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Abstract—Byzantine fault-tolerance is arguably an expensive
characteristic for protocols to support, especially when considering
its overhead on message complexity, number of communication
phases, and number of nodes for resilience. Various works in
the literature have addressed optimizing one or more of these
dimensions through the use of algorithmic optimizations, trusted
execution environments, and streamlined view changes.

The best achievable message complexity, resilience, and latency
to date are respectively linear complexity, ⌊(N − 1)/2⌋, and two
communication phases attained by Damysus (EuroSys’22), a
streamlined hybrid protocol. This paper strictly advances the
aforementioned state of the art results by introducing OneShot,
a streamlined hybrid protocol that uses one communication
phase in the normal case, and one or two phases otherwise.
OneShot exploits the information nodes receive about the system
to dynamically modify and adapt views. We prove that OneShot
is safe and live, and moreover demonstrate through experimental
evaluation that it improves throughput and latency by respectively
up to 150% and 59% compared to the state of the art.

Index Terms—Fault tolerance, Consensus, Trusted component.

I. INTRODUCTION

Consensus protocols are key building blocks of distributed
systems, enabling a multitude of nodes to jointly reach
agreement on decisions. In particular, Byzantine fault-tolerant
(BFT) consensus guarantees that such agreement is reached
even when a subset of the nodes is subject to arbitrary (a.k.a.
Byzantine) faults. As a direct application of BFT consensus,
Byzantine fault-tolerant state-machine replication (BFT-SMR)
protocols [1] can be implemented to realize resilient distributed
services and ecosystems such as blockchains.

PBFT [2] introduced the first practical BFT-SMR protocol,
whose safety and liveness are guaranteed in partially syn-
chronous networks [3]. Traditional BFT protocols, including
PBFT and variants that build on top of it, optimize performance
of the normal case (i.e., fault-free) execution of their algorithm,
i.e., when the leader (the node leading the consensus votes) is
correct and the network is synchronous for sufficiently long
enough. In all other cases, a more expensive view-change
protocol is needed to elect a new leader [4, 5]. Once a new
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leader is elected, the protocol returns to the normal case
operation. So-called streamlined protocols have recently been
designed to avoid these expensive view-changes [6, 7, 8, 9,
10, 11]. To do so, these protocols follow a unified propose-
vote paradigm, and integrate view-changes in the normal case
operation by rotating the leader [10]. The message complexity
of streamlined protocols is linear in the number of nodes
as opposed to the quadratic complexity of traditional BFT
protocols. This however comes at the expense of an additional
communication phase. Nevertheless, both traditional as well
as streamlined protocols remain expensive in practice as they
require N = 3f+1 nodes to tolerate f faulty nodes. Moreover,
the former protocols do not scale well due to their message
complexity while the latter suffer from increased latency.

In the literature, two prominent lines of work have addressed
these limitations and aimed at improving the suitability of
either traditional or streamlined protocols for practical uses.
These efforts reduced the latency overhead and/or increased
the resilience (i.e., less correct nodes needed to tolerate the
same number of faulty nodes) of such protocols. The first line
of work leverages trusted execution environments (TEEs), such
as TPMs [12] or Intel SGX enclaves [13], to reduce latency as
well as increase resilience [14, 15]. The second line explores
optimizations within the design of the consensus algorithm
itself to reduce latency (i.e., the number of communication
phases), but cannot improve resilience [16, 17, 18, 19, 20].
The best known resilience and latency bounds to date for
Byzantine consensus with linear message complexity are
achieved by Damysus [15], a TEE-assisted streamlined protocol
that requires N ≥ 2f+11 nodes to tolerate f faults and uses
two communication phases.

Despite these non-trivial advances in the literature, an
obvious question remains: can the state of the art be strictly im-
proved along the resilience, latency (number of communication
phases) and communication complexity dimensions?

