PQ)[x:=N2]

〉|c = {1.p | p ∈ |〈P ′[x := N2],Rr
P ′[x:=N2]

〉|c}∪{2.p |
p ∈ |〈Q[x := N2],Rr

Q[x:=N2]
〉|c}. Let p ∈ |〈M1[x := N1],Rr

M1[x:=N1]
〉|c

then either p = 1.p′ such that p′ ∈ |〈P1[x := N1],Rr
P1[x:=N1]

〉|c ⊆
|〈P ′[x := N2],Rr

P ′[x:=N2]
〉|c. So p ∈ |〈M2[x := N2],Rr

M2[x:=N2]
〉|c.

Or p = 2.p′ such that p′ ∈ |〈Q1[x := N1],Rr
Q1[x:=N1]

〉|c ⊆ |〈Q[x :=
N2],Rr

Q[x:=N2]
〉|c. So p ∈ |〈M2[x := N2],Rr

M2[x:=N2]
〉|c.

• Let M1 = P1Q1 ∈ Mc such that P1, Q1 ∈ Mc and P1 is a λ-abstraction
λy.P0. Then |M1|c = |P1|c|Q1|c. Note that because M1 ∈ Mc then by
lemma 2.8, M1 ∈ Rr. So by lemma 2.5, 0 ∈ Rr

M1
, so 0 ∈ |〈M1,Rr

M1
〉|c.

Because |M2|c = |P1|c|Q1|c, then by lemma 2.15, M2 = cn(PQ) such that
P 6= c, |P |c = |P1|c and |Q|c = |Q1|c. By lemma 2.4.6, PQ ∈ Mc. We
prove the lemma by case on PQ.

– Either P = cP ′ such that P ′, Q ∈ Mc, so PQ 6∈ Rr. Hence, by
lemma 2.5, Rr

PQ = {1.2.p | p ∈ Rr
P ′} ∪ {2.p | p ∈ Rr

Q}. So
|〈M2,Rr

M2
〉|c =2.13 |〈PQ,Rr

PQ〉|c = {1.p | p ∈ |〈P ′,Rr
P ′〉|c} ∪ {2.p |

p ∈ |〈Q,Rr
Q〉|c}. Hence 0 6∈ |〈M2,Rr

M2
〉|c.

– Or P,Q ∈ Mc and P is a λ-abstraction λy.P ′ . Because PQ =
(λy.P ′)Q ∈ Mc then by lemma 2.8, PQ ∈ Rr. By lemma 2.5,
Rr

M1
= {0} ∪ {1.p | p ∈ Rr

P1
} ∪ {2.p | p ∈ Rr

Q1
} and Rr

PQ =
{0} ∪ {1.p | p ∈ Rr

P } ∪ {2.p ∈ Rr
Q}. So, |〈M1,Rr

M1
〉|c = {0} ∪ {1.p |

p ∈ |〈P1,Rr
P1
〉|c} ∪ {2.p | p ∈ |〈Q1,Rr

Q1
〉|c} and |〈M2,Rr

M2
〉|c =2.13

|〈PQ,Rr
PQ〉|c = {0}∪{1.p | p ∈ |〈P,Rr

P 〉|c}∪{2.p | p ∈ |〈Q,Rr
Q〉|c}.

Let p ∈ |〈P1,Rr
P1
〉|c then 1.p ∈ |〈M1,Rr

M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. So

p ∈ |〈P,Rr
P 〉|c, i.e. |〈P1,Rr

P1
〉|c ⊆ |〈P,Rr

P 〉|c. let p ∈ |〈Q1,Rr
Q1
〉|c

then 2.p ∈ |〈M1,Rr
M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. So, p ∈ |〈Q,Rr

Q〉|c, i.e.
|〈Q1,Rr

Q1
〉|c ⊆ |〈Q,Rr

Q〉|c. By IH, |〈P1[x := N1],Rr
P1[x:=N1]

〉|c ⊆
|〈P [x := N2],Rr

P [x:=N2]
〉|c and |〈Q1[x := N1],Rr

Q1[x:=N1]
〉|c ⊆ |〈Q[x :=

N2],Rr
Q[x:=N2]

〉|c.
By lemma 2.4.9, M1[x := N1] ∈ Mc and by lemma 2.8, M1[x :=

66



N1] = (λy.P0[x := N1])Q1[x := N1] ∈ Rr. By lemma 2.4.9, (PQ)[x :=
N2] ∈Mc and by lemma 2.8, (PQ)[x := N2] = (λy.P ′[x := N2])Q[x :=
N2] ∈ Rr. So by lemma 2.5 we have Rr

M1[x:=N1]
= {0} ∪ {1.p |

p ∈ Rr
P1[x:=N1]

} ∪ {2.p | p ∈ Rr
Q1[x:=N1]

} and Rr
(PQ)[x:=N2]

= {0} ∪
{1.p | p ∈ Rr

P [x:=N2]
} ∪ {2.p | p ∈ Rr

Q[x:=N2]
}. So |〈M1[x :=

N1],Rr
M1[x:=N1]

〉|c = {0}{1.p | p ∈ |〈P1[x := N1],Rr
P1[x:=N1]

〉|c} ∪
{2.p | p ∈ |〈Q1[x := N1],Rr

Q1[x:=N1]
〉|c} and |〈M2[x := N2],Rr

M2[x:=N2]
〉|c =2.13

|〈(PQ)[x := N2],Rr
(PQ)[x:=N2]

〉|c = {0}∪{1.p | p ∈ |〈P [x := N2],Rr
P [x:=N2]

〉|c}∪
{2.p | p ∈ |〈Q[x := N2],Rr

Q[x:=N2]
〉|c}. Let p ∈ |〈M1[x := N1],Rr

M1[x:=N1]
〉|c

then either p = 0 ∈ |〈M2[x := N2],Rr
M2[x:=N2]

〉|c. Or p = 1.p′ such
that p′ ∈ |〈P1[x := N1],Rr

P1[x:=N1]
〉|c ⊆ |〈P [x := N2],Rr

P [x:=N2]
〉|c.

So p ∈ |〈M2[x := N2],Rr
M2[x:=N2]

〉|c. Or p = 2.p′ such that p′ ∈
|〈Q1[x := N1],Rr

Q1[x:=N1]
〉|c ⊆ |〈Q[x := N2],Rr

Q[x:=N2]
〉|c. So p ∈

|〈M2[x := N2],Rr
M2[x:=N2]

〉|c.

• Let M1 = cM ′
1 ∈ Ληc such that M ′

1 ∈ Ληc. So |M ′
1|c = |M1|c. By

lemm 2.13, |〈M1,Rβη
M1
〉|c = |〈M ′

1,R
βη
M ′

1
〉|c. By IH, |〈M ′

1[x := N1],Rr
M ′

1[x:=N1]
〉|c ⊆

|〈M2[x := N2],Rr
M2[x:=N2]

〉|c. Since M1[x := N1] = cM ′
1[x := N1] then by

lemm 2.13, |〈M1[x := N1],Rβη
M1[x:=N1]

〉|c = |〈M ′
1[x := N1],Rβη

M ′
1[x:=N1]

〉|c.
So |〈M1[x := N1],Rr

M1[x:=N1]
〉|c ⊆ |〈M2[x := N2],Rr

M2[x:=N2]
〉|c.
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Lemma 2.24. By lemma 8, p1 ∈ Rr
M1

and p2 ∈ Rr
M2

. We prove this lemma by
induction on the structure of M1.

1. Let M1 ∈ V \ {c} then nothing to prove since M1 does not reduce.

2. Let M1 = λx.N1 ∈ ΛIc such that x 6= c. So |M1|c = λx.|N1|c = |M2|c.
By lemma 2.15, because M2 ∈ ΛIc and by lemma 2.4, M2 = λx.N2 and
|N2|c = |N1|c . So N2 ∈ ΛIc. Since M1,M2 6∈ RβI , by lemma 2.5,
RβI

M1
= {1.p | p ∈ RβI

N1
} and RβI

M2
= {1.p | pRβI

N2
} so |〈M1,RβI

M1
〉|c =

{1.p | p ∈ |〈N1,RβI
N1
〉|c} and |〈M2,RβI

M2
〉|c = {1.p | p ∈ |〈N2,RβI

N2
〉|c}.

Let p ∈ |〈N1,RβI
N1
〉|c then 1.p ∈ |〈M1,RβI

M1
〉|c, so by hypothesis, 1.p ∈

|〈M2,RβI
M2
〉|c. Hence, p ∈ |〈N2,RβI

N2
〉|c, i.e. |〈N1,RβI

N1
〉|c ⊆ |〈N2,RβI

N2
〉|c.

Since p1 ∈ RβI
M1

, p1 = 1.p′1 such that p′1 ∈ R
βI
N1

. Since p2 ∈ RβI
M2

, p2 = 1.p′2
such that p′2 ∈ RβI

N2
. Since |〈M1, p〉|c = |〈M2, p〉|c then |〈N1, p′1〉|c =

|〈N2, p′2〉|c. Hence, M1 = λx.N1
p1→βI λx.N

′
1 = M ′

1 such that N1
p′
1→βI N

′
1

and M2 = λx.N2
p2→βI λx.N ′

2 = M ′
2 such that N2

p′
2→βI N ′

2. By IH,
|〈N ′

1,R
βI
N ′

1
〉|c ⊆ |〈N ′

2,R
βI
N ′

2
〉|c. By lemma 2.5, RβI

M ′
1

= {1.p | p ∈ RβI
N ′

1
} and

RβI
M ′

2
= {1.p | p ∈ RβI

N ′
2
}, so |〈M ′

1,R
βI
M ′

1
〉|c = {1.p | p ∈ |〈N ′

1,R
βI
N ′

1
〉|c}

and |〈M ′
2,R

βI
M ′

2
〉|c = {1.p | p ∈ |〈N ′

2,R
βI
N ′

2
〉|c}. Let p ∈ |〈M ′

1,R
βI
M ′

1
〉|c, then

p = 1.p′ such that p′ ∈ |〈N ′
1,R

βI
N ′

1
〉|c ⊆ |〈N ′

2,R
βI
N ′

2
〉|c, so p ∈ |〈M ′

2,R
βI
M ′

2
〉|c.

3. Let M1 = λx.N1[x := c(cx)] ∈ Ληc such that N1 ∈ Ληc and x 6= c
then |M1|c = λx.|N1[x := c(cx)]|c =2.17 λx.|N1|c. Because |M2|c =
λx.|N1|c, then by lemma 2.15, M2 = cn(λx.P ) such that |P |c = |N1|c.
By lemma 2.4.6, λx.P ∈ Ληc. We prove the lemma by case on λx.P .

• Either λx.P = λx.N2[x := c(cx)] such that N2 ∈ Ληc. Then,
|N1|c = |P |c = |N2[x := c(cx)]|c =2.17 |N2|c and Rβη

M1
=2.7.3 {1.p |

p ∈ Rβη
N1[x:=c(cx)]} =2.7.4 {1.p | p ∈ Rβη

N1
} and Rβη

λx.P =2.7.3 {1.p | p ∈
Rβη

N2[x:=c(cx)]} =2.7.4 {1.p | p ∈ Rβη
N2
}. So, |〈M1,Rβη

M1
〉|c =2.18 {1.p |

p ∈ |〈N1,Rβη
N1
〉|c} and |〈M2,Rβη

M2
〉|c =2.13 |〈λx.P,Rβη

λx.P 〉|c =2.18

{1.p | p ∈ |〈N2,Rβη
N2
〉|c}. Let p ∈ |〈N1,Rβη

N1
〉|c then 1.p ∈ |〈M1,Rβη

M1
〉|c ⊆

|〈M2,Rβη
M2
〉|c, so p ∈ |〈N2,Rβη

N2
〉|c, i.e. |〈N1,Rβη

N1
〉|c ⊆ |〈N2,Rβη

N2
〉|c.

Because p1 ∈ Rβη
M1

, we obtain p1 = 1.p′1 such that p′1 ∈ R
βη
N1

. Because
p2 ∈ Rβη

M2
and by lemma 2.7.5 we obtain p2 = 2n.1.p′2 such that p′2 ∈

Rβη
N2

. Because 1.|〈N1, p′1〉|c =2.18 |〈M1, p1〉|c = |〈M2, p2〉|c =2.18,2.14

1.|〈N2, p′2〉|c, we obtain |〈N1, p′1〉|c = |〈N2, p′2〉|c. SoM1 = λx.N1[x :=
c(cx)]

p1→βη λx.P1 = M ′
1 and M2 = cn(λx.N2[x := c(cx)])

p2→βη

cn(λx.P2) = M ′
2 such that N1[x := c(cx)]

p′
1→βη P1 and N2[x :=

c(cx)]
p′
2→βη P2 . By lemma 2.4.12a, P1 = N ′

1[x := c(cx)], P2 =
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N ′
2[x := c(cx)], N1

p′
1→βη N

′
1 and N2

p′
2→βη N

′
2. By IH, |〈N ′

1,R
βη
N ′

1
〉|c ⊆

|〈N ′
2,R

βη
N ′

2
〉|c. Hence, Rβη

M ′
1

=2.7.3 {1.p | p ∈ Rβη
N ′

1[x:=c(cx)]} =2.7.4

{1.p | p ∈ Rβη
N ′

1
} and Rβη

λx.P2
=2.7.3 {1.p ∈ Rβη

N ′
2[x:=c(cx)]} =2.7.4 {1.p |

p ∈ Rβη
N ′

2
}. So, |〈M ′

1,R
βη
M ′

1
〉|c =2.18 {1.p | p ∈ |〈N ′

1,R
βη
N ′

1
〉|c} and

|〈M ′
2,R

βη
M ′

2
〉|c =2.13 |〈λx.P2,Rβη

λx.P2
〉|c =2.18 {1.p | p ∈ |〈N ′

2,R
βη
N ′

2
〉|c}.

Let p ∈ |〈M ′
1,R

βη
M ′

1
〉|c then p = 1.p′ such that p′ ∈ |〈N ′

1,R
βη
N ′

1
〉|c ⊆

|〈N ′
2,R

βη
N ′

2
〉|c, so p ∈ |〈M ′

2,R
βη
M ′

2
〉|c, i.e. |〈M ′

1,R
βη
M ′

1
〉|c ⊆ |〈M ′

2,R
βη
M ′

2
〉|c.

• Let λx.P = λx.N2x such that N2x ∈ Ληc, x 6∈ fv(N2) and N2 6= c,
then λx.P ∈ Rβη, Rβη

M1
=2.7.3 {1.p | p ∈ Rβη

N1[x:=c(cx)]} =2.7.4 {1.p |
p ∈ Rβη

N1
} and Rβη

λx.P =2.5 {0} ∪ {1.p | p ∈ Rβη
N2x}. By lemma 2.7.5,

Rβη
λx.P =2.5 {2n.0} ∪ {2n.1.p | p ∈ Rβη

N2x}. So, |〈M1,Rβη
M1
〉|c =2.18

{1.p | p ∈ |〈N1,Rβη
N1
〉|c} and |〈M2,Rβη

M2
〉|c =2.13 |〈λx.P,Rβη

λx.P 〉|c =
{0} ∪ {1.p | p ∈ |〈N2x,Rβη

N2x〉|c}. Let p ∈ |〈N1,Rβη
N1
〉|c then 1.p ∈

|〈M1,Rβη
M1
〉|c ⊆ |〈M2,Rβη

M2
〉|c, so p ∈ |〈N2x,Rβη

N2x〉|c, i.e. |〈N1,Rβη
N1
〉|c ⊆

|〈N2x,Rβη
N2x〉|c. Since p1 ∈ Rβη

M1
, p1 = 1.p′1 such that p′1 ∈ R

βη
N1

. Be-
cause p2 ∈ Rβη

M2
and 1.|〈N1, p′1〉|c =2.18 |〈M1, p1〉|c = |〈M2, p2〉|c,

then p2 = 2n.1.p′2 such that p′2 ∈ R
βη
N2x. Because 1.|〈N1, p′1〉|c =2.18

|〈M1, p1〉|c = |〈M2, p2〉|c =2.14 |〈λx.N2x, 1.p′2〉|c = 1.|〈N2x, p′2〉|c then
|〈N1, p′1〉|c = |〈N2x, p′2〉|c. So M1 = λx.N1[x := c(cx)]

p1→βη λx.P1 =
M ′

1 and M2 = cn(λx.N2x)
p2→βη c

n(λx.N ′
2) = M ′

2 such that N1[x :=

c(cx)]
p′
1→βη P1 and N2x

p′
2→βη N

′
2 . By lemma 2.4.12a, P1 = N ′

1[x :=

c(cx)], and N1
p′
1→βη N

′
1. By IH, |〈N ′

1,R
βη
N ′

1
〉|c ⊆ |〈N ′

2,R
βη
N ′

2
〉|c. More-

over, Rβη
M ′

1
=2.7.3 {1.p | p ∈ Rβη

N ′
1[x:=c(cx)]} =2.7.4 {1.p | p ∈ Rβη

N ′
1
} and

Rβη
λx.N ′

2
\ {0} =2.5 {1.p | p ∈ Rβη

N ′
2
}. So, |〈M ′

1,R
βη
M ′

1
〉|c =2.18 {1.p | p ∈

|〈N ′
1,R

βη
N ′

1
〉|c} and |〈M ′

2,R
βη
M ′

2
〉|c\{0} =2.13 |〈λx.N ′

2,R
βη
λx.N ′

2
〉|c\{0} =

{1.p ∈ |〈N ′
2,R

βη
N ′

2
〉|c}. Let p ∈ |〈M ′

1,R
βη
M ′

1
〉|c then p = 1.p′ such that

p′ ∈ |〈N ′
1,R

βη
N ′

1
〉|c ⊆ |〈N ′

2,R
βη
N ′

2
〉|c, so p ∈ |〈M ′

2,R
βη
M ′

2
〉|c \ {0}, i.e.

|〈M ′
1,R

βη
M ′

1
〉|c ⊆ |〈M ′

2,R
βη
M ′

2
〉|c.

4. Let M1 = λx.N1x ∈ Ληc such that N1x ∈ Ληc, x 6∈ fv(N1) ∪ {c} and
N1 6= c, then M1 ∈ Rβη and |M1|c = λx.|N1x|c = λx.|N1|cx. Because
|M2|c = λx.|N1|cx, then by lemma 2.15, M2 = cn(λx.P ) such that |P |c =
|N1|cx. By lemma 2.4.6, λx.P ∈ Ληc. We prove the lemma by case on
λx.P .

(a) Let λx.P = λx.N2[x := c(cx)] such that N2 ∈ Ληc then Rβη
M1

=2.5

{0}∪{1.p | p ∈ Rβη
N1x} andRβη

λx.P =2.7.3 {1.p | p ∈ Rβη
N2[x:=c(cx)]} =2.7.4

{1.p | p ∈ Rβη
N2
}. So, |〈M1,Rβη

M1
〉|c = {0}∪{1.p | p ∈ |〈N1x,Rβη

N1x〉|c}
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and |〈M2,Rβη
M2
〉|c =2.13 |〈λx.P,Rβη

λx.P 〉|c =2.18 {1.p | p ∈ |〈N2,Rβη
N2
〉|c}.

Hence, 0 ∈ |〈M1,Rβη
M1
〉|c but 0 6∈ |〈M2,Rβη

M2
〉|c.

(b) Let λx.P = λx.N2x such that N2x ∈ Ληc, x 6∈ fv(N2) and N2 6= c,
then M2 ∈ Rβη. Since |M2|c = λx.|N2x|c = λx.|N2|cx, |N1x|c =
|N2x|c and |N1|c = |N2|c. Moreover, Rβη

M1
=2.5 {0} ∪ {1.p | p ∈

Rβη
N1x}, R

βη
λx.P =2.5 {0} ∪ {1.p | p ∈ Rβη

N2x} and Rβη
M2

=2.7.5 {2n.p |
p ∈ Rβη

λx.P } =2.5 {2n.0} ∪ {2n.1.p | p ∈ Rβη
N2x}. So, |〈M1,Rβη

M1
〉|c =

{0}∪{1.p | p ∈ |〈N1x,Rβη
N1x〉|c} and |〈M2,Rβη

M2
〉|c =2.13 |〈λx.P,Rβη

λx.P 〉|c =
{0} ∪ {1.p | p ∈ |〈N2x,Rβη

N2x〉|c}. Let p ∈ |〈N1x,Rβη
N1x〉|c then

1.p ∈ |〈M1,Rβη
M1
〉|c ⊆ |〈M2,Rβη

M2
〉|c, so p ∈ |〈N2x,Rβη

N2x〉|c, i.e.
|〈N1x,Rβη

N1x〉|c ⊆ |〈N2x,Rβη
N2x〉|c. Moreover, Rβη

N1x \ {0} =2.5 {1.p |
p ∈ Rβη

N1
} and Rβη

N2x \ {0} =2.5 {1.p | p ∈ Rβη
N2
}, so |〈N1x,Rβη

N1x〉|c \
{0} = {1.p | p ∈ |〈N1,Rβη

N1
〉|c} and |〈N2x,Rβη

N2x〉|c \ {0} = {1.p |
p ∈ |〈N2,Rβη

N2
〉|c}. Let p ∈ |〈N1,Rβη

N1
〉|c then 1.p ∈ |〈N1x,Rβη

N1x〉|c \
{0} ⊆ |〈N1x,Rβη

N1x〉|c ⊆ |〈N2x,Rβη
N2x〉|c, so p ∈ |〈N2,Rβη

N2
〉|c, i.e.

|〈N1,Rβη
N1
〉|c ⊆ |〈N2,Rβη

N2
〉|c. Since p1 ∈ Rβη

M1
:

• Either p1 = 0. Because p2 ∈ Rβη
M2

and |〈M1, p1〉|c = |〈M2, p2〉|c,
we obtain p2 = 2n.0. So M1

0→βη N1 and M2 = cn(λx.N2x)
p2→βη

cn(N2). It is done since |〈N1,Rβη
N1
〉|c ⊆ |〈N2,Rβη

N2
〉|c =2.13 |〈cn(N2),Rβη

cn(N2)
〉|c.

• Or p1 = 1.p′1 such that p′1 ∈ Rβη
N1x. Becasue p2 ∈ Rβη

M2
and

|〈M1, p1〉|c = |〈M2, p2〉|c, we obtain p2 = 2n.1.p′2 such that p′2 ∈
Rβη

N2x. Becasue 1.|〈N1x, p′1〉|c = |〈M1, p1〉|c = |〈M2, p2〉|c =2.14

|〈λx.N2x, 1.p′2〉|c = 1.|〈N2x, p′2〉|c, we obtain |〈N1x, p′1〉|c = |〈N2x, p′2〉|c.
So M1 = λx.N1x

p1→βη λx.N
′
1 = M ′

1 and M2 = cn(λx.N2x)
p2→βη

cn(λx.N ′
2) = M ′

2 such that N1x
p′
1→βη N

′
1 and N2x

p′
2→βη N

′
2. By

IH, |〈N ′
1,R

βη
N ′

1
〉|c ⊆ |〈N ′

2,R
βη
N ′

2
〉|c.

– EitherN1x ∈ Rβη, soN1 = λy.P1 and by lemma 2.5,Rβη
N1x =

{0}∪{1.p | p ∈ Rβη
N1
}. Because |〈N1x,Rβη

N1x〉|c ⊆ |〈N2x,Rβη
N2x〉|c,

we obtain 0 ∈ |〈N2x,Rβη
N2x〉|c. Hence, 0 ∈ Rβη

N2x and by
lemma 2.5, Rβη

N2x = {0} ∪ {1.p | p ∈ Rβη
N2
}. Hence, N2x ∈

Rβη and by lemma 2.15, N2 = λy.P2 such that |P1|c = |P2|c.
∗ Either p′1 = 0. Because |〈N1x, p′1〉|c = |〈N2x, p′2〉|c, we

obtain p′2 = 0. So M1 = λx.(λy.P1)x
p1→βη λx.P1[y :=

x] = M ′
1 and M2 = cn(λx.(λy.P2)x)

p2→βη cn(λx.P2[y :=
x]) = M ′

2. Because x 6∈ fv(N1) ∪ fv(N2), we obtain M ′
1 =

N1 and M ′
2 = cn(N2). It is done since |〈N1,Rβη

N1
〉|c ⊆

|〈N2,Rβη
N2
〉|c =2.13 |〈cn(N2),Rβη

cn(N2)
〉|c.

∗ Let p′1 = 1.p′′1 such that p′′1 ∈ R
βη
N1

. Because |〈N1x, p′1〉|c =
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|〈N2x, p′2〉|c, we obtain p′2 = 1.p′′2 such that p′′2 ∈ R
βη
N2

. So
M1 = λx.N1x

p1→βη λx.N
′′
1 x = M ′

1 andM2 = cn(λx.N2x)
p2→βη

cn(λx.N ′′
2 x) = M ′

2 such that N1
p′′
1→βη N ′′

1 and N2
p′′
2→βη

N ′′
2 . because x 6∈ fv(N1) ∪ fv(N2), by lemma 2.2.3, we

obtain x 6∈ fv(N ′′
1 ) ∪ fv(N ′′

2 ). So, M ′
1, λx.N

′′
2 x ∈ Rβη

and by lemma 2.5, Rβη
M ′

1
= {0} ∪ {1.p | p ∈ Rβη

N ′
1
} and

Rβη
λx.N ′′

2 x = {0} ∪ {1.p | p ∈ Rβη
N ′

2
}. Hence, |〈M ′

1,R
βη
M ′

1
〉|c =

{0} ∪ {λx.C | C ∈ |〈N ′
1,R

βη
N ′

1
〉|c} and |〈M ′

2,R
βη
M ′

2
〉|c =2.13

|〈λx.N ′′
2 x,R

βη
λx.N ′′

2 x〉|
c = {0} ∪ {1.p | p ∈ |〈N ′

2,R
βη
N ′

2
〉|c}.

Because |〈N ′
1,R

βη
N ′

1
〉|c ⊆ |〈N ′

2,R
βη
N ′

2
〉|c, we obtain |〈M ′

1,R
βη
M ′

1
〉|c =

{0}∪{1.p | p ∈ |〈N ′
1,R

βη
N ′

1
〉|c} ⊆ {0}∪{1.p | p ∈ |〈N ′

2,R
βη
N ′

2
〉|c} =

|〈M ′
2,R

βη
M ′

2
〉|c.

– Else by lemma 2.5, Rβη
N1x = {1.p | p ∈ Rβη

N1
}. Let p′1 =

1.p′′1 such that p′′1 ∈ Rβη
N1

. Then, p′2 = 1.p′′2 such that
p′′2 ∈ Rβη

N2
. So M1 = λx.N1x

p1→βη λx.N ′′
1 x = M ′

1 and

M2 = cn(λx.N2x)
p2→βη c

n(λx.N ′′
2 x) = M ′

2 such that N1
p′′
1→βη

N ′′
1 and N2

p′′
2→βη N ′′

2 . Because x 6∈ fv(N1) ∪ fv(N2), by
lemma 2.2.3 we obtain, x 6∈ fv(N ′′

1 )∪fv(N ′′
2 ). So,M ′

1, λx.N
′
2x ∈

Rβη and by lemma 2.5, Rβη
M ′

1
= {0} ∪ {1.p | p ∈ Rβη

N ′
1
} and

Rβη
λx.N ′

2
= {0} ∪ {1.p | p ∈ Rβη

N ′
2
}. Hence, |〈M ′

1,R
βη
M ′

1
〉|c =

{0} ∪ {1.p | p ∈ |〈N ′
1,R

βη
N ′

1
〉|c} and |〈M ′

2,R
βη
M ′

2
〉|c ==2.13

|〈λx.N ′
2,R

βη
λx.N ′

2
〉|c = {0}∪{1.p | p ∈ |〈N ′

2,R
βη
N ′

2
〉|c}. Because

|〈N ′
1,R

βη
N ′

1
〉|c ⊆ |〈N ′

2,R
βη
N ′

2
〉|c, we obtain |〈M ′

1,R
βη
M ′

1
〉|c = {0}∪

{1.p | p ∈ |〈N ′
1,R

βη
N ′

1
〉|c} ⊆ {0} ∪ {1.p | p ∈ |〈N ′

2,R
βη
N ′

2
〉|c} =

|〈M ′
2,R

βη
M ′

2
〉|c.

5. Let M1 = cP1Q1 ∈ Mc such that P1, P2 ∈ Mc. So |M1|c = |P1|c|Q1|c =
|M2|c. We prove the statement by induction on the structure of M2:

• Let M2 ∈ V \ {c} then |M2|c = M2 6= |P1|c|Q1|c.
• Let M2 = λx.N2 ∈ ΛIc such that N2 ∈ ΛIc and x 6= c then |M2|c =
λx.|N2|c 6= |P1|c|Q1|c.

• LetM2 = λx.N2[x := c(cx)] ∈ Ληc such thatN2 ∈ Ληc and x 6= cthen
|M2|c = λx.|N2[x := c(cx)]|c 6= |P1|c|Q1|c.

• Let M2 = λx.N2x ∈ Ληc such that N2x ∈ ΛIc and x 6∈ fv(N2) ∪ {c}
and N2 6= c then |M2|c = λx.|N2x|c 6= |P1|c|Q1|c.

• LetM2 = cP2Q2 ∈Mc such that P2, Q2 ∈Mc, then |cP2|c = |P2|c =
|P1|c and |Q2|c = |Q1|c. Since M1, cP2 6∈ Rr, by lemma 2.5, Rr

M1
=
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{1.2.p | p ∈ Rr
P1
} ∪ {2.p | p ∈ Rr

Q1
}. So, |〈M1,Rr

M1
〉|c = {1.p |

p ∈ |〈P1,Rr
P1
〉|c} ∪ {2.p | p ∈ |〈Q1,Rr

Q1
〉|c}. Again by lemma 2.5,

since M2 6∈ Rr, Rr
M2

= {1.2.p | p ∈ Rr
P2
} ∪ {2.p | p ∈ Rr

Q2
}. So,

|〈M2,Rr
M2
〉|c = {1.p | p ∈ |〈P2,Rr

P2
〉|c} ∪ {2.p | p ∈ |〈Q2,Rr

Q2
〉|c}.

Let p ∈ |〈P1,Rr
P1
〉|c then 1.p ∈ |〈M1,Rr

M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. Hence,

p ∈ |〈P2,Rr
P2
〉|c, i.e. |〈P1,Rr

P1
〉|c ⊆ |〈P2,Rr

P2
〉|c. Let p ∈ |〈Q1,Rr

Q1
〉|c

then 2.p ∈ |〈M1,Rr
M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. Hence, p ∈ |〈Q2,Rr

Q2
〉|c,

i.e. |〈Q1,Rr
Q1
〉|c ⊆ |〈Q2,Rr

Q2
〉|c. Since p1 ∈ Rr

M1
:

– Either p1 = 1.2.p′1 such that p′1 ∈ Rr
P1

and so 1.|〈P1, p′1〉|c =
|〈M1, p1〉|c = |〈M2, p2〉|c. Hence, because p2 ∈ Rr

M2
, we obtain

p2 = 1.2.p′2 such that |〈P1, p′1〉|c = |〈P2, p′2〉|c and p′2 ∈ Rr
P2

.
Hence, M1 = cP1Q1

p1→r cP ′1Q1 = M ′
1 and M2 = cP2Q2

p2→r

cP ′2Q2 = M ′
2 such that P1

p′
1→r P ′1 and P2

p′
2→r P ′2. By IH,

|〈P ′1,Rr
P ′

1
〉|c ⊆ |〈P ′2,Rr

P ′
2
〉|c. By lemma 2.5, Rr

M ′
1

= {1.2.p | p ∈
Rr

P ′
1
} ∪ {2.p | p ∈ Rr

Q1
} and Rr

M ′
2

= {1.2.p | p ∈ Rr
P ′

2
} ∪ {2.p |

p ∈ Rr
Q2
}, so |〈M ′

1,Rr
M ′

1
〉|c = {1.p | p ∈ |〈P ′1,Rr

P ′
1
〉|c} ∪ {2.p |

p ∈ |〈Q1,Rr
Q1
〉|c} and |〈M ′

2,Rr
M ′

2
〉|c = {1.p | p ∈ |〈P ′2,Rr

P ′
2
〉|c} ∪

{2.p | p ∈ |〈Q2,Rr
Q2
〉|c}. Let p ∈ |〈M ′

1,Rr
M ′

1
〉|c. Either p = 1.p′

such that p′ ∈ |〈P ′1,Rr
P ′

1
〉|c ⊆ |〈P ′2,Rr

P ′
2
〉|c. So p ∈ |〈M ′

2,Rr
M ′

2
〉|c.

Or p = 2.p such that p′ ∈ |〈Q1,Rr
Q1
〉|c ⊆ |〈Q2,Rr

Q2
〉|c. So

p ∈ |〈M ′
2,Rr

M ′
2
〉|c.

– Or p1 = 2.p′1 such that p′1 ∈ Rr
Q1

and so 2.|〈Q1, p′1〉|c = |〈M1, p1〉|c =
|〈M2, p2〉|c. Because p2 ∈ Rr

M2
, we obtain p2 = 2.p′2 such that

|〈Q1, p′1〉|c = |〈Q2, p′2〉|c. Hence, M1 = cP1Q1 =
p1→r cP1Q

′
1 = M ′

1

and M2 = cP2Q2
p2→r cP2Q

′
2 = M ′

2 such that Q1
p′
1→r Q′

1 and

Q2
p′
2→r Q

′
2. By IH, |〈Q′

1,Rr
Q′

1
〉|c ⊆ |〈Q′

2,Rr
Q′

2
〉|c. By lemma 2.5,

Rr
M ′

1
= {1.2.p | p ∈ Rr

P1
} ∪ {2.p | p ∈ Rr

Q′
1
} and Rr

M ′
2

=
{1.2.p | p ∈ Rr

P2
} ∪ {2.p | p ∈ Rr

Q′
2
}, so |〈M ′

1,Rr
M ′

1
〉|c = {1.p |

p ∈ |〈P1,Rr
P1
〉|c} ∪ {2.p | p ∈ |〈Q′

1,Rr
Q′

1
〉|c} and |〈M ′

2,Rr
M ′

2
〉|c =

{1.p | p ∈ |〈P2,Rr
P2
〉|c} ∪ {2.p | p ∈ |〈Q′

2,Rr
Q′

2
〉|c}. Let p ∈

|〈M ′
1,Rr

M ′
1
〉|c. Either p = 1.p′ such that p′ ∈ |〈P1,Rr

P1
〉|c ⊆

|〈P2,Rr
P2
〉|c. So p ∈ |〈M ′

2,Rr
M ′

2
〉|c. Or p = 2.p′ such that

p′ ∈ |〈Q′
1,Rr

Q′
1
〉|c ⊆ |〈Q′

2,Rr
Q′

2
〉|c. So p ∈ |〈M ′

2,Rr
M ′

2
〉|c.

• Let M2 = P2Q2 ∈ Mc such that P2, Q2 ∈ Mc and P2 is a λ-
abstraction. Then |P2|c = |P1|c and |Q2|c = |Q1|c. Since M1 6∈ Rr,
by lemma 2.5, Rr

M1
= {1.2.p | p ∈ Rr

P1
} ∪ {2.p | p ∈ Rr

Q1
}. So,

|〈M1,Rr
M1
〉|c = {1.p | p ∈ |〈P1,Rr

P1
〉|c} ∪ {2.p | p ∈ |〈Q1,Rr

Q1
〉|c}.

Again by lemma 2.5, since M2 ∈ Rr by lemma 2.8, Rr
M2

= {0} ∪
{1.p | p ∈ Rr

P2
} ∪ {2.p | p ∈ Rr

Q2
}. So, |〈M2,Rr

M2
〉|c = {0}∪ =

{1.p | p ∈ |〈P2,Rr
P2
〉|c} ∪ {2.p | p ∈ |〈Q2,Rr

Q2
〉|c}. Let p ∈

|〈P1,Rr
P1
〉|c then 1.p ∈ |〈M1,Rr

M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. Hence, p ∈
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|〈P2,Rr
P2
〉|c, i.e. |〈P1,Rr

P1
〉|c ⊆ |〈P2,Rr

P2
〉|c. Let p ∈ |〈Q1,Rr

Q1
〉|c

then 2.p ∈ |〈M1,Rr
M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. Hence, p ∈ |〈Q2,Rr

Q2
〉|c,

i.e. |〈Q1,Rr
Q1
〉|c ⊆ |〈Q2,Rr

Q2
〉|c. Since p1 ∈ Rr

M1
:

– Either p1 = 1.2.p′1 such that p′1 ∈ Rr
P1

and so 1.|〈P1, p′1〉|c =
|〈M1, p1〉|c = |〈M2, p2〉|c. Because p2 ∈ Rr

M2
, we obtain p2 =

1.p′2 such that |〈P1, p′1〉|c = |〈P2, p′2〉|c and p′2 ∈ Rr
P2

. Hence,
M1 = cP1Q1

p1→r cP
′
1Q1 = M ′

1 and M2 = P2Q2
p2→r P

′
2Q2 = M ′

2

such that P1
p′
1→r P ′1 and P2

p′
2→r P ′2. By IH, |〈P ′1,Rr

P ′
1
〉|c ⊆

|〈P ′2,Rr
P ′

2
〉|c. Because P2 ∈ Mc, then by lemma 2.10, P ′2 ∈ Mc.

By lemma 2.4.3, P ′2 6= c. By lemma 2.5, Rr
M ′

1
= {1.2.p | p ∈

Rr
P ′

1
}∪{2.p | p ∈ Rr

Q1
} and Rr

M ′
2
\{0} = {1.p | p ∈ Rr

P ′
2
}∪{2.p |

p ∈ Rr
Q2
}, so |〈M ′

1,Rr
M ′

1
〉|c = {1.p | p ∈ |〈P ′1,Rr

P ′
1
〉|c}∪{2.p | p ∈

|〈Q1,Rr
Q1
〉|c} and |〈M ′

2,Rr
M ′

2
〉|c\{0} = {1.p | p ∈ |〈P ′2,Rr

P ′
2
〉|c}∪

{2.p | p ∈ |〈Q2,Rr
Q2
〉|c}. Let p ∈ |〈M ′

1,Rr
M ′

1
〉|c. Either p = 1.p′

such that p′ ∈ |〈P ′1,Rr
P ′

1
〉|c ⊆ |〈P ′2,Rr

P ′
2
〉|c. So p ∈ |〈M ′

2,Rr
M ′

2
〉|c.