In this paper we demonstrate that we can indeed improve
the state of the art, precisely by decreasing the number
of communication phases without affecting neither message
complexity nor resilience. Surprisingly, as shown in Sec. VI-A,
this improvement comes at no additional cost regarding the

1This bound does not differentiate between passive and active replicas such
as [21] where f+1 active and f passive replicas are needed.



needed TEE functionalities but arguably requires even less.
We introduce OneShot, a streamlined Byzantine consensus

protocol that uses TEEs and that requires one communication
phase for nodes to reach an agreement in the normal case, and
one or two communication phases otherwise. When it requires
two phases, together with the effort of the failed (incomplete)
previous view, OneShot decides two blocks in total, making
it more efficient even in this case. OneShot maintains linear
message complexity and uses N = 2f+1 nodes out of which f
can be Byzantine, herein improving over the state of the art.
The main idea behind OneShot hinges on allowing nodes
to dynamically adapt their behaviors by fully leveraging the
knowledge available to them as well as the information they
receive from others. We develop a C++ implementation of
OneShot and demonstrate its superior performance compared to
both HotStuff [6] and Damysus. Namely, compared to Damysus,
which exhibits higher performance than HotStuff, OneShot
improves average throughput and latency by up to 150% and
59%, respectively.

As a summary, we make the following main contributions:
• We describe OneShot, a novel streamlined hybrid consen-

sus protocol with linear message complexity. OneShot tolerates
a minority of Byzantine faults, and reaches a decision in only
one core communication phase in the normal case.

• We provide a proof of correctness that demonstrates that
OneShot ensures both safety and liveness.

• We report the results of our performance evaluation to
showcase the superior performance of OneShot compared to
the previous state of the art algorithms.

The rest of this paper is organized as follows. Sec. II surveys
the related work. Sec. III recalls HotStuff and Damysus. Sec. IV
describes our system model. Sec. V presents an overview of
OneShot. Sec. VI describes OneShot in details, and Sec. VII
proves its correctness. Sec. VIII details our performance
evaluation. Finally, Sec. IX concludes this paper.

II. RELATED WORK

Numerous previous efforts built hybrid BFT protocols (using
TEEs) that generally target improving over various aspects
of traditional BFT algorithms such as reconfiguration [22,
23, 24], proactive recovery [25], and fault-tolerance and/or
performance [14, 21, 26, 27, 28, 29, 30, 31, 32, 33, 34].

Hybrid Streamlined protocols. In the context of streamlined
BFT protocols, hybrid solutions were first mentioned for
LibraBFT [35], a protocol built on HotStuff [6], to possibly
reduce its attack surface. HotStuff-M and VABA-M [36]
proposed to use trusted logs to improve fault tolerance without
worsening the communication complexity of the underlying
BFT protocol: one trusted log is used for each protocol phase
with an additional log for tracking views. The protocol relies
on maintaining expander graphs to diffuse messages. Such
graphs introduce more network traffic, extra storage overhead
and their impact on throughput/latency remains open. A related
approach consists in transforming crash fault tolerant protocols
to BFT ones using trusted components, such as Madsen
et al.’s work [37], which essentially works by running all

state machines inside a trusted environment, leading to large
enclaves; and Clement and al.’s work [38], which relies on
smaller trusted components, that however need to sign the entire
history of sent and received messages, leading to large messages.
Damysus [15] is the state of the art hybrid streamlined BFT
protocol. It leverages two small trusted components, that allow
the use of N = 2f+1 nodes and 2 communication phases.
OneShot improves over Damysus by reducing further the
number of communication phases.

Two-phase BFT protocols. Ditto [39] is a combination of
HotStuff and PBFT. Its overall behavior in the synchronous
(happy) path is similar to HotStuff but relies on a lighter 2-chain
commit rule instead of 3. However, the fallback mechanism in
case of asynchrony is a heavier quadratic scheme compared
to that of HotStuff and OneShot but matches HotStuff’s
pacemaker complexity. However, Ditto guarantees liveness
even in periods of asynchrony: during fallback every replica
acts as leader and continues to build a certified chain, one
chain is then chosen at random when 2f+1 certified chains
are completed as the chain to build on. Fast-HotStuff [18]
is another protocol in this line of work also with a view
change of quadratic communication overhead. Abspeol et
al. [19] propose a protocol with O(N logN) communication
overhead that relies on zero-knowledge proofs. Wendy [20] is
a streamlined protocol that relies on aggregate signatures to
use two communication phases in the steady state and three
in its view change. Compared to these works, OneShot uses
lightweight cryptographic schemes, uses less communication
phases and maintains a linear communication complexity.

Marlin [16] proposes a BFT protocol with strictly linear
communication complexity, having two phases for normal case
operations and two or three phases for view changes. They
achieve this reduction in required number of phases in the
normal operation by having the leader propose two blocks.
A first block that extends the block with the highest quorum
certificate that the leader received and a second virtual block
that extends a block (that may or may not exist) from a "virtual"
safe snapshot. Each replica can either vote for one or two
blocks depending on the quorum certificate it is locked on.
HotStuff-2 [17] is a two-phase variant of HotStuff that achieves
the same properties, i.e., solves partially-synchronous BFT,
achieves O(n2) worst-case communication and best case linear
communication, and optimistic responsiveness. The authors do
so by devising a solution that allows the leader of a view to
know about the highest locked block and be able to convince
all honest parties about it. This can be achieved, only after GST
(the Global Stabilization Time, when no network delays occur),
and assuming a current honest leader of a view and some
consecutive previous honest leaders. Compared to OneShot,
both protocols [16, 17] require (1) N = 3f+1 nodes to tolerate
f faulty nodes (OneShot requires 2f+1) and (2) one additional
phase in both good executions (2 phases in comparison with
1 phase for OneShot) and bad ones (3 phases in comparison
with 2 phases for OneShot).

Rollback attacks on hybrid protocols. Some research
efforts have shed light on the fallacies related to the assumption



Fig. 1 Communication phases in HotStuff
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that TEEs never crash and lose their internal state. ROTE [40]
allows the TEEs (a.k.a. enclaves) of a hybrid protocol to
reliably store enclave-specific counters. These enclaves use
a consistent broadcast protocol to propagate their state updates
and a recovery mechanism that obtains lost counters from other
enclaves upon restart. ENGRAFT [41] proposes a distributed
resilient in-memory key-value storage inside SGX enclaves
for storing Raft meta data, leveraging network memory [42].
NARRATOR [43] provides protection against rollback attacks
for clients of cloud TEEs. To do so, it relies on infrequent
interactions with a blockchain that initializes a distributed
system of TEEs for an application.

Gupta et al. identified three issues that hybrid protocols that
rely on 2f+1 nodes might face [44]: restrictive responsiveness,
rollback attacks, and lack of parallelism. They show how
increasing the number of replicas back to 3f+1 and allowing
the leader to maintain multiple trusted counters in PBFT-
like protocols address these issues. The first two issues
can respectively be addressed in OneShot by transferring
certificates to clients, and using known defenses against rollback
attacks [40, 43]. The last issue, parallelism, can for example
be addressed using parallel executions [28, 45, 46].

III. HOTSTUFF AND DAMYSUS IN A NUTSHELL

HotStuff [6] is a streamlined BFT consensus protocol that
adopts the lock-commit paradigm and has a communication
complexity linear in the number of nodes. It requires N≥3f+1
nodes to tolerate f Byzantine faults. Nodes build a chain of
blocks by voting for extensions proposed by the leaders of views
(successive rounds). HotStuff comes in two versions: (1) Basic
HotStuff, where nodes vote on a single block per view; and
(2) chained (or pipelined) HotStuff, where a view allows several
blocks to simultaneous progress towards being committed. To
execute a block, HotStuff employs several phases per view v,
as depicted in Fig. 1, where time flows from left to right,
and L is the leader of the view v among nodes R0, . . . , Rn.
Chained HotStuff is referred to as a 3-phase protocol, as it has
3 core phases to agree on blocks: a prepare phase to propose
blocks; a pre-commit phase to let nodes certify that a block
has been prepared; and a commit phase to “lock” the prepared
block to guarantee liveness [6, Sec.4.4]. Those core phases are
complemented by 2 half-phases2 in Basic HotStuff: a new-view
half-phase to submit the latest prepared blocks, and a decide
half-phase to execute blocks once it is safe to do so. A Basic

2As a full phase contains two communication steps, we use a half-phase to
represent a phase that only contains one communication step.

HotStuff view is then composed of the 8 communication steps
depicted in Fig. 1.