Or p = 2.p′ such that p′ ∈ |〈Q1,Rr
Q1
〉|c ⊆ |〈Q2,Rr

Q2
〉|c. So

p ∈ |〈M ′
2,Rr

M ′
2
〉|c.

– Or p1 = 2.p′1 such that p′1 ∈ Rr
Q1

and so 2.|〈Q1, p′1〉|c = |〈M1, p1〉|c =
|〈M2, p2〉|c. Because p2 ∈ Rr

M2
, we obtain p2 = 2.p′2 such that

|〈Q1, p′1〉|c = |〈Q2, p′2〉|c. Hence, M1 = cP1Q1
p1→r cP1Q

′
1 = M ′

1

and M2 = P2Q2
p2→r P2Q

′
2 = M ′

2 such that Q1
p′
1→r Q′

1 and

Q2
p′
2→r Q

′
2. By IH, |〈Q′

1,Rr
Q′

1
〉|c ⊆ |〈Q′

2,Rr
Q′

2
〉|c. By lemma 2.5,

Rr
M ′

1
= {1.2.p | p ∈ Rr

P1
} ∪ {2.p | p ∈ Rr

Q′
1
} and Rr

M ′
2
\ {0} =

{1.p | p ∈ Rr
P2
} ∪ {2.p | p ∈ Rr

Q′
2
}, so |〈M ′

1,Rr
M ′

1
〉|c = {1.p |

p ∈ |〈P1,Rr
P1
〉|c} ∪ {2.p | p ∈ |〈Q′

1,Rr
Q′

1
〉|c} and |〈M ′

2,Rr
M ′

2
〉|c \

{0} = {1.p | p ∈ |〈P2,Rr
P2
〉|c} ∪ {2.p | p ∈ |〈Q′

2,Rr
Q′

2
〉|c}. Let

p ∈ |〈M ′
1,Rr

M ′
1
〉|c. Either p = 1.p′ such that p′ ∈ |〈P1,Rr

P1
〉|c ⊆

|〈P2,Rr
P2
〉|c. So p ∈ |〈M ′

2,Rr
M ′

2
〉|c. Or p = 2.p′ such that

p′ ∈ |〈Q′
1,Rr

Q′
1
〉|c ⊆ |〈Q′

2,Rr
Q′

2
〉|c. So p ∈ |〈M ′

2,Rr
M ′

2
〉|c.

• Let M2 = cN2 ∈Mc = Ληc such that N2 ∈ Ληc. So |N2|c = |M2|c =
|M1|c. By lemma 2.7.5, Rβη

M2
= {2.p | p ∈ Rβη

N2
} and |〈M1,Rβη

M1
〉|c ⊆

|〈M2,Rβη
M2
〉|c =2.13 |〈N2,Rβη

N2
〉|c. Because p2 ∈ Rβη

M2
, we obtain p2 =

2.p′2 such that p′2 ∈ R
βη
N2

. So, M2 = cN2
p2→βη cN

′
2 = M ′

2 such that

N2
p′
2→βη N

′
2. Because |〈N2, p′2〉|c =2.14 |〈M2, p2〉|c = |〈M1, p1〉|c, by

IH, |〈M ′
1,R

βη
M ′

1
〉|c ⊆ |〈N ′

2,R
βη
N ′

2
〉|c =2.13 |〈M ′

2,R
βη
M ′

2
〉|c.
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6. Let M1 = (λx.P1)Q1 ∈ Mc such that λx.P1, Q1 ∈ Mc. By lemma 2.4.7,
lemma 2.4.11a and lemma 2.4.8, P1 ∈ Mc and x 6= c. So |M1|c =
|λx.P1|c|Q1|c = |M2|c = (λx.|P1|c)|Q1|c. By lemma 2.8, M1 ∈ Rr, so by
lemma 2.5, Rr

M1
= {0} ∪ {1.p | p ∈ Rr

λx.P1
} ∪ {2.p | p ∈ Rr

Q1
} and Rr

M1
\

{1.0} = {0} ∪ {1.1.p | p ∈ Rr
P1
} ∪ {2.p | p ∈ Rr

Q1
}. So |〈M1,Rr

M1
〉|c =

{0} ∪ {1.p | p ∈ |〈λx.P1,Rr
λx.P1

〉|c} ∪ {2.p | p ∈ |〈Q1,Rr
Q1
〉|c} and

|〈M1,Rr
M1
〉|c \ {1.0} = {0} ∪ {1.1.p | p ∈ |〈P1,Rr

P1
〉|c} ∪ {2.p | p ∈

|〈Q1,Rr
Q1
〉|c}. We prove this statement by induction on the structure of

M2:

• Let M2 ∈ V \ {c} then |M2|c = M2 6= |P1|c|Q1|c.
• Let M2 = λx.N2 ∈ ΛIc such that N2 ∈ ΛIc and x 6= c then |M2|c =
λx.|N2|c 6= |P1|c|Q1|c.

• Let M2 = λx.N2[x := c(cx)] ∈ Ληc such that N2 ∈ Ληc and x 6= c
then |M2|c = λx.|N2[x := c(cx)]|c 6= |P1|c|Q1|c.

• Let M2 = λx.N2x ∈ Ληc such that N2x ∈ Ληc, N2 6= c and x 6∈
fv(N2) ∪ {c} then |M2|c = λx.|N2x|c 6= |P1|c|Q1|c.

• Let M2 = cP2Q2 ∈ Mc such that P2, Q2 ∈ Mc. By lemma 2.5,
Rr

M2
= {1.2.p | p ∈ Rr

P2
} ∪ {2.p | p ∈ Rr

Q2
}, so |〈M2,Rr

M2
〉|c =

{1.p | p ∈ |〈P2,Rr
P2
〉|c} ∪ {2.p | p ∈ |〈Q2,Rr

Q2
〉|c}. Because 0 ∈

|〈M1,Rr
M1
〉|c and 0 6∈ |〈M2,Rr

M2
〉|c, we obtain |〈M1,Rr

M1
〉|c 6⊆ |〈M2,Rr

M2
〉|c.

• Let M2 = (λx.P2)Q2 ∈ Mc such that λx.P2, Q2 ∈ Mc, then |P1|c =
|P2|c and |Q1|c = |Q2|c. By lemma 2.4.7, lemma 2.4.11a and lemma 2.4.8,
P2 ∈Mc. By lemma 2.5, Rr

M2
= {0}∪{1.p | p ∈ Rr

λx.P2
}∪{2.p | p ∈

Rr
Q2
} and Rr

M2
\ {1.0} = {0} ∪ {1.1.p | p ∈ Rr

P2
} ∪ {2.p | p ∈ Rr

Q2
}.

So |〈M2,Rr
M2
〉|c = {0} ∪ {1.p | p ∈ |〈λx.P2,Rr

λx.P2
〉|c} ∪ {2.p |

p ∈ |〈Q2,Rr
Q2
〉|c} and |〈M2,Rr

M2
〉|c \ {1.0} = {0} ∪ {1.1.p | p ∈

|〈P2,Rr
P2
〉|c} ∪ {2.p | p ∈ |〈Q2,Rr

Q2
〉|c}. Let p ∈ |〈λx.P1,Rr

λx.P1
〉|c

then 1.p ∈ |〈M1,Rr
M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. So p ∈ |〈λx.P2,Rr

λx.P2
〉|c,

i.e. |〈λx.P1,Rr
λx.P1

〉|c ⊆ |〈λx.P2,Rr
λx.P2

〉|c. Let p ∈ |〈P1,Rr
P1
〉|c

then 1.1.p ∈ |〈M1,Rr
M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. So p ∈ |〈P2,Rr

P2
〉|c,

i.e. |〈P1,Rr
P1
〉|c ⊆ |〈P2,Rr

P2
〉|c. Let p ∈ |〈Q1,Rr

Q1
〉|c then 2.p ∈

|〈M1,Rr
M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. So p ∈ |〈Q2,Rr

Q2
〉|c, i.e. |〈Q1,Rr

Q1
〉|c ⊆

|〈Q2,Rr
Q2
〉|c. Since p1 ∈ Rr

M1
:

– Either p1 = 0. Because p2 ∈ Rr
M2

, we obtain p2 = 0. Hence,

M1 = (λx.P1)Q1
0→r P1[x := Q1] = M ′

1 andM2 = (λx.P2)Q2
0→r

P2[x := Q2] = M ′
2. By lemma 2.23, |〈M ′

1,Rr
M ′

1
〉|c ⊆ |〈M ′

2,Rr
M ′

2
〉|c.

– Or p1 = 1.p′1 such that p′1 ∈ Rr
λx.P1

and so 1.|〈λx.P1, p′1〉|c =
|〈M1, p1〉|c = |〈M2, p2〉|c. Because p2 ∈ Rr

M2
, we obtain p2 =

1.p′2 such that |〈λx.P1, p′1〉|c = |〈λx.P2, p′2〉|c and p′2 ∈ Rr
λx.P2

.
By lemma 2.5:
∗ Either λx.P1 = λx.N1x ∈ Rr such that x 6∈ fv(N1), Mc =

Ληc and p′1 = 0. So, |〈λx.P2, p′2〉|c = 0. Hence, p′2 = 0
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and λx.P2 = λx.N2x such that x 6∈ fv(N2). Hence, M1 =
(λx.N1x)Q1

p1→r N1Q1 = M ′
1 and M2 = (λx.N2x)Q2

p2→r

N2Q2 = M ′
2 such that λx.N1x

p′
1→r N1 and λx.N2x

p′
2→r N2.

By IH, |〈N1,Rr
N1
〉|c ⊆ |〈N2,Rr

N2
〉|c.

· If N1 is a λ-abstraction then by lemma 2.8, N1x ∈ Rr. So
1.1.0 ∈ Rr

M1
and |〈M2, 1.1.0〉|c = 1.1.0 = |〈M1, 1.1.0〉|c ∈

|〈M1,Rr
M1
〉|c ⊆ |〈M2,Rr

M2
〉|c. Hence, 1.1.0 ∈ Rr

M2
. So N2

is a λ-abstraction. SoRr
M ′

1
= {0}∪{1.p | p ∈ Rr

N1
}∪{2.p |

p ∈ Rr
Q1
} and Rr

M ′
2

= {0} ∪ {1.p | p ∈ Rr
N2
} ∪ {2.p | p ∈

Rr
Q2
}, so |〈M ′

1,Rr
M ′

1
〉|c = {0} ∪ {1.p | p ∈ |〈N1,Rr

N1
〉|c} ∪

{2.p | p ∈ |〈Q1,Rr
Q1
〉|c} and |〈M ′

2,Rr
M ′

2
〉|c = {0} ∪ {1.p |

p ∈ |〈N2,Rr
N2
〉|c} ∪ {2.p | p ∈ |〈Q2,Rr

Q2
〉|c}. Let p ∈

|〈M ′
1,Rr

M ′
1
〉|c. Either p = 0 ∈ |〈M ′

2,Rr
M ′

2
〉|c. Or p =

1.p′ such that p′ ∈ |〈N1,Rr
N1
〉|c ⊆ |〈N2,Rr

N2
〉|c. So p ∈

|〈M ′
2,Rr

M ′
2
〉|c. Or p = 2.p′ such that p′ ∈ |〈Q1,Rr

Q1
〉|c ⊆

|〈Q2,Rr
Q2
〉|c. So p ∈ |〈M ′

2,Rr
M ′

2
〉|c.

· Otherwise Rr
M ′

1
= {1.p | p ∈ Rr

N1
} ∪ {2.p | p ∈ Rr

Q1
}

and Rr
M ′

2
\ {0} = {1.p | p ∈ Rr

N2
} ∪ {2.p | p ∈ Rr

Q2
},

so |〈M ′
1,Rr

M ′
1
〉|c = {1.p | p ∈ |〈N1,Rr

N1
〉|c} ∪ {2.p | p ∈

|〈Q1,Rr
Q1
〉|c} and |〈M ′

2,Rr
M ′

2
〉|c\{0} = {1.p | p ∈ |〈N2,Rr

N2
〉|c}∪

{2.p | p ∈ |〈Q2,Rr
Q2
〉|c}. Let p ∈ |〈M ′

1,Rr
M ′

1
〉|c. Either

p = 1.p′ such that p′ ∈ |〈N1,Rr
N1
〉|c ⊆ |〈N2,Rr

N2
〉|c. So

p ∈ |〈M ′
2,Rr

M ′
2
〉|c. Or p = 2.p′ such that p′ ∈ |〈Q1,Rr

Q1
〉|c ⊆

|〈Q2,Rr
Q2
〉|c. So p ∈ |〈M ′

2,Rr
M ′

2
〉|c.

∗ Or p′1 = 1.p′′1 such that p′′1 ∈ Rr
P1

. So p′2 = 1.p′′2 such
that p′′2 ∈ Rr

P2
. Hence, M1 = (λx.P1)Q1

p1→r (λx.P ′1)Q1 =
M ′

1 and M2 = (λx.P2)Q2
p2→r (λx.P ′2)Q2 = M ′

2 such that

λx.P1
p′
1→r λx.P

′
1 and λx.P2

p′
2→r λx.P

′
2. By IH, |〈λx.P ′1,Rr

λx.P ′
1
〉|c ⊆

|〈λx.P ′2,Rr
λx.P ′

2
〉|c. Since M1,M2 ∈ Mc, by lemma 2.10,

M ′
1,M

′
2 ∈ Mc. By lemma 2.5 and lemma 2.8, Rr

M ′
1

=
{0} ∪ {1.p | p ∈ Rr

λx.P ′
1
} ∪ {2.p | p ∈ Rr

Q1
} and Rr

M ′
2

=
{0}∪{1.p | p ∈ Rr

λx.P ′
2
}∪{2.p | p ∈ Rr

Q2
}, so |〈M ′

1,Rr
M ′

1
〉|c =

{0}∪{1.p | p ∈ |〈λx.P ′1,Rr
λx.P ′

1
〉|c}∪{2.p | p ∈ |〈Q1,Rr

Q1
〉|c}

and |〈M ′
2,Rr

M ′
2
〉|c = {0} ∪ {1.p | p ∈ |〈λx.P ′2,Rr

λx.P ′
2
〉|c} ∪

{2.p | p ∈ |〈Q2,Rr
Q2
〉|c}. Let p ∈ |〈M ′

1,Rr
M ′

1
〉|c. Either

p = 0 then p ∈ |〈M ′
2,Rr

M ′
2
〉|c. Or p = 1.p′ such that p′ ∈

|〈λx.P ′1,Rr
λx.P ′

1
〉|c ⊆ |〈λx.P ′2,Rr

λx.P ′
2
〉|c. So p ∈ |〈M ′

2,Rr
M ′

2
〉|c.

Or p = 2.p′ such that p′ ∈ |〈Q1,Rr
Q1
〉|c ⊆ |〈Q2,Rr

Q2
〉|c. So

p ∈ |〈M ′
2,Rr

M ′
2
〉|c.

– Or p1 = 2.p′1 such that p′1 ∈ Rr
Q1

and so 2.|〈Q1, p′1〉|c = |〈M1, p1〉|c =
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|〈M2, p2〉|c. Because p2 ∈ Rr
M2

, we obtain p2 = 2.p′2 such
that |〈Q1, p′1〉|c = |〈Q2, p′2〉|c. Hence, M1 = (λx.P1)Q1

p1→r

(λx.P1)Q′
1 = M ′

1 and M2 = (λx.P2)Q2
p2→r (λx.P2)Q′

2 = M ′
2

such that Q1
p′
1→r Q′

1 and Q2
p′
2→r Q′

2. By IH, |〈Q′
1,Rr

Q′
1
〉|c ⊆

|〈Q′
2,Rr

Q′
2
〉|c. Since M1,M2 ∈ Mc, by lemma 2.10, M ′

1,M
′
2 ∈

Mc. By lemma 2.5 and lemma 2.8, Rr
M ′

1
= {0} ∪ {1.p | p ∈

Rr
λx.P1

} ∪ {2.p | p ∈ Rr
Q′

1
} and Rr

M ′
2

= {0} ∪ {1.p | p ∈
Rr

λx.P2
} ∪ {2.p | p ∈ Rr

Q′
2
}, so |〈M ′

1,Rr
M ′

1
〉|c = {0} ∪ {1.p |

p ∈ |〈P1,Rr
P1
〉|c} ∪ {2.p | p ∈ |〈Q′

1,Rr
Q′

1
〉|c} and |〈M ′

2,Rr
M ′

2
〉|c =

{0} ∪ {1.p | p ∈ |〈λx.P2,Rr
λx.P2

〉|c} ∪ {2.p | p ∈ |〈Q′
2,Rr

Q′
2
〉|c}.

Let p ∈ |〈M ′
1,Rr

M ′
1
〉|c. Either p = 0 ∈ |〈M ′

2,Rr
M ′

2
〉|c. Or

p = 1.p′ such that p′ ∈ |〈λx.P1,Rr
λx.P1

〉|c ⊆ |〈λx.P2,Rr
λx.P2

〉|c.
So p ∈ |〈M ′

2,Rr
M ′

2
〉|c. Or p = 2.p′ such that p′ ∈ |〈Q′

1,Rr
Q′

1
〉|c ⊆

|〈Q′
2,Rr

Q′
2
〉|c. So p ∈ |〈M ′

2,Rr
M ′

2
〉|c.

• Let M2 = cN2 ∈Mc = Ληc such that N2 ∈ Ληc. So |N2|c = |M2|c =
|M1|c. By lemma 2.7.5, Rβη

M2
= {2.p | p ∈ Rβη

N2
} and |〈M1,Rβη

M1
〉|c ⊆

|〈M2,Rβη
M2
〉|c =2.13 |〈N2,Rβη

N2
〉|c. Because p2 ∈ Rβη

M2
, we obtain p2 =

2.p′2 such that p′2 ∈ R
βη
N2

. So, M2 = cN2
p2→βη cN

′
2 = M ′

2 such that

N2
p′
2→βη N

′
2. Since |〈N2, p′2〉|c =2.14 |〈M2, p2〉|c = |〈M1, p1〉|c, by IH,

|〈M ′
1,R

βη
M ′

1
〉|c ⊆ |〈N ′

2,R
βη
N ′

2
〉|c =2.13 |〈M ′

2,R
βη
M ′

2
〉|c.

7. Let M1 = cN1 ∈ Mc = Ληc such that N1 ∈ Ληc. So |N1|c = |M1|c =
|M2|c. By lemma 2.7.5, Rβη

M1
= {2.p | p ∈ Rβη

N1
} and |〈N1,Rβη

N1
〉|c =2.13

|〈M1,Rβη
M1
〉|c ⊆ |〈M2,Rβη

M2
〉|c. Because p1 ∈ Rβη

M1
, we obtain p1 = 2.p′1

such that p′1 ∈ R
βη
N1

. So, M1 = cN1
p1→βη cN

′
1 = M ′

1 such that N1
p′
1→βη N

′
1.

Because |〈N1, p′1〉|c =2.14 |〈M1, p1〉|c = |〈M2, p2〉|c, by IH, |〈M ′
1,R

βη
M ′

1
〉|c =2.13

|〈N ′
1,R

βη
N ′

1
〉|c ⊆ |〈M ′

2,R
βη
M ′

2
〉|c.

B Proofs of section 5

Lemma 5.2. 1. (a) By induction on the structure of M ∈ ΛI.

• Let M = x 6= c. Then Φc(x,F) = x, F = ∅ and fv(x) =
fv(x) \ {c}.

• Let M = λx.N such that x 6= c and F ′ = {p | 1.p ∈ F} ⊆
RβI

N . Then, fv(M) = fv(N) \ {x} =IH fv(Φc(N,F ′)) \ {c, x} =
fv(λx.Φc(N,F ′)) \ {c} = fv(Φc(M,F)) \ {c}.

• Let M = M1M2, F1 = {p | 1.p ∈ F} ⊆ RβI
M1

and F2 = {p |
2.p ∈ F} ⊆ RβI

M2
.

– If 0 ∈ F then, Φc(M,F) = Φc(M1,F1)Φc(M2,F2).
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– Else, Φc(M,F) = cΦc(M1,F1)Φc(M2,F2).
In both cases, fv(M) = fv(M1) ∪ fv(M2) =IH (fv(Φc(M1,F1)) \
{c}) ∪ (fv(Φc(M2,F2)) \ {c}) = fv(Φc(M,F)) \ {c}.

(b) By induction on the structure of M ∈ ΛI.

• Let M ∈ V, then M 6= c. So F = ∅ and Φc(M,F) = M ∈ ΛIc.
• Let M = λx.N such that x 6= c and F ′ = {p | 1.p ∈ F} ⊆ RβI

N .
By IH, Φc(N,F ′) ∈ ΛIc. By lemma 5.2.1a, x ∈ fv(Φc(N,F ′)).
Hence, Φc(M,F) = λx.Φc(N,F ′) ∈ ΛIc.

• Let M = M1M2, F1 = {p | 1.p ∈ F} ⊆ RβI
M1

and F2 = {p |
2.p ∈ F} ⊆ RβI

M2
.

– If 0 ∈ F then Φc(M,F) = Φc(M1,F1)Φc(M2,F2). By IH,
Φc(M1,F1),Φc(M2,F2) ∈ ΛIc and as M1 is a λ-abstraction,
Φc(M1,F1) is a λ-abstraction. Hence Φc(M,F) ∈ ΛIc.

– Else, Φc(M,F) = cΦc(M1,F1)Φc(M2,F2). By IH, Φc(M1,F1),Φc(M2,F2) ∈
ΛIc, hence, Φc(M,F) ∈ ΛIc.

(c) By induction on the structure of M ∈ ΛI.

• Let M = x 6= c. Then, F = ∅ and Φc(x,F) = x = |x|c.
• Let M = λx.N such that x 6= c and F ′ = {p | 1.p ∈ F} ⊆ RβI

N .
Then, |Φc(M,F)|c = |λx.Φc(N,F ′)|c = λx.|Φc(N,F ′)|c =IH

λx.N .
• Let M = M1M2, F1 = {p | 1.p ∈ F} ⊆ RβI

M1
and F2 = {p |

2.p ∈ F} ⊆ RβI
M2

.
– If 0 ∈ F thenM1 is a λ-abstraction, hence, Φc(M1,F1) is a λ-

abstraction. So, |Φc(M,F)|c = |Φc(M1,F1)Φc(M2,F2)|c =
|Φc(M1,F1)|c|Φc(M2,F2)|c =IH M1M2 = M .

– Else, |Φc(M,F)|c = |cΦc(M1,F1)Φc(M2,F2)|c = |Φc(M1,F1)|c|Φc(M2,F2)|c =IH

M1M2 = M .

(d) By induction on the structure of M ∈ ΛI.

• If M = x 6= c then Φc(M,F) = M and F = ∅ =2.5 |〈M,RβI
M 〉|c.

• Let M = λx.N such that x 6= c and F ′ = {p | 1.p ∈ F} ⊆ RβI
N .

Then F =2.6 {1.p | p ∈ F ′} =IH {1.p | p ∈ |〈Φc(N,F ′),RβI
Φc(N,F ′)〉|

c} =

{1.|〈Φc(N,F ′), p〉|c | p ∈ RβI
Φc(N,F ′)} = {|〈Φc(M,F), 1.p〉|c | p ∈

RβI
Φc(N,F ′)} =2.5 |〈Φc(M,F),RβI

Φc(M,F)〉|
c.

• Let M = M1M2, F1 = {p | 1.p ∈ F} ⊆ RβI
M1

and F2 = {p |
2.p ∈ F} ⊆ RβI

M2
.

– If 0 ∈ F then Φc(M,F) = Φc(M1,F1)Φc(M2,F2). Since M1

is a λ-abstraction then Φc(M1,F1) too. By lemma 5.2.1b,
Φc(M,F) ∈ ΛIc then Φc(M,F) ∈ RβI . Hence, F =2.6

{0} ∪ {1.p | p ∈ F1} ∪ {2.p | p ∈ F2} =IH {0} ∪ {1.p | p ∈
|〈Φc(M1,F1),RβI

Φc(M1,F1)
〉|c}∪{2.p | p ∈ |〈Φc(M2,F2),RβI

Φc(M2,F2)
〉|c} =
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{0}∪{1.|〈Φc(M1,F1), p〉|c | p ∈ RβI
Φc(M1,F1)

}∪{2.|〈Φc(M2,F2), p〉|c |
p ∈ RβI

Φc(M2,F2)
} = {0}∪{|〈Φc(M,F), 1.p〉|c | p ∈ RβI

Φc(M1,F1)
}∪

{|〈Φc(M,F), 2.p〉|c | p ∈ RβI
Φc(M2,F2)

} =2.5 |〈Φc(M,F),RβI
Φc(M,F)〉|

c.

– Else, Φc(M,F) = cΦc(M1,F1)Φc(M2,F2). Then, F =2.6

{1.p | p ∈ F1}∪{2.p | p ∈ F2} =IH {1.p | p ∈ |〈Φc(M1,F1),RβI
Φc(M1,F1)

〉|c}∪
{2.p | p ∈ |〈Φc(M2,F2),RβI

Φc(M2,F2)
〉|c} = {1.|〈Φc(M1,F1), p〉|c |

p ∈ RβI
Φc(M1,F1)

} ∪ {2.|〈Φc(M2,F2), p〉|c | p ∈ RβI
Φc(M2,F2)

} =

{|〈Φc(M,F), 1.2.p〉|c | p ∈ RβI
Φc(M1,F1)

}∪{|〈Φc(M,F), 2.p〉|c |
p ∈ RβI

Φc(M2,F2)
} =2.5 |〈Φc(M,F),RβI

Φc(M,F)〉|
c.

2. (a) By induction on the construction ofM ∈ ΛIc. By lemma 2.21, |M |c ∈
ΛI

• Let M ∈ V \{c}. Hence |M |c = M , by lemma 2.5, |〈M,RβI
M 〉|c =

∅ = RβI
|M |c and M = Φc(|M |c, |〈M,RβI

M 〉|c).
• Let M = λx.P such that x 6= c, P ∈ ΛIc and x ∈ fv(P ).

Then, |M |c = λx.|P |c. By IH, |〈P,RβI
P 〉|c ⊆ RβI

|P |c and P =

Φc(|P |c, |〈P,RβI
P 〉|c). Hence, |〈M,RβI

M 〉|c =2.5 {|〈M, 1.p〉|c | p ∈
RβI

P } = {1.p | p ∈ |〈P,RβI
P 〉|c} ⊆ {1.p | p ∈ RβI

|P |c} =2.5 RβI
|M |c .

Moreover, M = Φc(|M |c, |〈M,RβI
M 〉|c).

• Let M = cPQ where P,Q ∈ ΛIc then |M |c = |P |c|Q|c. By IH,
|〈P,RβI

P 〉|c ⊆ RβI
|P |c , |〈Q,R

βI
Q 〉|c ⊆ RβI

|Q|c , P = Φc(|P |c, |〈P,RβI
P 〉|c)

andQ = Φc(|Q|c, |〈Q,RβI
Q 〉|c). Hence, |〈M,RβI

M 〉|c =2.5 {|〈M, 1.2.p〉|c |
p ∈ RβI

P }∪{|〈M, 2.p〉|c | pRβI
Q } = {1.p | p ∈ |〈P,RβI

P 〉|c}∪{2.p |
p ∈ |〈Q,RβI

Q 〉|c} ⊆ {1.p | p ∈ RβI
|P |c} ∪ {2.p | p ∈ RβI

|Q|c} ⊆
2.5

RβI
|M |c . Moreover M = Φc(|M |βI , |〈M,RβI

M 〉|c).
• Let M = PQ where P,Q ∈ ΛIc and P is a λ-abstraction.

Then, |M |c = |P |c|Q|c, where |P |c is a λ-abstraction. By IH,
|〈P,RβI

P 〉|c ⊆ RβI
|P |c , |〈Q,R

βI
Q 〉|c ⊆ RβI

|Q|c , P = Φc(|P |c, |〈P,RβI
P 〉|c)

and Q = Φc(|Q|c, |〈Q,RβI
Q 〉|c). Hence, |〈M,RβI

M 〉|c =2.5 {0} ∪
{|〈M, 1.p〉|c | p ∈ RβI

P } ∪ {|〈M, 2.p〉|c | p ∈ RβI
Q } = {0} ∪

{1.p | p ∈ |〈P,RβI
P 〉|c} ∪ {2.p | p ∈ |〈Q,RβI

Q 〉|c} ⊆ {0} ∪ {1.p |
p ∈ RβI

|P |c} ∪ {2.p | p ∈ RβI
|Q|c} =2.5 RβI

|M |c . Moreover M =

Φc(|M |βI , |〈M,RβI
M 〉|c).

(b) By lemma 2.21, |M |c ∈ ΛI. By lemma 2.19 c 6∈ fv(|M |c). By
lemma 5.2.2a, |〈M,RβI

M 〉|c ⊆ RβI
|M |c and M = Φc(|M |c, |〈M,RβI

M 〉|c).
To prove unicity, assume that 〈N ′,F ′〉 is another such pair. So F ′ ⊆
RβI

N ′ and M = Φc(N ′,F ′). Then, |M |c = |Φc(N ′,F ′)|c =5.2.1c N ′

and F ′ =5.2.1d |〈Φc(N ′,F ′),RβI
Φc(N ′,F ′)〉|

c = |〈M,RβI
M 〉|c.
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Lemma 5.3. By lemma 5.2.1c and lemma 2.16, there exists a unique p′ ∈
RβI

Φc(M,F), such that |〈RβI
Φc(M,F), p

′〉|c = p. By lemma 2.2.8, there exists P

such that Φc(M,F)
p′

→βI P . By lemma 2.22, M =5.2.1c |Φc(M,F)|c p0→βI |P |c,
such that |〈RβI

Φc(M,F), p
′〉|c = p0. So p = p0 and by lemma 2.2.9, M ′ = |P |c. Let

F ′ = |〈P,RβI
P 〉|c. Because, Φc(M,F)

p′

→βI P , by lemma 2.10 and lemma 5.2.1b,
P ∈ ΛIc. By lemma 5.2.2a, P = Φc(M ′,F ′) and F ′ ⊆ RβI

M ′ . By lemma 5.2.2b,
F ′ is unique.

Lemma 5.6. It sufficient to prove:

〈M,F〉 →βId 〈M ′,F ′〉 ⇐⇒ Φc(M,F) →βI Φc(M ′,F ′)

• ⇒) let 〈M,F〉 →βId 〈M ′,F ′〉. Then by definition 5.5, there exists p ∈ F
such that M

p→βI M
′ and F ′ is the set of βI-residuals in M ′ of the set of

redexes F in M relative to p. By definition 5.4 we obtain Φc(M,F) →βI

Φc(M ′,F ′).

• ⇐) Let Φc(M,F) →βI Φc(M ′,F ′) then by lemma 2.2.8, there exists
pRβI

Φc(M,F) such that Φc(M,F)
p→βI Φc(M ′,F ′). Because, by lemma 5.2.1b,

Φc(M,F) ∈ ΛIc, by lemma 2.22 and lemma 5.2.1c, M = |Φc(M,F)|c p0→βI

|Φc(M ′,F ′)|c = M ′ such that |〈Φc(M,F), p0〉|c = p. By definition 5.4, F ′

is the set of βI-residuals in M ′ of the set of redexes F in M relative to
p0. By definition 5.5 we obtain 〈M,F〉 →βd 〈M ′,F ′〉.

Lemma 5.7. By lemma 5.2.1b, Φc(M,F1),Φc(M,F2) ∈ ΛIc. By lemma 5.2.1c,
|Φc(M,F1)|c = |Φc(M,F2)|c. By lemma 5.2.1d, |〈Φc(M,F1),RβI

Φc(M,F1)
〉|c =

F1 ⊆ F2 = |〈Φc(M,F2),RβI
Φc(M,F2)

〉|c.
If 〈M,F1〉 →βId 〈M ′,F ′

1〉 then by lemma 5.6, Φc(M,F1) →βI Φc(M ′,F ′
1).

By lemma 2.2.8, there exists p1 ∈ RβI
Φc(M,F1)

such that Φc(M,F1)
p1→βI Φc(M ′,F ′

1).

Let p0 = |〈RβI
Φc(M,F1)

, p1〉|c, so by lemma 5.2.1d, p0 ∈ F1. By lemma 2.22 and

lemma 5.2.1c, M
p0→βI M

′.

By lemma 5.3 there exists a unique set F ′ ⊆ RβI
M ′ , such that Φc(M,F1)

p′

→βI

Φc(M ′,F ′) and |〈Φc(M,F1), p′〉|c = p0. By lemma 2.2.8, p′ ∈ RβI
Φc(M,F1)

. Since

p′, p1 ∈ RβI
Φc(M,F1)

, by lemma 2.16, p′ = p1. So, by lemma 2.2.9, Φc(M ′,F ′) =

Φc(M ′,F ′
1). By lemma 5.2.1d, F ′ = F ′

1 and F ′
1 = |〈Φc(M ′,F ′

1),R
βI
Φc(M ′,F ′

1)
〉|c.

By lemma 5.3 there exists a unique set F ′
2 ⊆ RβI

M ′ , such that Φc(M,F2)
p2→βI

Φc(M ′,F ′
2) and |〈Φc(M,F2), p2〉|c = p0. By lemma 2.2.8, p2 ∈ Φc(M,F2). By

lemma 5.2.1d, F ′
2 = |〈Φc(M ′,F ′

2),R
βI
Φc(M ′,F ′

2)
〉|c.

Hence, by lemma 2.24, F ′
1 ⊆ F ′

2 and by lemma 5.6, 〈M,F2〉 →βId 〈M ′,F ′
2〉.

Lemma 5.9. 1. By induction on Γ `βI M : σ. 2. By induction on Γ `βη M : σ.
3. First prove (*): if Γ `r M : σ, and σ v σ′ then Γ `r M : σ′ by induction on

79



σ v σ′. Then, do the proof of 3. by induction on Γ `r M : σ. For the latter we
do:

• Case (ax): If Γ, x : σ `βη x : σ, Γ′, x : σ′ v Γ, x : σ and σ v σ′′ then σ′ v σ
and so σ′ v σ′′. By (ax) Γ′, x : σ′ `βη x : σ′. By (*), Γ′, x : σ′ `βη x : σ′′.

• Case (→EI ): If Γ`βIM :σ→τ ∆`βIN :σ
Γu∆`βIMN :τ

, Γ = Γ1,Γ2, ∆ = ∆1,∆2, Γ u ∆ =
Γ3,Γ2,∆2, Γ′ = Γ′3,Γ

′
2,∆

′
2 v Γ where, Γ1 = (xi : σi)n, Γ2 = (yj , τj)m,

Γ3 = (xi : σi∩σ′i)n, ∆1 = (xi : σ′i)n, ∆2 = (zl, ρl)k, dom(Γ2)∩dom(∆2) =
∅, Γ′3 = (xi : σi)n, Γ′2 = (yj , τ j)m, ∆′

2 = (zl, ρl)k, σi v σi∩σ′i, τj v τj and
ρl v ρl then Γ′3,Γ

′
2 v Γ and Γ′3,∆

′
2 v ∆. By IH, Γ′3,Γ

′
2 `βI M : σ → τ

and Γ′3,∆
′
2 `βI N : σ, so by (→EI ), Γ′3 u Γ′3,Γ

′
2,∆

′
2 `βI MN : τ . By (*),

and since Γ′3 u Γ′3 = Γ′3, we have: Γ′3,Γ
′
2,∆

′
2 `βI MN : τ .

Lemma 5.10. When M →∗
r N and M →∗

r P , we write M →∗
r {N,P}.

1. By induction on σ ∈ Type1.

• If σ ∈ A then CRr
0 ⊆ CRr = JσKr.

• If σ = τ ∩ρ then by IH, CRr
0 ⊆ JτKr, JρKr ⊆ CRr, so CRr

0 ⊆ Jτ ∩ρKr ⊆
CRr.

• If σ = τ → ρ then by IH, CRr
0 ⊆ JτKr, JρKr ⊆ CRr and JσKr ⊆ CRr by

definition. Let M ∈ CRr
0, so M = xN1 . . . Nn such that n ≥ 0 and

N1, . . . , Nn ∈ CRr. Let P ∈ JτKr so P ∈ CRr, hence, MP ∈ CRr
0 ⊆

JρKr and M ∈ JσKr.

2. LetM [x := N ]N1 . . . Nn ∈ CRβI where n ≥ 0, x ∈ fv(M) and (λx.M)NN1 . . . Nn →∗
βI

{M1,M2}. By lemma 2.2.7, there exist M ′
1 andM ′

2 such that M1 →∗
βI M

′
1,

M [x := N ]N1 . . . Nn →∗
βI M

′
1, M2 →∗

βI M
′
2 and M [x := N ]N1 . . . Nn →∗

βI

M ′
2. Then we conclude using M [x := N ]N1 . . . Nn ∈ CRβI .

3. LetM [x := N ]N1 . . . Nn ∈ CRβη where n ≥ 0 and (λx.M)NN1 . . . Nn →∗
βη

{M1,M2}. By lemma 2.2.7, there existM ′
1 andM ′

2 such thatM1 →∗
βη M

′
1,

M [x := N ]N1 . . . Nn →∗
βη M

′
1, M2 →∗

βη M
′
2 and M [x := N ]N1 . . . Nn →∗

βη

M ′
2. Then we conclude using M [x := N ]N1 . . . Nn ∈ CRβη.