Damysus [15] is the state of the art hybrid streamlined
BFT protocol and is built upon Hotstuff [6]. By leveraging
two small trusted components, namely the CHECKER and the
ACCUMULATOR, Damysus simultaneously tolerates a minority
of Byzantine faults thanks to the CHECKER and requires a
smaller number of core phases thanks to the ACCUMULATOR:
from 3 in Hotstuff down to 2. A Damysus view is then
composed of 6 communication steps. Like Chained-HotStuff,
Chained-Damysus supports pipelined operations for improved
performance. For ease of presentation, this section focuses on
the basic version of Damysus, as it can be easily transformed
to obtain a pipelined version [15].

Trusted components. The CHECKER component is run by
every replica. It provides a monotonically increasing counter
to keep track of the current view and phase, and stores a view
number and hash value pair for the last prepared block. The pair
is included in the commitment that a non-leader replica (a.k.a.
a backup) sends to the next leader in the new-view phase. The
monotonically increasing counter prevents Byzantine replicas
from equivocating, e.g., by proposing different blocks for the
same view as a leader. The data stored in the ACCUMULATOR
guarantees that a Byzantine backup sends the commitment of
its latest prepared block to the leader of a new view. This
guarantee ensures that at least one of the f+1 commitments
received by a leader in the new-view phase (presented below)
represents the highest view where a block is prepared, which
is necessary for safety. The ACCUMULATOR component is only
run by the leader of a view. Loosely speaking, it takes f+1
commitments as inputs, and outputs a signed message that
contains a view number and hash value pair possessing the
highest view among the inputs.

Communication phases. Damysus has two core communi-
cation phases, prepare and pre-commit, and uses two additional
½-phases: the new-view ½-phase to rotate the leader, and the
decide ½-phase to execute blocks. This results in a total of 6
communication steps compared to 8 in HotStuff.
(1) In the new-view phase, each backup increments its view
and sends its commitment, which contains its (view, hash) pair
stored in the CHECKER, to the leader.
(2) In the prepare phase, the leader generates the latest
prepared block from f+1 received new-view messages using
the ACCUMULATOR. The leader then extends the latest prepared
block and certifies it using its CHECKER. Upon receiving this
signed block from the leader, each backup responds with a vote
generated by the CHECKER. In Damysus, a checker’s counter
is incremented each time a checker is called.
(3) In the pre-commit phase, the leader collects f+1 prepare
votes from backups, and broadcasts a combined version to
backups. Backups consider the proposed block as prepared,
store the view number and hash value associated to the block
via the CHECKER, and replies with a vote it generates.
(4) In the decide phase, the leader collects f+1 commit votes
from backups, and broadcasts a combined version to backups
so that they can execute the block.



In Damysus every node verifies the authenticity of the
messages it receives, which are signed by trusted components,
before processing them.

IV. SYSTEM MODEL

In this section, we describe OneShot’s system model, which
is identical to the one of Damysus [15], the hybrid BFT
consensus protocol it improves upon.

Replicas and leader. A system has a static membership
consisting of N replicas out of which at most f can be faulty
(i.e., Byzantine). In the case of HotStuff N = 3f+1, while for
Damysus and OneShot N = 2f+1. We refer to a replica using
a unique id. We assume that each view has a unique leader,
which is chosen deterministically and known to all nodes.

Trusted components. Each replica executes trusted compo-
nents that provide the CHECKER and ACCUMULATOR services,
resulting in a hybrid fault model, where at each faulty node all
components can be tampered with except the ones providing
these trusted services.

Communications. We assume that replicas communicate by
exchanging messages over a fully connected communication
network. Communications are reliable (i.e., messages are not
lost). We adopt the partial synchrony model, where there is a
known bound ∆ and an unknown Global Stabilization Time
(GST), such that after GST, all messages arrive within ∆ after
their emission [3].

Signatures. Replicas and trusted components rely on an
asymmetric signature scheme. A digital signature σ is generated
via the SIGN function, and verified using the VERIFY function
provided by the scheme. The identity of the signer of a given
signature σ is written as σ.id. We write mσ for the message m
signed with signature σ generated using SIGN. We also write
mσ⃗ when m is signed by the list of signatures σ⃗. Signatures in
OneShot are generated by trusted components in Fig. 5c using
their private keys. We assume that public keys are known by
trusted components, replicas, and clients.