4. By induction on σ.

• If σ ∈ A, then the statement is true by 2.
• If σ = τ ∩ ρ, then by IH, JτKβI and JρKβI are I-saturated. Let M ,
N , N1,. . ., Nn ∈ Λ, x ∈ fv(M), n ≥ 0, and M [x := N ]N1 . . . Nn ∈
JσKβI = JτKβI ∩ JρKβI . Then by I-saturation, (λx.M)NN1 . . . Nn ∈
JτKβI and (λx.M)NN1 . . . Nn ∈ JρKβI . Done.

• If σ = τ → ρ, then by IH, JτKβI and JρKβI are I-saturated. Let n ≥ 0,
M,N,N1, . . . , Nn ∈ Λ, x ∈ fv(M), and M [x := N ]N1 . . . Nn ∈ JσKβI .
Let P ∈ JτKβI 6= ∅, then M [x := N ]N1 . . . NnP ∈ JρKβI . By I-
saturation, (λx.M)NN1 . . . NnP ∈ JρKβI so (λx.M)NN1 . . . Nn ∈
JτKβI ⇒ JρKβI . Since, M [x := N ]N1 . . . Nn ∈ JσKβI ⊆ CRβI and
CRβI is saturated by 2, then (λx.M)NN1 . . . Nn ∈ CRβI .
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5. By induction on σ.

• If σ ∈ A, then the statement is true by 3.

• If σ = τ ∩ ρ, then by IH, JτKβη and JρKβη are saturated.
Let M [x := N ]N1 . . . Nn ∈ JσKβη = JτKβη ∩ JρKβη. Then by satu-
ration, (λx.M)NN1 . . . Nn ∈ JτKβη and (λx.M)NN1 . . . Nn ∈ JρKβη.
Done.

• If σ = τ → ρ, then by IH, JτKβη and JρKβη are saturated. Let n ≥ 0,
M,N,N1, . . . , Nn ∈ Λ, x ∈ V, and M [x := N ]N1 . . . Nn ∈ JσKβη. Let
P ∈ JτKβη 6= ∅, then M [x := N ]N1 . . . NnP ∈ JρKβη. By saturation,
(λx.M)NN1 . . . NnP ∈ JρKβη so (λx.M)NN1 . . . Nn ∈ JτKβη ⇒ JρKr.
Since, M [x := N ]N1 . . . Nn ∈ JσKβη ⊆ CRβη and CRβη is saturated
by 3, then (λx.M)NN1 . . . Nn ∈ CRβη.

Lemma 5.11. By induction on x1 : σ1, . . . , xn : σn `r M : σ.

• If the last rule is (ax) or (axI), use the hypothesis.

• If the last rule is (→EI ). Let Γ1 u Γ2 = (xi : σi ∩ σ′i)n, (yi : τi)p, (zi :
ρi)q such that Γ1 = (xi : σi)n, (yi : τi)p and Γ2 = (xi : σ′i)n, (zi : ρi)q.
Let ∀i ∈ {1, . . . , n}, Ni ∈ Jσi ∩ σ′iKβI so Ni ∈ JσiKβI and Ni ∈ Jσ′iKβI ,
∀i ∈ {1, . . . , p}, Pi ∈ JτiKβI and ∀i ∈ {1, . . . , q}, P ′i ∈ JρiKβI . So by IH,
M [(xi := Ni)n, (yi := Pi)p] ∈ Jσ → τKβI andN [(xi := Ni)n, (zi := P ′i )q] ∈
JσKβI . Hence, (MN)[(xi := Ni)n, (yi := Pi)p, (zi := P ′i )q] ∈ JτKβI .

• If the last rule is (→E). Let Γ = (xi : σi)n and ∀i ∈ {1, . . . , n}, Ni ∈
JσiKβη. So by IH, M [(xi := Ni)n] ∈ Jσ → τKβη and N [(xi := Ni)n] ∈
JσKβη. Hence, (MN)[(xi := Ni)n] ∈ JτKβη.

• If the last rule is (→I). Let Γ = (xi : σi)n and ∀i ∈ {1, . . . , n}, Ni ∈ JσiKr.
Let P ∈ JσKr 6= ∅. So by IH, M [(xi := Ni)n, x := P ] ∈ JτKr. Moreover
((λx.M)[(xi := Ni)n])P = (λx.M [(xi := Ni)n])P .

– For `βI , since x ∈ fv(M) by lemma 2.2.4, (λx.M [(xi := Ni)n]) →βI

M [(xi := Ni)n, x := P ] and since by lemma 5.10, JτKβI is I-saturated,
((λx.M)[(xi := Ni)n])P ∈ JτKβI .

– For `βη, (λx.M [(xi := Ni)n]) →β M [(xi := Ni)n, x := P ] and since
by lemma 5.10, JτKβη is saturated, ((λx.M)[(xi := Ni)n])P ∈ JτKβη.

So (λx.M)[(xi := Ni)n] ∈ JσKr ⇒ JτKr. Since x ∈ JσKr, M [(xi := Ni)n] ∈
JτKr ⊆ CRr, so λx.M [(xi := Ni)n] = (λx.M)[(xi := Ni)n] ∈ CRr.

• If the last rule is (∩I). Let Γ = (xi : σi)n and ∀i ∈ {1, . . . , n}, Ni ∈ JσiKr.
So by IH, M [(xi := Ni)n] ∈ JτKr and M [(xi := Ni)n] ∈ JρKr. So M [(xi :=
Ni)n] ∈ JσKr.

81



• If the last rule is (∩E1). Let Γ = (xi : σi)n and ∀i ∈ {1, . . . , n}, Ni ∈ JσiKr.
So by IH, M [(xi := Ni)n] ∈ Jσ ∩ τKr, so M [(xi := Ni)n] ∈ JσKr.

• If the last rule is (∩E2). Let Γ = (xi : σi)n and ∀i ∈ {1, . . . , n}, Ni ∈ JσiKr.
So by IH, M [(xi := Ni)n] ∈ Jσ ∩ τKr, so M [(xi := Ni)n] ∈ JτKr.

Lemma 5.13. By induction on M . Note that by Lemma 2.4, M 6= c.

• Let M = x 6= c. Then Γ = Γ1, x : τ , Γ′ = x : τ , Γ′ `βI x : τ and ∀σ,
Γ1, x : τ, c : σ `βη x : τ .

• Let M = λx.N ∈ ΛIc then by lemma 2.4, N ∈ ΛIc and x ∈ fv(N). ∀ρ:

– If c ∈ fv(M) then c ∈ fv(N) and by IH, ∃σ, τ where Γ′, x : ρ, c : σ `βI

N : τ , hence Γ′, c : σ `βI λx.N : ρ→ τ .

– If c 6∈ fv(M) then by IH, ∃τ where Γ′, x : ρ `βI N : τ , hence Γ′ `βI

λx.N : τ .

• Let M = λx.N ∈ Ληc then by lemma 2.4.11.11a, N ∈ Ληc. By IH, ∀ρ,
∃σ, τ such that Γ, x : ρ, c : σ `βη N : τ . Hence, Γ, c : σ `βη λx.N : τ .

• Let M = cNP where N,P ∈ ΛIc. Let Γ′1 = Γ � fv(N) and Γ′2 = Γ � fv(P ).
Note that Γ′ = Γ � fv(cNP ) = Γ′1 u Γ′2.

– If c 6∈ fv(N) ∪ fv(P ) then by IH, ∃τ1, τ2 such that Γ′1 `βI N : τ1 and
Γ′2 `βI P : τ2. Let ρ ∈ Type1 and σ = τ1 → τ2 → ρ. By (→EI

) twice,
Γ′1 u Γ′2, c : σ `βI cNP : ρ.

– If c ∈ fv(N) and c 6∈ fv(P ) then by IH, ∃σ1, τ1, τ2 such that Γ′1, c :
σ1 `βI N : τ1 and Γ′2 `βI P : τ2. Let ρ ∈ Type1 and let σ =
σ1 ∩ (τ1 → τ2 → ρ). By (axI) and (∩E), c : σ `βI c : τ1 → τ2 → ρ.
By lemma 5.9.3, Γ′1, c : σ `βI N : τ1. By (→EI

) twice, Γ′1 u Γ′2, c :
σ `βI cNP : ρ.

– If c ∈ fv(N)∩ fv(P ) then by IH, ∃σ1, σ2, τ1, τ2 such that Γ′1, c : σ1 `βI

N : τ1 and Γ′2, c : σ2 `βI N : τ2. Let ρ ∈ Type1 and let σ = σ1∩ (σ2∩
(τ1 → τ2 → ρ)). By (axI) and (∩E), c : σ `βI c : τ1 → τ2 → ρ. By
lemma 5.9.3, Γ′1, c : σ `βI N : τ1, and Γ′2, c : σ `βI P : τ2. By (→EI

)
twice, Γ′1 u Γ′2, c : σ `βI cNP : ρ.

• Let M = cNP where N,P ∈ Ληc. by IH, ∃σ1, σ2, τ1, τ2 such that Γ, c :
σ1 `βη N : τ1 and Γ, c : σ2 `βη N : τ2. Let ρ ∈ Type1 and let σ =
σ1 ∩ (σ2 ∩ (τ1 → τ2 → ρ)). By (axI) and (∩E), c : σ `βη c : τ1 → τ2 → ρ.
By lemma 5.9.3, Γ, c : σ `βη N : τ1, and Γ, c : σ `βη P : τ2. By (→EI

)
twice, Γ, c : σ `βη cNP : ρ.

• Let M = NP where N,P ∈ ΛIc and N = λx.N0. So N0 ∈ ΛIc and
x ∈ fv(N0). Let Γ′1 = Γ � fv(N) and Γ′2 = Γ � fv(P ). Note that Γ′ = Γ �
fv(NP ) = Γ′1 u Γ′2. By BC, x 6= c and x 6∈ fv(P ).
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– If c 6∈ fv(λx.N0) ∪ fv(P ) then by IH, ∃τ2 such that Γ′2 `βI P : τ2
and again by IH, ∃τ1 such that Γ′1, x : τ2 `βI N0 : τ1. By (→I) and
(→EI

), Γ′1 u Γ′2 `βI (λx.N0)P : τ1.
– If c ∈ fv(λx.N0) and c 6∈ fv(P ) then by IH, ∃τ2 such that Γ′2 `βI P :
τ2. Again by IH, ∃σ, τ1 such that Γ′1, c : σ, x : τ2 `βI N0 : τ1. By
(→I) and (→EI

), Γ′1 u Γ′2, c : σ `βI (λx.N0)P : τ1.
– If c ∈ fv(λx.N0) ∩ fv(P ), then by IH, ∃σ2, τ2 such that Γ′2, c : σ2 `βI

P : τ2 and again by IH, ∃σ1, τ1 such that Γ′1, c : σ1, x : τ2 `βI N0 : τ1.
By (→I), Γ′1, c : σ1 `βI λxN0 : τ2 → τ1. By (→EI

), Γ′1 u Γ′2, c :
σ1 ∩ σ2 `βI (λx.N0)P : τ1.

• LetM = NP whereN,P ∈ Ληc andN = λx.N0 then by lemma 2.4.11.11a,
N0 ∈ Ληc. By IH, ∃σ2, τ2 such that Γ, c : σ2 `βη P : τ2 and again
by IH, ∃σ1, τ1 such that Γ, c : σ1, x : τ2 `βη N0 : τ1. By (→I), Γ, c :
σ1 `βη λx.N0 : τ2 → τ1. Let σ = σ1 ∩ σ2. By Lemma 5.9.3, Γ, c :
σ `βη λx.N0 : τ2 → τ1 and Γ, c : σ `βη P : τ2. Hence, by (→E),
Γ, c : σ `βη (λx.N0)P : τ1.

• Let M = cN where N ∈ Ληc. By IH, ∃σ, τ such that Γ, c : σ `βη N : τ .
Let ρ ∈ Type1 and σ′ = σ ∩ (τ → ρ). By Lemma 5.9.3, Γ, c : σ′ `βη N : τ
and Γ, c : σ′ `βη c : τ → ρ. Hence, by (→E), Γ, c : σ′ `βη cN : ρ.

Lemma 5.14. If M F1→βId M1 and M
F2→βId M2, then there exists F ′′

1 ,F ′′
2

such that 〈M,F1〉 →∗
βId 〈M1,F ′′

1 〉 and 〈M,F2〉 →∗
βId 〈M2,F ′′

2 〉. By defini-
tions 5.4 and 5.5, F ′′

1 ⊆ RβI
M1

and F ′′
2 ⊆ RβI

M2
. Note that by definition 5.5

and lemma 2.2.4, M1,M2 ∈ ΛI. By lemma 5.7, there exist F ′′′
1 ⊆ RβI

M1
and

F ′′′
2 ⊆ RβI

M2
such that 〈M,F1∪F2〉 →∗

βId 〈M1,F ′′
1 ∪F ′′′

1 〉 and 〈M,F1∪F2〉 →∗
βId

〈M2,F ′′
2 ∪F ′′′

2 〉. By lemma 5.6, T →∗
βI T1 and T →∗

βI T2 where T = Φc(M,F1∪
F2), T1 = Φc(M1,F ′′

1 ∪F ′′′
1 ) and T2 = Φc(M2,F ′′

2 ∪F ′′′
2 ) . Since by lemma 5.2.1b,

T ∈ ΛIc and by lemma 5.13.1, T is typable in the type system DI, so T ∈
CRβI by corollary 5.12. So, by lemma 2.10.2, there exists T3 ∈ ΛIc, such
that T1 →∗

βI T3 and T2 →∗
βI T3. Let F3 = |〈T3,RβI

T3
〉|c and M3 = |T3|βI ,

then by lemma 5.2.2b, T3 = Φc(M3,F3). Hence, by lemma 5.6, 〈M1,F ′′
1 ∪

F ′′′
1 〉 →∗

βId 〈M3,F3〉 and 〈M2,F ′′
2 ∪ F ′′′

2 〉 →∗
βId 〈M3,F3〉, i.e. M1

F ′′
1 ∪F

′′′
1→ βId M3

and M2
F ′′

2 ∪F
′′′
2→ βId M3.

Lemma 5.16. Note that ∅ ⊆ RβI
M . We prove this statement by induction on

the structure of M .

• Let M ∈ V then Φc(M,∅) = M and RβI
M = ∅ by lemma 2.5.

• Let M = λx.N such that x 6= c then Φc(M,∅) = λx.Φc(N,∅). By IH,
RβI

Φc(N,∅) = ∅ and by lemma 2.5, RβI
Φc(M,∅) = ∅.

• LetM = M1M2 then Φc(M,∅) = cΦc(M1,∅)Φc(M2,∅). By IH,RβI
Φc(M1,∅) =

∅ and RβI
Φc(M2,∅) = ∅ and by lemma 2.5, RβI

Φc(M,∅) = ∅.
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Lemma 5.17. We prove the statement by induction on the structure of M .

• let M ∈ V, then Φc(M,∅) = M .

– Either M = x, then Φc(M,∅)[x := Φc(N,∅)] = Φc(N,∅) and by
lemma 5.16, RβI

Φc(N,∅) = ∅.

– Or M 6= x, then Φc(M,∅)[x := Φc(N,∅)] = M and by lemma 2.5,
RβI

M = ∅.

• Let M = λy.M ′ such that y 6= c then Φc(M,∅) = λy.Φc(M ′,∅). So,
RβI

Φc(M,∅)[x:=Φc(N,∅)] = RβI
λy.Φc(M ′,∅)[x:=Φc(N,∅)] such that y 6∈ fv(Φc(N,∅))∪

{x}. By IH,RβI
Φc(M ′,∅)[x:=Φc(N,∅)] = ∅. By lemma 2.5,RβI

Φc(M,∅)[x:=Φc(N,∅)] =
∅.

• LetM = M1M2 then Φc(M,∅) = cΦc(M1,∅)Φc(M2,∅). So,RβI
Φc(M,∅)[x:=Φc(N,∅)] =

RβI
cΦc(M1,∅)[x:=Φc(N,∅)]Φc(M2,∅)[x:=Φc(N,∅)]. By IH,RβI

Φc(M1,∅)[x:=Φc(N,∅)] =

RβI
Φc(M2,∅)[x:=Φc(N,∅)] = ∅ and by lemma 2.5, RβI

Φc(M,∅)[x:=Φc(N,∅)] =
∅.

Lemma 5.18. We prove the statement by induction on the structure of M .

• Let M ∈ V then by lemma 2.5, RβI
M = ∅.

• LetM = λx.N such that x 6= c then by lemma 2.5,RβI
M = {1.p | p ∈ RβI

N }.
Let p ∈ RβI

M , then p = 1.p′ such that p′ ∈ RβI
N . Then, Φc(M, {p}) =

λx.Φc(N, {p′}) By lemma 2.5, RβI
Φc(M,{p}) = {1.p | p ∈ RβI

Φc(N,{p′})}. So,

By lemma 2.2.8, if Φc(M, {p}) p0→βI P then p0 = 1.p1, P = λx.P ′ and
Φc(N, {p′}) p1→βI P

′. By IH, RβI
P ′ = ∅, so by lemma 2.5, RβI

P = ∅.

• Let M = M1M2.

– Let M ∈ RβI , then M1 = λx.M0 and by lemma 2.5, RβI
M = {0} ∪

{1.p | p ∈ RβI
M1
} ∪ {2.p | p ∈ RβI

M2
}.

∗ Either p = 0 then Φc(M, {0}) = Φc(M1,∅)Φc(M2,∅). By
lemma 5.16,RβI

Φc(M1,∅) = RβI
Φc(M2,∅) = ∅. Because Φc(M, {0}) →βI

M ′ then by definition there exists p0 such that Φc(M, {0}) p0→βI

M ′. By lemma 2.2.8, p0 ∈ RβI
Φc(M,{0}). Because Φc(M1,∅) =

λx.Φc(M0,∅) such that x 6= c, by lemma 2.5, we obtainRβI
Φc(M,{0}) =

{0} if Φc(M, {0}) ∈ RβI , RβI
Φc(M,{0}) = ∅ otherwise. So p0 and

Φc(M, {0}) ∈ RβI . Hence, M ′ = Φc(M0,∅)[x := Φc(M2,∅)]
and by lemma 5.17, RβI

Φc(M0,∅)[x:=Φc(M2,∅)] = ∅.

∗ Or p = 1.p′ such that p′ ∈ RβI
M1

. So, Φc(M, {p}) = cΦc(M1, {p′})Φc(M2,∅).
By lemma 5.16, RβI

Φc(M2,∅) = ∅. By lemma 2.5, RβI
Φc(M,{p}) =
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{1.2.p | p ∈ RβI
Φc(M1,{p′})}. So, By lemma 2.2.8, if Φc(M, {p}) p0→βI

M ′ then p0 = 1.2.p′0, p′0 ∈ RβI
Φc(M1,{p′}), M

′ = cM ′
1Φ

c(M2,∅)

and Φc(M1, {p′})
p′
0→βI M

′
1. By IH, RβI

M ′
1

= ∅ and by lemma 2.5,

RβI
M ′ = ∅.