Blocks. A block b contains transactions submitted by clients.
OneShot works at the block level, and we therefore leave
abstract the internal details of transactions, which are mostly
application-specific. We assume that a cryptographic secure
hash function H is used to hash blocks. We write h for the hash
value of a block. A block b contains the hash value of another
block b′ on top of which b is built. We write b ≻ h when b
is a direct extension of a block b′ with hash value h, i.e., b
is built on top of b′. We also write b1 ≻ b2 for b1 ≻ H(b2).
The relation ≻ can easily be checked, for example if blocks
store the hash values of the blocks they extend. We write ≻+

for its transitive closure. We say that a block b1 is in conflict
with a different block b2 if ¬b2 ≻+ b1 and ¬b1 ≻+ b2. We
also assume a createLeaf function that creates a new block
extending a parent block (or simply its hash value) with client
transactions.

V. OVERVIEW OF ONESHOT

Unlike state of the art (hybrid) streamlined BFT protocols
that typically have a generic behavior throughout all protocol

Fig. 2 Example of a normal execution
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Fig. 3 Example of a catch-up execution
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Fig. 4 Example of a piggyback execution
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executions, OneShot capitalizes on the fact that not all
executions are identical, and that agreement can be reached
in some executions within a fewer number of communication
steps. To this end, OneShot operates in an execution-tailored
fashion using all possible information available and succeeds
in reaching agreement in fewer communication steps compared
to all its predecessors in the literature.

More specifically, OneShot features three types of executions
where agreement can be reached on some block(s). The
distinction amongst those three executions is based on the
information available to the non-faulty leader of the view
where agreement is reached:

• A normal execution is one where the non-faulty leader of
a decisive view – a view where agreement is reached on
some block(s) – does not know of any previous prepared
block that has not been decided. A prepared block is
a block that has been received from the leader, and a
decided block is one that has been adopted by at least f+1
distinct nodes. As the example depicted in Fig. 2 shows, a
normal execution results in agreement on 1 block within 4
communication steps. Fig. 2 depicts two successive views,
where node 2 is the leader of the first view that is not
decisive, and node 0 is the leader of the second view that
is decisive.

• A catch-up execution is one where the non-faulty leader
of a decisive view knows that a previous valid prepared
block, say block b, has been prepared by i : 1 ≤ i < f+1



nodes. A valid prepared block is one that builds on the
latest decided block in the chain. In this case, the non-
faulty leader of the decisive view initiates a catch-up
mechanism to prepare block b by at least f+1 nodes
before it proposes a new block, which extends b. As Fig. 3
illustrates, this results in a decisive view where agreement
is reached on 2 blocks in a total of 8 communication steps.
The total number of communication steps is counted from
the instant when block b is proposed (in the previous
view) until an agreement is reached on both blocks.

• A piggyback execution is one where the non-faulty leader
of a decisive view knows that a previous valid prepared
block, say block b, has been prepared by at least f+1
other nodes. In this case, the non-faulty leader of the
decisive view piggybacks block b onto its new proposed
block, which extends b. As Fig. 4 illustrates, this results in
a decisive view where agreement is reached on 2 blocks
in a total number of 6 communication steps.

The table below summarizes the three executions differenti-
ated by OneShot, stating for each execution the number of
communication steps needed to reach agreement as well as the
number of blocks on which agreement is reached.

#blocks #total steps
Normal execution 1 4
Catch-up execution 2 8
Piggyback execution 2 6

VI. ONESHOT DETAILS

We now provide a more detailed description of OneShot. The
full pseudocode is presented in Fig. 5. We begin by describing
the TEEs that OneShot relies on in Sec. VI-A, and introduce
afterwards the different types of certificates used in OneShot in
Sec VI-B. We then delve into the protocol’s logic in Sec. VI-C
and its optimizations in Sec. VI-F. We finally provide the
intuitions behind OneShot’s correctness in Sec. VII.

A. Trusted Services

Like Damysus, OneShot uses two similar trusted services,
called CHECKER and ACCUMULATOR. The former enhances
Byzantine resilience while the latter reduces the latency com-
pared to traditional BFT protocols. However, unlike Damysus:

• CHECKER in OneShot stores a proposal instead of a pre-
pared block, requires less secure memory, and eliminates
one core function given that OneShot operates with one
less core phase.