∗ Or p = 2.p′ such that p′ ∈ RβI
M2

. So, Φc(M, {p}) = cΦc(M1,∅)Φc(M2, {p′}).
By lemma 5.16, RβI

Φc(M1,∅) = ∅. By lemma 2.5, RβI
Φc(M,{p}) =

{2.p | p ∈ RβI
Φc(M2,{p′})}. So, By lemma 2.2.8, if Φc(M, {p}) p0→βI

M ′ then p0 = 2.p′0, p′0 ∈ R
βI
Φc(M2,{p′}), M

′ = cΦc(M1,∅)M ′
2 and

Φc(M2, {p′})
p′
0→βI M ′

2. By IH, RβI
M ′

2
= ∅ and by lemma 2.5,

RβI
M ′ = ∅.

– Let M 6∈ RβI , then by lemma 2.5, RβI
M = {1.p | p ∈ RβI

M1
} ∪ {2.p |

p ∈ RβI
M2
}.

∗ Either p = 1.p′ such that p′ ∈ RβI
M1

. So, Φc(M, {p}) = cΦc(M1, {p′})Φc(M2,∅).
By lemma 5.16, RβI

Φc(M2,∅) = ∅. By lemma 2.5, RβI
Φc(M,{p}) =

{1.2.p | p ∈ RβI
Φc(M1,{p′})}. So, By lemma 2.2.8, if Φc(M, {p}) p0→βI

M ′ then p0 = 1.2.p′0, p′0 ∈ RβI
Φc(M1,{p′}), M

′ = cM ′
1Φ

c(M2,∅)

and Φc(M1, {p′})
p′
0→βI M

′
1. By IH, RβI

M ′
1

= ∅ and by lemma 2.5,

RβI
M ′ = ∅.

∗ Or p = 2.p′ such that p′ ∈ RβI
M2

. So, Φc(M, {p}) = cΦc(M1,∅)Φc(M2, {p′}).
By lemma 5.16, RβI

Φc(M1,∅) = ∅. By lemma 2.5, RβI
Φc(M,{p}) =

{2.p | p ∈ RβI
Φc(M2,{p′})}. So, By lemma 2.2.8, if Φc(M, {p}) p0→βI

M ′ then p0 = 2.p′0, p′0 ∈ R
βI
Φc(M2,{p′}), M

′ = cΦc(M1,∅)M ′
2 and

Φc(M2, {p′})
p′
0→βI M ′

2. By IH, RβI
M ′

2
= ∅ and by lemma 2.5,

RβI
M ′ = ∅.

Lemma 5.19. By lemma 2.2.8, p ∈ RβI
M . By lemma 5.3, there exists a unique set

F ′ ⊆ RβI
M ′ , such that Φc(M, {p}) →βI Φc(M ′,F ′). By lemma 5.18,RβI

Φc(M ′,F ′) =

∅, so |〈Φc(M ′,F ′),RβI
Φc(M ′,F ′)〉|

c = ∅ and by lemma 5.2.1d, F ′ = ∅. Finally,
by lemma 5.6, 〈M, {p}〉 →βId 〈M ′,∅〉.

Lemma 5.20. It is obvious that →∗
1I⊆→∗

βI . We only prove that →∗
βI⊆→∗

1I . Let
M,M ′ ∈ ΛI such that M →∗

βI M
′. We prove this claim by induction on the

length of M →∗
βI M

′.

• Let M = M ′ then it is done since 〈M,F〉 →∗
βId 〈M,F〉 for some F .
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• Let M →∗
βI M

′′ →βI M
′. By IH, M →∗

1I M
′′. By definition there exists

p such that M ′′ p→βI M
′ then by lemma 5.19 〈M ′′, {p}〉 →βId 〈M ′,∅〉, so

M ′′ →1I M
′. Hence M →∗

1I M
′′ →1I M

′.

Lemma 5.21. Let M ∈ ΛI and c be a variable such that c 6∈ fv(M). Assume
M →∗

βI M1 and M →∗
βI M2. Then by lemma 5.20, M →∗

1I M1 and M →∗
1I M2.

We prove the statement by induction on the length of M →∗
1I M1.

• Let M = M1. Hence M1 →∗
1I M2 and M2 →∗

1I M2.

• Let M →∗
1I M

′
1 →1I M1. By IH, ∃M ′

3,M
′
1 →∗

1I M
′
3 and M2 →∗

1I M
′
3. We

prove that ∃M3,M1 →∗
1I M3 and M ′

3 →1I M3, by induction on M ′
1 →∗

1I

M ′
3.

– let M ′
1 = M ′

3, hence M ′
3 →1I M1 and M1 →∗

1I M1.

– Let M ′
1 →∗

1I M
′′
3 →1I M

′
3. By IH, ∃M ′′′

3 ,M1 →∗
1I M

′′′
3 and M ′′

3 →1I

M ′′′
3 . By lemma 2.2.4, c 6∈ fv(M ′′

3 ). Since M ′′
3 →1I M

′
3 and M ′′

3 →1I

M ′′′
3 , by lemma 5.14, ∃M3,M

′
3 →1I M3 and M ′′′

3 →1I M3.

C Proofs of section 6

Lemma 6.3. 1. (a) By induction on the structure of M .

• Let M ∈ V \ {c}, then F =2.6 ∅ and Ψc
0(M,∅) = {M} =

{c0(M)} ⊆ Ψc(M,∅).
• Let M = λx.N such that x 6= c and F ′ = {p | 1.p ∈ F} ⊆2.6

Rβη
N .
– If 0 ∈ F then Ψc

0(M,F) = {λx.N ′ | N ′ ∈ Ψc
0(N,F ′)} =

{c0(λx.N ′) | N ′ ∈ Ψc
0(N,F ′)} ⊆ Ψc(M,F).

– Else Ψc
0(M,F) = {λx.N ′[x := c(cx)] | N ′ ∈ Ψc(N,F ′)} =

{c0(λx.N ′[x := c(cx)]) | N ′ ∈ Ψc(N,F ′)} ⊆ Ψc(M,F).
• Let M = NP , F1 = {p | 1.p ∈ F} ⊆2.6 Rβη

N and F2 = {p | 2.p ∈
F} ⊆2.6 Rβη

P .
– If 0 ∈ F then Ψc

0(M,F) = {N ′P ′ | N ′ ∈ Ψc
0(N,F1) ∧ P ′ ∈

Ψc
0(P,F2)} = {c0(N ′P ′) |N ′ ∈ Ψc

0(N,F1)∧P ′ ∈ Ψc
0(P,F2)}.

By IH, Ψc
0(P,F2) ⊆ Ψc(P,F2), so by definition, Ψc

0(M,F) ⊆
Ψc(M,F).

– Else Ψc
0(M,F) = {cN ′P ′ |N ′ ∈ Ψc(N,F1)∧P ′ ∈ Ψc

0(P,F2)}
= {c0(cN ′P ′) | N ′ ∈ Ψc(N,F1) ∧ P ′ ∈ Ψc

0(P,F2)}. By
IH, Ψc

0(P,F2) ∈ Ψc(P,F2), so by definition, Ψc
0(M,F) ⊆

Ψc(M,F).

(b) By induction on the structure of M .

• Let M ∈ V \{c}, then F = ∅, Ψc(M,F) = {cn(M) | n ≥ 0} and
∀N ∈ Ψc(M,F). fv(M) = {M} = fv(N) \ {c}.
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• Let M = λx.N such that x 6= x and F ′ = {p | 1.p ∈ F} ⊆ Rβη
N .

– If 0 ∈ F then Ψc(M,F) = {cn(λx.N ′) | n ≥ 0 ∧ N ′ ∈
Ψc

0(N,F ′)}. Let P ∈ Ψc(M,F), so ∃n ≥ 0 and N ′ ∈
Ψc

0(N,F ′) such that P = cn(λx.N ′). Hence, fv(M) = fv(N)\
{x} =IH,1a fv(N ′) \ {c, x} = fv(P ) \ {c}.

– Else Ψc(M,F) = {cn(λx.N ′[x := c(cx)]) | n ≥ 0 ∧ N ′ ∈
Ψc(N,F ′)}. Let P ∈ Ψc(M,F), so ∃n ≥ 0 and ∃N ′ ∈
Ψc(N,F ′) such that, P = cn(λx.N ′[x := c(cx)]). Hence,
fv(M) = fv(N) \ {x} =IH fv(N ′) \ {c, x} = fv(P ) \ {c}.

• Let M = M1M2, F1 = {p | 1.p ∈ F} ⊆ Rβη
M1

and F2 = {p |
2.p ∈ F} ⊆ Rβη

M2
.

– If 0 ∈ F then, Ψc(M,F) =
{cn(N ′P ′) | n ≥ 0 ∧ N ′ ∈ Ψc

0(M1,F1) ∧ P ′ ∈ Ψc(M2,F2)}.
Let P ∈ Ψc(M,F), so ∃n ≥ 0, N ′ ∈ Ψc

0(M1,F1) and P ′ ∈
Ψc(M2,F2) such that P = cn(N ′P ′).
Hence, fv(M) = fv(M1) ∪ fv(M2) =IH,1a (fv(N ′) \ {c}) ∪
(fv(P ′) \ {c}) = (fv(N ′) ∪ fv(P ′)) \ {c} = fv(P ) \ {c}.

– Else Ψc(M,F) = {cn(cN ′P ′) | n ≥ 0 ∧ N ′ ∈ Ψc(M1,F1) ∧
P ′ ∈ Ψc(M2,F2)}. Let P ∈ Ψc(M,F), so ∃n ≥ 0, N ′ ∈
Ψc(M1,F1) and P ′ ∈ Ψc(M2,F2) such that P = cn(cN ′P ′).
Hence, fv(M) = fv(M1) ∪ fv(M2) =IH (fv(N ′) ∪ fv(P ′)) \
{c} = fv(P ) \ {c}.

(c) By induction on the structure of M .

• If M ∈ V \ {c} then F = ∅ and Ψc(M,F) = {cn(M)|n ≥ 0}.
Use lemma 6.2.

• Let M = λx.N such that x 6= c and F ′ = {p | 1.p ∈ F} ⊆ Rβη
N .

– If 0 ∈ F , then N = Px such that x 6∈ fv(P ) and Ψc(M,F) =
{cn(λx.N ′) | n ≥ 0 ∧N ′ ∈ Ψc

0(N,F ′)}. Let F ′′ = {p | 1.p ∈
F ′} ⊆2.6 Rβη

P .
∗ If 0 ∈ F ′ then, Ψc

0(N,F ′) = {P ′x | P ′ ∈ Ψc
0(P,F ′′)}.

Let M ′ ∈ Ψc(M,F), so M ′ = cn(λx.P ′x) where n ≥ 0
and P ′ ∈ Ψc

0(P,F ′′). Since x 6∈ fv(P ), by lemmas 6.3.1b
and 6.3.1a, x 6∈ fv(P ′). By IH and lemma 6.3.1a, P ′, P ′x ∈
Ληc. By lemma 2.4, P ′ 6= c. Hence, by (R1).4, λx.P ′x ∈
Ληc. We conclude using lemma 6.2.

∗ Else Ψc
0(N,F ′) = {cP ′x | P ′ ∈ Ψc(P,F ′′)}. Let M ′ ∈

Ψc(M,F), so M ′ = cn(λx.cP ′x) where n ≥ 0 and P ′ ∈
Ψc(P,F ′′). Since x 6∈ fv(P ), by lemmas 6.3.1b, x 6∈ fv(P ′),
so x 6∈ fv(cP ′). By IH and lemma 6.3.1a, cP ′x ∈ Ληc.
Since cP ′ 6= c, by (R1).4, λx.cP ′x ∈ Ληc. We conclude
using lemma 6.2.

– Else Ψc(M,F) = {cn(λx.N ′[x := c(cx)]) | n ≥ 0 ∧ N ′ ∈
Ψc(N,F ′)}. Let N ′ ∈ Ψc(N,F ′) and n ≥ 0. Since by IH
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N ′ ∈ Ληc, by lemma 6.2 and (R1).3, cn(λx.N ′[x := c(cx)]) ∈
Ληc.

• Let M = NP , F1 = {p | 1.p ∈ F} ⊆ Rβη
N and F2 = {p | 2.p ∈

F} ⊆ Rβη
P .

– If 0 ∈ F then Ψc(M,F) = {cn(N ′P ′) | n ≥ 0 ∧ N ′ ∈
Ψc

0(N,F1)∧P ′ ∈ Ψc(P,F2)}. Let P = cn(N ′P ′) ∈ Ψc(M,F)
such that n ≥ 0, N ′ ∈ Ψc

0(N,F1) and P ′ ∈ Ψc(P,F2). By IH
and lemma 6.3.1a, N ′, P ′ ∈ Ληc. Since N is a λ-abstraction
then by definition N ′ too. Hence, by (R3), N ′P ′ ∈ Ληc. By
lemma 6.2, cn(N ′P ′) ∈ Ληc.

– Else Ψc(M,F) = {cn(cN ′P ′) | n ≥ 0∧N ′ ∈ Ψc(N,F1)∧P ′ ∈
Ψc(P,F2)}. Let cn(cN ′P ′) ∈ Ψc(M,F) such that n ≥ 0,
N ′ ∈ Ψc(N,F1) and P ′ ∈ Ψc(P,F2). By IH, N ′, P ′ ∈ Ληc.
Hence by (R2), cN ′P ′ ∈ Ληc and by lemma 6.2, cn(cN ′P ′) ∈
Ληc.

(d) We prove this lemma by case on the belonging of 0 in F . Let F ′ =
{p | 1.p ∈ F} ⊆ Rβη

N .

• If 0 ∈ F then Ψc
0(Nx,F) = {N ′x | N ′ ∈ Ψc

0(N,F ′)}. Hence,
P = N ′x such that N ′ ∈ Ψc

0(N,F ′). Since x 6∈ fv(N), by lem-
mas 6.3.1b and 6.3.1a, x 6∈ fv(N ′). So λx.P = λx.N ′x ∈ Rβη

and by lemma 2.5, Rβη
λx.P = {0} ∪ {1.p | p ∈ Rβη

P }.
• Else Ψc

0(Nx,F) = {cN ′x | N ′ ∈ Ψc(N,F ′)} and P = cN ′x such
that N ′ ∈ Ψc(N,F ′). Since x 6∈ fv(N), by lemmas 6.3.1b, x 6∈
fv(N ′) and so x 6∈ fv(cN ′). Since λx.cN ′x ∈ Rβη, by lemma 2.5,
Rβη

λx.P = {0} ∪ {1.p | p ∈ Rβη
P }.

(e) Let F1 = {p | 1.p ∈ F} ⊆ Rβη
N and F2 = {p | 2.p ∈ F} ⊆ Rβη

x =2.5

∅. We prove this lemma by case on the belonging of 0 in F .

• If 0 ∈ F then Ψc(Nx,F) = {cn(N ′Q) | n ≥ 0∧N ′ ∈ Ψc
0(N,F1)∧

Q ∈ Ψc(x,F2)}. So Px = cn(N ′Q) such that n ≥ 0, N ′ ∈
Ψc

0(N,F1) and Q ∈ Ψc(x,F2). So n = 0, N ′ = P and Q = x.
Since x ∈ Ψc

0(x,∅), Px ∈ Ψc
0(Nx,F).

• Else Ψc(Nx,F) = {cn(cN ′Q) | n ≥ 0 ∧ N ′ ∈ Ψc
0(N,F1) ∧ Q ∈

Ψc(x,F2)}. So Px = cn(cN ′Q) such that n ≥ 0, N ′ ∈ Ψc
0(N,F1)

and Q ∈ Ψc(x,F2). So n = 0, cN ′ = P and Q = x. Since
x ∈ Ψc

0(x,∅), Px ∈ Ψc
0(Nx,F).

(f) Easy by case on the structure of M and induction on n.

(g) By induction on the structure of M .

• Let M ∈ V\{c}. Then Ψc(M,F) = {cn(M) | n ≥ 0} and F = ∅.
Now, use lemma 2.12.

• Let M = λx.N such that x 6= c and F ′ = {p | 1.p ∈ F} ⊆ Rβη
N .

– If 0 ∈ F then Ψc(M,F) = {cn(λx.N ′) | n ≥ 0 ∧ N ′ ∈
Ψc

0(N,F ′)}. Let cn(λx.N ′) ∈ Ψc(M,F) where n ≥ 0 and
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N ′ ∈ Ψc
0(N,F ′). Then, |cn(λx.N ′)|c =2.12 |λx.N ′|c = λx.|N ′|c =IH,1a

λx.N .
– Else Ψc(M,F) = {cn(λx.N ′[x := c(cx)]) | n ≥ 0 ∧ N ′ ∈

Ψc(N,F ′)}. Let cn(λx.N ′[x := c(cx)]) ∈ Ψc(M,F) where
n ≥ 0 andN ′ ∈ Ψc(N,F ′). Then, |cn(λx.N ′[x := c(cx)])|c =2.12

|λx.N ′[x := c(cx)]|c = λx.|N ′[x := c(cx)]|c =2.17 λx.|N ′|c =IH

λx.N .
• Let M = M1M2, F1 = {p | 1.p ∈ F} ⊆ Rβη

M1
and F2 = {p |

2.p ∈ F} ⊆ Rβη
M2

.
– If 0 then Ψc(M,F) = {cn(N ′P ′) | n ≥ 0∧N ′ ∈ Ψc

0(M1,F1)∧
P ′ ∈ Ψc(M2,F2)}. Let cn(N ′P ′) ∈ Ψc(M,F) where n ≥ 0,
N ′ ∈ Ψc

0(M1,F1) and P ′ ∈ Ψc(M2,F2). Since M1 is a λ-
abstraction, by definition N ′ too. Then, |cn(N ′P ′)|c =2.12

|N ′P ′|c = |N ′|c|P ′|c =IH,1a M1M2.
– Else Ψc(M,F) = {cn(cP1P2) | n ≥ 0 ∧ P1 ∈ Ψc(M1,F1) ∧
P2 ∈ Ψc(M2,F2)}. Let cn(cP1P2) ∈ Ψc(M,F) where n ≥ 0,
P1 ∈ Ψc(M1,F1) and P2 ∈ Ψc(M2,F2). Then |cn(cP1P2)|c =2.12

|cP1P2|c = |cP1|c|P2|c = |P1|c|P2|c =IH M1M2.

(h) We prove the statement by induction on M .

• Let M ∈ V \{c}. Then Ψc(M,F) = {cn(x) | n ≥ 0} and F = ∅.
If P ∈ Ψc(M,F) then Rβη

P =2.7.5 ∅. Hence, F = |〈P,Rβη
P 〉|c.

• Let M = λx.N such that x 6= c and F ′ = {p | 1.p ∈ F} ⊆ Rβη
N .

– If 0 ∈ F then N = Px where x 6∈ fv(P ) and Ψc(M,F) =
{cn(λx.N ′) | n ≥ 0∧N ′ ∈ Ψc

0(N,F ′)}. LetN0 = cn(λx.N ′) ∈
Ψc(M,F) where n ≥ 0 andN ′ ∈ Ψc

0(N,F ′). Then, |〈N0,Rβη
N0
〉|c =

{|〈N0, p〉|c | p ∈ Rβη
N0
} =2.7.5 {|〈λx.N ′, p〉|c | p ∈ Rβη

λx.N ′} =1d

{0} ∪ {|〈λx.N ′, 1.p〉|c | p ∈ Rβη
N ′} = {0} ∪ {1.|〈N ′, p〉|c | p ∈

Rβη
N ′} = {0} ∪ {1.p | p ∈ |〈N ′,Rβη

N ′〉|c} =IH,1a {0} ∪ {1.p |
p ∈ F ′} =2.6 F .

– Else Ψc(M,F) = {cn(λx.P [x := c(cx)]) | n ≥ 0 ∧ P ∈
Ψc(N,F ′)}. Let N0 = cn(λx.P [x := c(cx)]) ∈ Ψc(M,F)
where n ≥ 0 and P ∈ Ψc(N,F ′). Then, |〈N0,Rβη

N0
〉|c =

{|〈N0, p〉|c | p ∈ Rβη
N0
} =2.7.5 {|〈λx.P [x := c(cx)], p〉|c |

p ∈ Rβη
λx.P [x:=c(cx)]} =2.7.3 {|〈λx.P [x := c(cx)], 1.p〉|c | p ∈

Rβη
P [x:=c(cx)]} =2.7.4 {|〈λx.P [x := c(cx)], 1.p〉|c | p ∈ Rβη

P } =

{1.|〈P [x := c(cx)], p〉|c | p ∈ Rβη
P } =2.18 {1.|〈P, p〉|c | p ∈

Rβη
P } = {1.p | p ∈ |〈P,Rβη

P 〉|c} =IH {1.p | p ∈ F ′} =2.6 F .

• Let M = M1M2, F1 = {p | 1.p ∈ F} ⊆ Rβη
M1

and F2 = {p |
2.p ∈ F} ⊆ Rβη

M2
.

– If 0 ∈ F then Ψc(M,F) = {cn(NP ) | n ≥ 0∧N ∈ Ψc
0(M1,F1)∧

P ∈ Ψc(M2,F2)}. Let N0 = cn(NP ) ∈ Ψc(M,F) where
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n ≥ 0, N ∈ Ψc
0(M1,F1) and P ∈ Ψc(M2,F2). Since M1 is

a λ-abstraction, by definition N too. Then, |〈N0,Rβη
N0
〉|c =

{|〈N0, p〉|c | p ∈ Rβη
cn(NP )} =2.7.5 {|〈NP, p〉|c | p ∈ Rβη

NP } =2.5

{0} ∪ {|〈NP, 1.p〉|c | p ∈ Rβη
N } ∪ {|〈NP, 2.p〉|c | p ∈ Rβη

P } =
{0} ∪ {1.|〈N, p〉|c | p ∈ Rβη

N } ∪ {2.|〈P, p〉|c | p ∈ Rβη
P } =

{0} ∪ {1.p | p ∈ |〈N,Rβη
N 〉|c} ∪ {2.p | p ∈ |〈P,Rβη

P 〉|c} =IH

{0} ∪ {1.p | p ∈ F1} ∪ {2.p | p ∈ F2} =2.6 F .
– Else Ψc(M,F) = {cn(cP1P2) | n ≥ 0 ∧ P1 ∈ Ψc(M1,F1) ∧
P2 ∈ Ψc(M2,F2)}. Let N0 = cn(cP1P2) ∈ Ψc(M,F) where
n ≥ 0, P1 ∈ Ψc(M1,F1) and P2 ∈ Ψc(M2,F2). Then,
|〈N0,Rβη

N0
〉|c = {|〈N0, p〉|c | p ∈ Rβη

N0
} =2.7.5 {|〈cP1P2, p〉|c |

p ∈ Rβη
cP1P2

} =2.5 {|〈cP1P2, 1.2.p〉|c | p ∈ Rβη
P1
}∪{|〈cP1P2, 2.p〉|c |

p ∈ Rβη
P2
} = {1.|〈P1, p〉|c | p ∈ Rβη

P1
} ∪ {2.|〈P2, p〉|c | p ∈

Rβη
P2
} = {1.p | p ∈ |〈P1,Rβη

P1
〉|c}∪{2.p | p ∈ |〈P2,Rβη

P2
〉|c} =IH

{1.p | p ∈ F1} ∪ {2.p | p ∈ F2} =2.6 F .

2. (a) By induction on the construction of M .

• Let M ∈ V\{c}. So |M |c = M , by lemma 2.5, Rβη
M = ∅ = Rβη

|M |c

and M ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c) = Ψc(M,∅) = {cn(M) | n ≥ 0}.

• Let M = λx.N [x := c(cx)] such that x 6= c and N ∈ Ληc.
Then, |M |c = λx.|N |c and |〈M,Rβη

M 〉|c = {|〈M, p〉|c | p ∈
Rβη

M } =2.7.3 {|〈M, 1.p〉|c | p ∈ Rβη
N [x:=c(cx)]} =2.7.4 {|〈M, 1.p〉|c |

p ∈ Rβη
N } =2.18 {1.|〈N, p〉|c | p ∈ Rβη

N } = {1.p | p ∈ |〈N,Rβη
N 〉|c} ⊆IH

{1.p | p ∈ Rβη
|N |c} =2.17 {1.p | p ∈ Rβη

|N [x:=c(cx)]|c} ⊆
2.5 Rβη

λx.|N [x:=c(cx)]|c =

Rβη
|λx.N [x:=c(cx)]|c .

We just proved that |〈M,Rβη
M 〉|c = {1.p | p ∈ |〈N,Rβη

N 〉|c}, so
0 6∈ |〈M,Rβη

M 〉|c and |〈N,Rβη
N 〉|c = {p | 1.p ∈ |〈M,Rβη

M 〉|c}. By
definition, Ψc(|M |c, |〈M,Rβη

M 〉|c) = {cn(λx.N ′[x := c(cx)]) | n ≥
0∧N ′ ∈ Ψc(|N |c, |〈N,Rβη

N 〉|c)}. By IH,N ∈ Ψc(|N |c, |〈N,Rβη
N 〉|c),

so M ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c).

• LetM = λx.Nx such that Nx ∈ Ληc, N 6= c and x 6∈ fv(N)∪{c}.
By lemma 2.4.7, N ∈ Ληc and by lemma 2.19, x 6∈ fv(|N |c).
|M |c = λx.|Nx|c = λx.|N |cx. SinceM, |M |c ∈ Rβη, by lemma 2.5,
Rβη

M = {0} ∪ {1.p | p ∈ Rβη
Nx}, so |〈M,Rβη

M 〉|c = {0} ∪ {1.p | p ∈
|〈Nx,Rβη

Nx〉|c} ⊆IH {0} ∪ {1.p | p ∈ Rβη
|Nx|c} = Rβη

|M |c .

We proved |〈Nx,Rβη
Nx〉|c = {p | 1.p ∈ |〈M,Rβη

M 〉|c} and 0 ∈
|〈M,Rβη

M 〉|c. By definition, Ψc(|M |c, |〈M,Rβη
M 〉|c) = {cn(λx.N ′) | n ≥

0∧N ′ ∈ Ψc
0(|Nx|c, |〈Nx,R

βη
Nx〉|c)}. By IH,Nx ∈ Ψc(|Nx|βη, |〈Nx,Rβη

Nx〉|c),
so by lemma 6.3.1e, Nx ∈ Ψc

0(|Nx|βη, |〈Nx,Rβη
Nx〉|c). Hence

M ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c).
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• Let M = cNP where N,P ∈ Ληc, so cN ∈ Ληc. |M |c =
|cN |c|P |c = |N |c|P |c. Because M, cN 6∈ Rβη, By lemma 2.5,
Rβη

M = {1.2.p | p ∈ Rβη
N } ∪ {2.p |∈ Rβη

P }. So |〈M,Rβη
M 〉|c =

{1.p | p ∈ |〈N,Rβη
N 〉|c} ∪ {2.p | p ∈ |〈P,Rβη

P 〉|c} ⊆IH {1.p | p ∈
Rβη
|N |c} ∪ {2.p | p ∈ R

βη
|P |c} ⊆

2.5 Rβη
|M |c .

We just proved that 0 6∈ |〈M,Rβη
M 〉|c and |〈N,Rβη

N 〉|c = {p |
1.p ∈ |〈M,Rβη

M 〉|c} and |〈P,Rβη
P 〉|c = {p | 2.p ∈ |〈M,Rβη

M 〉|c}.
By definition, Ψc(|M |c, |〈M,Rβη

M 〉|c) = {cn(cN ′P ′) | n ≥ 0 ∧
N ′ ∈ Ψc(|N |c, |〈N,Rβη

N 〉|c) ∧ P ′ ∈ Ψc(|P |c, |〈P,Rβη
P 〉|c)}. By IH,

N ∈ Ψc(|N |βη, |〈N,Rβη
N 〉|c) and P ∈ Ψc(|P |βη, |〈P,Rβη

P 〉|c), so
M ∈ Ψc(|M |c, |〈M,Rβη

M 〉|c).
• Let M = NP where N,P ∈ Ληc and N is a λ-abstraction. So by

definition |N |c is a λ-abstraction too and |M |c = |N |c|P |c. Since
M ∈ Rβη, By lemma 2.5, Rβη

M = {0} ∪ {1.p | p ∈ Rβη
N } ∪ {2.p |

p ∈ Rβη
P }. So |〈M,Rβη

M 〉|c = {0}∪{1.p | p ∈ |〈N,Rβη
N 〉|c}∪{2.p |

p ∈ |〈P,Rβη
P 〉|c} ⊆IH {0} ∪ {1.p | p ∈ Rβη

|N |c} ∪ {2.p | p ∈
Rβη
|P |c} =2.5 Rβη

|M |c .

We just proved that 0 ∈ |〈M,Rβη
M 〉|c, |〈N,Rβη

N 〉|c = {p | 1.p ∈
|〈M,Rβη

M 〉|c} and |〈P,Rβη
P 〉|c = {p | 2.p ∈ |〈M,Rβη

M 〉|c}. By
definition, Ψc(|M |c, |〈M,Rβη

M 〉|c) = {cn(N ′P ′) | n ≥ 0 ∧ N ′ ∈
Ψc

0(|N |c, |〈N,R
βη
N 〉|c) ∧ P ′ ∈ Ψc(|P |c, |〈P,Rβη

P 〉|c)}. By IH, N ∈
Ψc(|N |c, |〈N,Rβη

N 〉|c) and P ∈ Ψc(|P |c, |〈P,Rβη
P 〉|c), soN ∈ Ψc

0(|N |c, |〈N,R
βη
N 〉|c)

and M ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c).

• Let M = cN where N ∈ Ληc then |M |c = |N |c. By lemma 2.5,
Rβη

M = {2.p | p ∈ Rβη
N } so |〈M,Rβη

M 〉|c = |〈N,Rβη
N 〉|c ⊆IH

Rβη
|N |c = Rβη

|M |c .

By IH, N ∈ Ψc(|N |c, |〈N,Rβη
N 〉|c) = Ψc(|M |c, |〈M,Rβη

M 〉|c), so
by lemma 6.3.1f, M ∈ Ψc(|M |c, |〈M,Rβη

M 〉|c).

(b) By lemma 2.19, c 6∈ fv(|M |c). By lemma 6.3.2a, |〈M,Rβη
M 〉|c ⊆ Rβη

|M |c

and M ∈ Ψc(|M |c, |〈M,Rβη
M 〉|c). To prove unicity, assume that

〈N ′,F ′〉 is another such pair. So F ′ ⊆ Rβη
N ′ and M ∈ Ψc(N ′,F ′). By

lemma 6.3.1g, |M |c = N ′ and by lemma 6.3.1h, F ′ = |〈M,Rβη
M 〉|c.

Lemma 6.4. Let N1 ∈ Ψc(M,F). By lemma 6.3.1c, N1 ∈ Ληc. By lemma 6.3.1h
and lemma 2.16, there exists a unique p1 ∈ Rβη

N1
, such that |〈N1, p1〉|c = p.

By lemma 2.2.8, there exists N ′
1 such that N1

p1→βη N ′
1. By lemma 2.10,

N ′
1 ∈ Ληc. By lemma 2.22, |N1|c

p′
1→βη |N ′

1|c such that p′1 = |〈N1, p1〉|c = p.
By lemma 6.3.1g, M = |N1|c. So by lemma 2.2.9, M ′ = |N ′

1|c. Let F ′ =
|〈N ′

1,R
βη
N ′

1
〉|c. By lemma 6.3.2b, (M ′,F ′) is the one and only pair such that
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c 6∈ fv(M ′), F ′ ⊆ Rβη
M ′ and N ′

1 ∈ Ψc(M ′,F ′).
Let N2 ∈ Ψc(M,F). By lemma 6.3.1c, N2 ∈ Ληc. By lemma 6.3.1h

and lemma 2.16, there exists a unique p2 ∈ Rβη
N2

, such that |〈N2, p2〉|c = p.
By lemma 2.2.8, there exists N ′

2 such that N2
p2→βη N ′

2. By lemma 2.10,

N ′
2 ∈ Ληc. By lemma 2.22, |N2|c

p′
2→βη |N ′

2|c such that p′2 = |〈N2, p2〉|c = p.
By lemma 6.3.1g, M = |N2|c. So by lemma 2.2.9, M ′ = |N ′

2|c. Let F ′′ =
|〈N ′

2,R
βη
N ′

2
〉|c. By lemma 6.3.2b, (M ′,F ′′) is the one and only pair such that

c 6∈ fv(M ′), F ′′ ⊆ Rβη
M ′ and N ′

2 ∈ Ψc(M ′,F ′′).
Because N1, N2 ∈ Ψc(M,F), by lemma 6.3.1h, |〈N1,Rβη

N1
〉|c = |〈N2,Rβη

N2
〉|c

and by lemma 6.3.1g, |N1|c = |N2|c. Finally, by lemma 2.24, F ′ = |〈N ′
1,R

βη
N ′

1
〉|c =

|〈N ′
2,R

βη
N ′

2
〉|c = F ′′.

Lemma 6.15. Note that Ψc(M,F) 6= ∅. Then, it is sufficient to prove:

• 〈M,F〉 →∗
βηd 〈M ′,F ′〉 ⇒ ∀N ∈ Ψc(M,F). ∃N ′ ∈ Ψc(M ′,F ′). N →∗

βη N
′

by induction on the reduction 〈M,F〉 →∗
βηd 〈M ′,F ′〉.

– If 〈M,F〉 = 〈M ′,F ′〉 then it is done.

– Let 〈M,F〉 →βηd 〈M ′′,F ′′〉 →∗
βηd 〈M ′,F ′〉. By IH: ∀N ′′ ∈ Ψc(M ′′,F ′′). ∃N ′ ∈

Ψc(M ′,F ′). N →∗
βη N

′′. By definition 6.6, there exist p ∈ F such

that M
p→βη M ′′ and F ′′ is the set of βη-residuals in M ′′ of the

set of redexes F in M relative to p. By definition 6.5 we obtain:
∀N ∈ Ψc(M,F). ∃N ′′ ∈ Ψc(M ′′,F ′′). N →βη N

′′.

• ∃N ∈ Ψc(M,F). ∃N ′ ∈ Ψc(M ′,F ′). N →∗
βη N

′ ⇒ 〈M,F〉 →∗
βηd 〈M ′,F ′〉

by induction on the reduction N →∗
βη N

′ such that N ∈ Ψc(M,F) and
N ′ ∈ Ψc(M ′,F ′).

– If N = N ′ then by lemma 6.3.2b, M = M ′ and F = F ′.

– LetN →βη N
′′ →∗

βη N
′. By lemma 6.3.1c, N ∈ Ληc, so by lemma 2.10,

N ′′ ∈ Ληc. By lemma 6.3.2b, 〈|N ′′|c, |〈N ′′,Rβη
N ′′〉|c〉 is the one and

only pair such that c 6∈ FV (|N ′′|c), |〈N ′′,Rβη
N ′′〉|c ⊆ Rβη

|N ′′|c and N ′′ ∈
Ψc(|N ′′|c, |〈N ′′,Rβη

N ′′〉|c). So by IH, 〈|N ′′|c, |〈N ′′,Rβη
N ′′〉|c〉 →∗

βηd 〈M ′,F ′〉.
By definition, there exists p such thatN

p→βη N
′′ and by lemma 2.2.8,

p ∈ Rβη
N . By lemmas 2.22 and lemma 6.3.1g, M = |N |c p0→βη |N ′′|c

such that |〈N, p〉|c = p0. So by lemma 2.2.8, p0 ∈ Rβη
M . By def-

inition 6.5, there exists a unique F ′ ⊆ Rβη
|N ′′|c , such that for all

P ∈ Ψc(M,F), there exist P ′ ∈ Ψc(|N ′′|c,F ′) and p′0 ∈ Rβη
P such

that P
p′
0→βη P

′ and |〈P, p′0〉|c = p0 = |〈N, p〉|c. Moreover, F ′ is called
the set of βη-residuals in |N ′′|c of the set of redexes F in M relative
to |〈N, p〉|c. Since N ∈ Ψc(M,F), there exist P ′ ∈ Ψc(|N ′′|c,F ′)

and p′ ∈ Rβη
N such that N

p′

→βη P ′ and |〈N, p′〉|c = |〈N, p〉|c. By
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lemma 2.16, p = p′, so by lemma 2.2.9, P ′ = N ′′. Since N ′′ ∈
Ψc(|N ′′|c,F ′), by lemma 6.3.2b, F ′ = |〈N ′′,Rβη

N ′′〉|c. Finally, by def-
inition 6.6, 〈M,F〉 →βηd 〈|N ′′|c, |〈N ′′,Rβη

N ′′〉|c〉.

Lemma 6.16. By lemma 6.3.1c, Ψc(M,F1),Ψc(M,F2) ⊆ Ληc. For all N1 ∈
Ψc(M,F1) and N2 ∈ Ψc(M,F2), by lemma 6.3.1g, |N1|c = |N2|c and by
lemma 6.3.1h, |〈N1,Rβη

N1
〉|c = F1 ⊆ F2 = |〈N2,Rβη

N2
〉|c.

If 〈M,F1〉 →βηd 〈M ′,F ′
1〉 then by lemma 6.15, there exist N1 ∈ Ψc(M,F1)

and N ′
1 ∈ Ψc(M ′,F ′

1) such that N1 →βη N
′
1. By definition, there exists p1 such

that N1
p1→βη N

′
1, and by lemma 2.2.8, p1 ∈ Rβη

N1
. Let p0 = |〈N1, p1〉|c, so by

lemma 6.3.1h, p0 ∈ F1. By lemma 2.22 and lemma 6.3.1g, M
p0→βη M

′.
By lemma 6.4 there exists a unique set F ′ ⊆ Rβη

M ′ such that for all P1 ∈
Ψc(M,F1) there exist P ′1 ∈ Ψc(M ′,F ′) and p′ ∈ Rβη

P1
such that P1

p′

→βη P
′
1 and

|〈P1, p′〉|c = p0.
Because, N1 ∈ Ψc(M,F1), there exist P ′1 ∈ Ψc(M ′,F ′) and p′ ∈ Rβη

N1
such

that N1
p′

→βη P ′1 and |〈N1, p′〉|c = p0. Since p′, p1 ∈ Rβη
N1

, by lemma 2.16,
p′ = p1, so by lemma 2.2.9, P ′1 = N ′

1. By lemma 6.3.1h, F ′ = |〈N ′
1,R

βη
N ′

1
〉|c = F ′

1.