• ACCUMULATOR is not called as often (e.g., it is never
called in normal executions) and can provide more
information.

In particular, OneShot’s trusted services store less data, and
implement less functions than Damysus’s. These simplifications
lead to a reduced trusted computing base, and inherently to
more secure components.

We elaborate further on CHECKER and ACCUMULATOR in
OneShot in what follows.

a) CHECKER: The CHECKER service offers three func-
tions. The first, TEEprepare, is used by leaders to propose
new blocks, and guarantees that this can be done at most
once per view. It generates proposals as described in Def. 1.
The second, TEEvote, is used to vote for a block. The
third, TEEstore, is used to “store” the latest proposed block.
In fact, only the view at which the proposal is made is
stored, as opposed to also storing the proposal’s hash value
like in Damysus, as at most one block can be proposed
per view. As a proof of successfully storing a view in the
CHECKER, TEEstore generates a store certificate (Def. 2) that
connects the stored view with the respective block. TEEstore
guarantees that a single store certificate can be generated per
view. In order to implement the above functions, CHECKER
maintains a state composed of three components:

• a confidential private key, along with the public keys of
the other components.

• a (view, phase) pair that evolves as follows. Leaders
call this service twice per view, first increasing the
phase (from (view , ph0 ) to (view , ph1 )) when making a
proposal, and then increasing the view (from (view , ph1 )
to (view+1, ph0 )) when storing the proposal (those two
calls can be combined into one for efficiency). Backups
do not make proposals and only call this service once
per view increasing only the view (from (view , ph0 ) to
(view+1, ph0 )).

• the view number of the latest prepared block.
b) ACCUMULATOR: The ACCUMULATOR service has a

single function called TEEaccum. It takes a list of f +1 new-
view certificates (see Def. 6) and asserts – by generating an
accumulator (see Def. 5) – that the first element in that list is
for the block with the highest proposed view (i.e., the view at
which the block was prepared). This function is used by a leader
as a proof that its message relays the latest proposal among
the received new-view messages. This is needed for example
when the leader knows about an old proposal and wants to
push it forward to commitment. The ACCUMULATOR is only
called by leaders in the prepare phase of catch-up executions
to convince backups that they are pushing forward the proposal
with the highest view, while in Damysus it is called by leaders
in the prepare phase of all executions, as Damysus does not
differentiate between different kinds of executions.

B. Certificates

During the various phases of the protocol, nodes create
certificates as proofs that they have performed certain actions
using their trusted services. This section reviews the various
certificates used in Fig. 5. In that figure, we use ϕ⃗ for a list of
certificates, and ϕ⃗n to indicate that the list has length n. We
use a similar notation for signatures and node ids.

a) Proposals: Proposals are sent by leaders in the prepare
phase (l. 8, Fig. 5a) to propose new blocks. Proposals are cer-
tified using the TEEprepare function, which guarantees that
leaders can only make one proposal per view by incrementing
the phase number stored in their trusted components.



Fig. 5 OneShot’s pseudocode
(a) Non-trusted prepare, new-view, decide phases

1: view = 0 // current view (duplicates the TEE’s)
2: pks // public keys (duplicate the TEE’s)
3: prop = ⟨b, ϕp, ϕqc⟩ // latest prop. from a leader
4:
5: function propose(h, ϕ)
6: b := createLeaf(h, client transactions)
7: ϕp := TEEprepare(H(b))
8: send ⟨b, ϕp, ϕ⟩ to all // skip the deliver phase
9:

10: // PREPARE PHASE
11: as a leader // NORMAL EXECUTION
12: wait for ϕc of the form prep(view−1, h, v)σ⃗f+1

13: propose(h, ϕc)
14:
15: as a leader
16: wait for ϕ⃗n s.t. NV-match(ϕ⃗, f+1, view)
17: if all ϕs ∈ ϕ⃗n are of the form store(view−1, h, v)_ then
18: // PIGGYBACK EXECUTION
19: σ⃗ := the signatures of the f+1 store certs. in ϕ⃗n

20: propose(h, ϕc) where ϕc := prep(view−1, h, v)σ⃗
21: else
22: ϕ0 := certificate in ϕ⃗n with highest view
23: acc := TEEaccum(ϕ0, ϕ⃗n \ {ϕ0})
24: if acc.B then
25: propose(acc.hash, acc)
26: else// CATCH-UP EXECUTION
27: send ⟨acc, ϕ0⟩ to all // start deliver phase