By lemma 6.4 there exists a unique set F ′
2 ⊆ Rβη

M ′ , such that for all P2 ∈
Ψc(M,F2) there exist P ′2 ∈ Ψc(M ′,F ′

2) and p2 ∈ Rβη
P2

such that P2
p2→βη P

′
2 and

|〈P2, p2〉|c = p0.
Since Ψc(M,F2) 6= ∅, let N2 ∈ Ψc(M,F2). So, there exist N ′

2 ∈ Ψc(M ′,F ′
2)

and p2 ∈ Rβη
N2

such that N2
p2→βη N

′
2 and |〈N2, p2〉|c = p0. By lemma 6.3.1h,

F ′
2 = |〈N ′

2,R
βη
N ′

2
〉|c.

Hence, by lemma 2.24, F ′
1 ⊆ F ′

2 and by lemma 6.15, 〈M,F2〉 →βηd 〈M ′,F ′
2〉.

Lemma 6.17. If M F1→βηd M1 and M
F2→βηd M2, then there exist F ′′

1 ,F ′′
2 such

that 〈M,F1〉 →∗
βηd 〈M1,F ′′

1 〉 and 〈M,F2〉 →∗
βηd 〈M2,F ′′

2 〉. By definitions 6.5
and 6.6, F ′′

1 ⊆ Rβη
M1

and F ′′
2 ⊆ Rβη

M2
. By lemma 6.16, there exist F ′′′

1 ⊆ Rβη
M1

and F ′′′
2 ⊆ Rβη

M2
such that 〈M,F1 ∪ F2〉 →∗

βηd 〈M1,F ′′
1 ∪ F ′′′

1 〉 and 〈M,F1 ∪
F2〉 →∗

βηd 〈M2,F ′′
2 ∪ F ′′′

2 〉. By lemma 6.15 there exist T ∈ Ψc(M,F1 ∪ F2),
T1 ∈ Ψc(M1,F ′′

1 ∪ F ′′′
1 ) and T2 ∈ Ψc(M2,F ′′

2 ∪ F ′′′
2 ) such that T →∗

βη T1 and
T →∗

βη T2.
Because by lemma 6.3.1c, T ∈ Ληc and by lemma 5.13.2, T is typable in

the type system D, so T ∈ CRβη by corollary 5.12. So, by lemma 2.10.1, there
exists T3 ∈ Ληc, such that T1 →∗

βη T3 and T2 →∗
βη T3. Let F3 = |〈T3,Rβη

T3
〉|c and

M3 = |T3|βη, then by lemma 6.3.2a, F3 ⊆ Rβη
M3

and T3 ∈ Ψc(M3,F3). Hence, by
lemma 6.15, 〈M1,F ′′

1 ∪F ′′′
1 〉 →∗

βηd 〈M3,F3〉 and 〈M2,F ′′
2 ∪F ′′′

2 〉 →∗
βηd 〈M3,F3〉,

i.e. M1
F ′′

1 ∪F
′′′
1→ βηd M3 and M2

F ′′
2 ∪F

′′′
2→ βηd M3.
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Lemma 6.19. Note that ∅ ⊆ Rβη
M . We prove this statement by induction on

the structure of M .

• Let M ∈ V \ {c} then Ψc(M,∅) = {cn(M) | n ≥ 0} and Rβη
cn(M) = ∅,

where n ≥ 0, by lemma 2.5 and lemma 2.7.5.

• Let M = λx.N such that x 6= c then Ψc(M,∅) = {cn(λx.Q[x := c(cx)]) |
n ≥ 0∧Q ∈ Ψc(N,∅)}. Let P ∈ Ψc(M,∅), then P = cn(λx.Q[x := c(cx)])
such that n ≥ 0 and Q ∈ Ψc(N,∅) By IH, Rβη

Q = ∅ and by lemma 2.7.4,
lemma 2.7.3 and lemma 2.7.5, Rβη

P = ∅.

• Let M = M1M2 then Ψc(M,∅) = {cn(cQ1Q2) | n ≥ 0∧Q1 ∈ Ψc(M1,∅)∧
Q2 ∈ Ψc(M2,∅)}. Let P ∈ Ψc(M,∅), then P = cn(cQ1Q2) such that
n ≥ 0, Q1 ∈ Ψc(M1,∅) and Q2 ∈ Ψc(M2,∅). By IH, Rβη

Q1
= Rβη

Q2
= ∅

and by lemma 2.5 and lemma 2.7.5, Rβη
P = ∅.

Lemma 6.20. We prove the statement by induction on the structure of M .

• Let M ∈ V \ {c}, then Ψc(M,∅) = {cn(M) | n ≥ 0}. Let P ∈ Ψc(M,∅)
and Q ∈ Ψc(N,∅), then P = cn(M) where n ≥ 0.

– Either M = x, then P [x := Q] = cn(Q) and by lemma 6.3.1f and
lemma 6.19, Rβη

cn(Q) = ∅.

– Or M 6= x, then P [x := Q] = P and by lemma 6.19, Rβη
P = ∅.

• Let M = λy.M ′ such that y 6= c then Ψc(M,∅) = {cn(λy.P ′[y := c(cy)]) |
n ≥ 0∧P ′ ∈ Ψc(M ′,∅)}. Let P ∈ Ψc(M,∅) and Q ∈ Ψc(N,∅), then P =
cn(λy.P ′[y := c(cy)]) where n ≥ 0 and P ′ ∈ Ψc(M ′,∅). So, Rβη

P [x:=Q] =

Rβη
cn(λy.P ′[x:=Q][y:=c(cy)]), such that y 6∈ fv(Q)∪{x}. By IH, Rβη

P ′[x:=Q] = ∅
and by lemmas 2.7.4, 2.7.3 and 2.7.5, Rβη

P [x:=Q] = ∅.

• Let M = M1M2 then Ψc(M,∅) = {cn(cP1P2) | n ≥ 0∧P1 ∈ Ψc(M1,∅)∧
P2 ∈ Ψc(M2,∅)}. Let P ∈ Ψc(M,∅) and Q ∈ Ψc(N,∅) then P =
cn(cP1P2) where n ≥ 0, P1 ∈ Ψc(M1,∅) and P2 ∈ Ψc(M2,∅). So,
Rβη

P [x:=Q] = Rβη
cn(cP1[x:=Q]P2[x:=Q]). By IH, Rβη

P1[x:=Q] = Rβη
P2[x:=Q] = ∅

and by lemmas 2.5 and 2.7.5, Rβη
P [x:=Q] = ∅.

Lemma 6.21. We prove the statement by induction on the structure of M .

• Let M ∈ V \ {c} then nothing to prove since by lemma 2.5, Rβη
M = ∅.

• Let M = λx.N such that x 6= c.

– If M ∈ Rβη then N = N0x such that x 6∈ FV (N0) and by lemma 2.5,
Rβη

M = {0} ∪ {1.p | p ∈ Rβη
N }. Let p ∈ Rβη

M then:
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∗ Either p = 0, then Ψc(M, {p}) = {cn(λx.P ′) | n ≥ 0 ∧ P ′ ∈
Ψc

0(N,∅)}. Let P ∈ Ψc(M, {p}) then P = cn(λx.P ′) such
that n ≥ 0 and P ′ ∈ Ψc

0(N,∅). So P ′ = cP ′0x such that
P ′0 ∈ Ψc(N0,∅). By lemmas 6.19 and 6.3.1a, Rβη

P ′ = ∅. If
P →βη Q then by definition, there exists p0 such that P

p0→βη Q.
By lemma 2.4.12b and lemma 2.2.8, Q = cn(Q′), p0 = 2n.p′0 and

λx.P ′
p′
0→βη Q′ such that p′0 ∈ Rβη

λx.P ′ . By lemma 6.3.1b, x 6∈
fv(cP ′0). By lemmas 2.5, Rβη

λx.P ′ = {0} ∪ {1.p | p ∈ Rβη
P ′} = {0}.

So p′0 = 0 and Q′ = cP ′0. By lemma 6.19, Rβη
P ′

0
= ∅ and by

lemma 2.7.5, Rβη
Q = ∅.

∗ Or p = 1.p′ such that p′ ∈ Rβη
N . So Ψc(M, {p}) = {cn(λx.P ′[x :=

c(cx)]) | n ≥ 0 ∧ P ′ ∈ Ψc(N, {p′})}. Let P ∈ Ψc(M, {p}) then
P = cn(λx.P ′[x := c(cx)]) such that n ≥ 0 and P ′ ∈ Ψc(N, {p′}).
If P →βη Q then there exists p0 such that P

p0→βη Q. By
lemma 2.4.12b, lemma 2.2.8, lemma 2.7.3 and lemma 2.4.12a,
p0 = 2n.1.p′0 such that p′0 ∈ R

βη
P ′ and Q = cn(λx.Q′[x := c(cx)])

such that P ′
p′
0→βη Q′. By IH, Rβη

Q′ = ∅, so by lemma 2.7.4,
lemma 2.7.3 and lemma 2.7.5, Rβη

Q = ∅.

– Else, by lemma 2.5, Rβη
M = {1.p | p ∈ Rβη

N }. Let p = 1.p′ such that
p′ ∈ Rβη

N . So Ψc(M, {p}) = {cn(λx.P ′[x := c(cx)]) | n ≥ 0 ∧ P ′ ∈
Ψc(N, {p′})}. Let P ∈ Ψc(M, {p}) then P = cn(λx.P ′[x := c(cx)])
such that n ≥ 0 and P ′ ∈ Ψc(N, {p′}). If P →βη Q then there
exists p0 such that P

p0→βη Q. By lemma 2.4.12b, lemma 2.2.8,
lemma 2.7.3 and lemma 2.4.12a, p0 = 2n.1.p′0 such that p′0 ∈ R

βη
P ′ and

Q = cn(λx.Q′[x := c(cx)]) such that P ′
p′
0→βη Q

′. By IH, Rβη
Q′ = ∅,

so by lemma 2.7.4, lemma 2.7.3 and lemma 2.7.5, Rβη
Q = ∅.

• Let M = M1M2.

– Let M ∈ Rβη, then M1 = λx.M0 such that x 6= c and by lemma 2.5,
Rβη

M = {0} ∪ {1.p | p ∈ Rβη
M1
} ∪ {2.p | p ∈ Rβη

M2
}. Let p ∈ Rβη

M then:

∗ Either p = 0 then Ψc(M, {p}) = {cn(P1P2) | n ≥ 0 ∧ P1 ∈
Ψc

0(M1,∅) ∧ P2 ∈ Ψc(M2,∅)}. Let P ∈ Ψc(M, {p}) then P =
cn(P1P2) such that n ≥ 0, P1 ∈ Ψc

0(M1,∅) and P2 ∈ Ψc(M2,∅).
By lemma 6.19 and lemma 6.3.1a, Rβη

P1
= Rβη

P2
= ∅. Since P1 ∈

Ψc
0(M1,∅), P1 = λx.P0[x := c(cx)] such that P0 ∈ Ψc(M0,∅). If

P →βη Q then by definition there exists p0 such that P
p0→βη Q.

By lemma 2.4.12b and lemma 2.2.8, Q = cn(Q′), p0 = 2n.p′0 and

P1P2
p′
0→βη Q′ such that p′0 ∈ Rβη

P1P2
. By lemma 2.5, Rβη

P1P2
=

{0}. So p′0 = 0 and Q = cn(P0[x := c(cP2)]). Because c(cP2) ∈
Ψc(M2,∅), by lemma 6.20 and lemma 2.7.5, Rβη

Q = ∅.
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∗ Or p = 1.p′ such that p′ ∈ Rβη
M1

. So, Ψc(M, {p}) = {cn(cP1P2) |
n ≥ 0 ∧ P1 ∈ Ψc(M1, {p′}) ∧ P2 ∈ Ψc(M2,∅)}. Let P ∈
Ψc(M, {p}) then P = cn(cP1P2) such that n ≥ 0, P1 ∈ Ψc(M1, {p′})
and P2 ∈ Ψc(M2,∅). By lemma 6.19, Rβη

P2
= ∅. If P →βη Q

then by definition there exists p0 such that P
p0→βη Q. By

lemma 2.4.12b and lemma 2.2.8, p0 = 2n.p′0 such that p′0 ∈
Rβη

cP1P2
and Q = cn(Q′) such that cP1P2

p′
0→βη Q

′. By lemma 2.5,
Rβη

cP1P2
= {1.2.p | p ∈ Rβη

P1
}. So p′0 = 1.2.p′′0 such that p′′0 ∈ R

βη
P1

.

So Q′ = cQ1P2 and P1
p′′
0→βη Q1. By IH, Rβη

Q1
= ∅, so by

lemma 2.7.5, Rβη
Q = ∅.

∗ Or p = 2.p′ such that p′ ∈ Rβη
M2

. So, Ψc(M, {p}) = {cn(cP1P2) |
n ≥ 0 ∧ P1 ∈ Ψc(M1, {∅}) ∧ P2 ∈ Ψc(M2, p′)}. Let P ∈
Ψc(M, {p}) then P = cn(cP1P2) such that n ≥ 0, P1 ∈ Ψc(M1, {∅})
and P2 ∈ Ψc(M2, p′). By lemma 6.19, Rβη

P1
= ∅. If P →βη Q

then by definition there exists p0 such that P
p0→βη Q. By

lemma 2.4.12b and lemma 2.2.8, p0 = 2n.p′0 such that p′0 ∈
Rβη

cP1P2
and Q = cn(Q′) such that cP1P2

p′
0→βη Q

′. By lemma 2.5,
Rβη

cP1P2
= {2.p | p ∈ Rβη

P2
}. So p′0 = 2.p′′0 such that p′′0 ∈ Rβη

P2
.

So Q′ = cP1Q2 and P2
p′′
0→βη Q2. By IH, Rβη

Q2
= ∅, so by

lemma 2.7.5, Rβη
Q = ∅.

– Let M 6∈ Rβη, then by lemma 2.5, Rβη
M = {1.p | p ∈ Rβη

M1
} ∪ {2.p |

p ∈ Rβη
M2
}.

∗ Either p = 1.p′ such that p′ ∈ Rβη
M1

. So, Ψc(M, {p}) = {cn(cP1P2) |
n ≥ 0 ∧ P1 ∈ Ψc(M1, {p′}) ∧ P2 ∈ Ψc(M2,∅)}. Let P ∈
Ψc(M, {p}) then P = cn(cP1P2) such that n ≥ 0, P1 ∈ Ψc(M1, {p′})
and P2 ∈ Ψc(M2,∅). By lemma 6.19, Rβη

P2
= ∅. If P →βη Q

then by definition there exists p0 such that P
p0→βη Q. By

lemma 2.4.12b and lemma 2.2.8, p0 = 2n.p′0 such that p′0 ∈
Rβη

cP1P2
and Q = cn(Q′) such that cP1P2

p′
0→βη Q

′. By lemma 2.5,
Rβη

cP1P2
= {1.2.p | p ∈ Rβη

P1
}. So p′0 = 1.2.p′′0 such that p′′0 ∈ R

βη
P1

.

So Q′ = cQ1P2 and P1
p′′
0→βη Q1. By IH, Rβη

Q1
= ∅, so by

lemma 2.7.5, Rβη
Q = ∅.

∗ Or p = 2.p′ such that p′ ∈ Rβη
M2

. So, Ψc(M, {p}) = {cn(cP1P2) |
n ≥ 0 ∧ P1 ∈ Ψc(M1, {∅}) ∧ P2 ∈ Ψc(M2, p′)}. Let P ∈
Ψc(M, {p}) then P = cn(cP1P2) such that n ≥ 0, P1 ∈ Ψc(M1, {∅})
and P2 ∈ Ψc(M2, p′). By lemma 6.19, Rβη

P1
= ∅. If P →βη Q

then by definition there exists p0 such that P
p0→βη Q. By

lemma 2.4.12b and lemma 2.2.8, p0 = 2n.p′0 such that p′0 ∈
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Rβη
cP1P2

and Q = cn(Q′) such that cP1P2
p′
0→βη Q

′. By lemma 2.5,
Rβη

cP1P2
= {2.p | p ∈ Rβη

P2
}. So p′0 = 2.p′′0 such that p′′0 ∈ Rβη

P2
.

So Q′ = cP1Q2 and P2
p′′
0→βη Q2. By IH, Rβη

Q2
= ∅, so by

lemma 2.7.5, Rβη
Q = ∅.

Lemma 6.22. By lemma 2.2.8, p ∈ Rβη
M . By lemma 6.4, there exists a unique

set F ′ ⊆ Rβη
M ′ , such that for all N ∈ Ψc(M, {p}), there exists N ′ ∈ Ψc(M ′,F ′)

such that N →βη N
′. Note that Ψc(M, {p}) 6= ∅. Let N ∈ Ψc(M, {p}) then

there exists N ′ ∈ Ψc(M ′,F ′) such that N →βη N
′. By lemma 6.21, Rβη

N ′ = ∅,
so |〈N ′,Rβη

N ′〉|c = ∅ and by lemma 6.3.1h, F ′ = ∅. Finally, by lemma 6.15,
〈M, {p}〉 →βηd 〈M ′,∅〉.

Lemma 6.23. By definition→∗
1⊆→∗

βη. We prove that→∗
βη⊆→∗

1. LetM,M ′ ∈ Λ
such that c 6∈ fv(M) and M →∗

βη M ′. We prove this claim by induction on
M →∗

βη M
′.

• Let M = M ′ then it is done since 〈M,F〉 →∗
βηd 〈M,F〉.

• Let M →∗
βη M

′′ →βη M
′. By IH, M →∗

1 M
′′. By definition there exists

p such that M ′′ p→βη M
′. By lemma 2.2.3, c 6∈ fv(M ′′). By lemma 6.22,

〈M ′′, {p}〉 →βηd 〈M ′,∅〉, so M ′′ →1 M
′. Hence M →∗

1 M
′′ →1 M

′.

Lemma 6.24. Let M ∈ Λ and let c ∈ V such that c 6∈ fv(M). Let M →∗
βη M1

and M →∗
βη M2. Then by lemma 6.23, M →∗

1 M1 and M →∗
1 M2. We prove

the statement by induction on M →∗
1 M1.

• Let M = M1. Hence M1 →∗
1 M2 and M2 →∗

1 M2.

• Let M →∗
1 M

′
1 →1 M1. By IH, ∃M ′

3,M
′
1 →∗

1 M
′
3 and M2 →∗

1 M
′
3. We

prove that ∃M3,M1 →∗
1 M3 and M ′

3 →1 M3, by induction on M ′
1 →∗

1 M
′
3.

– let M ′
1 = M ′

3, hence M ′
3 →1 M1 and M1 →∗

1 M1.

– LetM ′
1 →∗

1 M
′′
3 →1 M

′
3. By IH, ∃M ′′′

3 ,M1 →∗
1 M

′′′
3 andM ′′

3 →1 M
′′′
3 .

By lemma 2.2.3, c 6∈ fv(M ′′
3 ). Since M ′′

3 →1 M
′
3 and M ′′

3 →1 M
′′′
3 ,

By lemma 6.17, ∃M3,M
′
3 →1 M3 and M ′′′

3 →1 M3.
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