28:
29: all replicas
30: wait for ⟨b, ϕp, ϕqc⟩ from the leader, where ϕqc is for ⟨view , h⟩
31: prop := ⟨b, ϕp, ϕqc⟩ // update prop
32: abort if ¬(ϕp.view == view ∧ b ≻ h ∧ H(b) == ϕp.hash)
33: send ϕs := TEEstore(ϕp) to leader
34:
35: // DECIDE ½-PHASE
36: as a leader
37: wait for ϕ⃗s, f+1 ϕs of the form store(view , h, view)σ
38: σ⃗ := the signatures of the f+1 store certs. in ϕ⃗s

39: send ϕc := prep(view , h, view)σ⃗ to all replicas
40:
41: all replicas
42: wait for ϕc of the form prep(view , h, view)σ⃗f+1 from leader
43: abort if ¬VERIFY(ϕc)pks
44: execute b corresponding to h & reply to clients
45: prop := ⟨b, ϕp, ϕc⟩; view++ // update prop
46: send ϕn := ϕc to view ’s leader // sending a new-view

47: // NEW-VIEW ½-PHASE
48: all replicas
49: when timeout
50: ⟨b, ϕp, ϕqc⟩ := prop; view++
51: ϕs := TEEstore(ϕp) // if not already executed
52: send ϕn := nv(b, ϕs, ϕqc) to view ’s leader

(b) Non-trusted deliver phase of catch-up executions

1: all replicas
2: wait for ⟨acc, ϕn⟩ where ϕn is ⟨b1, ϕs, ϕqc⟩
3: and ϕs is store(view−1,H(b1), v)σ1 // h1 was stored at v
4: and ϕqc is for ⟨v, h2⟩ // h2 was selected at v
5: abort if ¬(acc is valid ∧ VERIFY(ϕn)pks ∧ b1 ≻ h2)
6: send ϕv := TEEvote(H(b1)) to leader
7:
8: as a leader
9: wait for ϕ⃗v , f+1 votes of the form vote(h, view)_

10: σ⃗ := the signatures of the f+1 votes in ϕ⃗v

11: propose(h, ϕvc) where ϕvc := vc(h, view)σ⃗ // resume (l. 29)

(c) TEE code

1: view = 0, phase = ph0 // current view/phase
2: sk , pks // 1 private (confidential) & public keys
3: prepv = 0 // view of latest proposed block
4:
5: function TEEprepare(h)
6: if phase == ph0 then
7: phase := ph1
8: return ϕp := prop(h, view)σ

9:
10: function TEEstore(ϕp) where ϕp is prop(h, v)σ
11: if VERIFY(ϕp)pks ∧ ϕp is from the leader ∧ view ≥ v ≥ prepv then
12: prepv := v; view++; phase := ph0
13: return ϕs := store(view−1, h, v)σ′

14:
15: function TEEaccum(ϕn, ϕ⃗n) where ϕn is for ⟨v, h, v′⟩

16: if
(

VERIFY(ϕn, ϕ⃗n)pks
∧∀ϕ′

n ∈ ϕ⃗n.ϕ′
n is for ⟨v, h′, v′′⟩ ∧ v′ ≥ v′′

)
then

17: i⃗d := the ids of the nodes that signed (ϕn, ϕ⃗n)
18: B := certifies(h, ϕn)
19: return acc := acc(B , v, h, i⃗d)σ′

20:
21: function TEEvote(h)
22: return ϕv := vote(h, view)σ

Def. 1 (Proposals). A proposal ϕp for a block with hash value h
is of the form prop(h, v)σ, where v is a view number and σ
is the leader’s signature. We also note ϕp.view the view v at
which proposal ϕp is made.

b) Store certificates: Store certificates produced by
TEEstore certify the receipt of proposals. They are generated
during the prepare phase (l. 33, Fig. 5a) by nodes once they
have verified that the proposal they have received from the
leader is correct, meaning that it extends a certificate from
the previous view (checked l. 32, Fig. 5a). Store certificates
are also generated when changing view after a timeout (l. 51,
Fig. 5a) to create a certificate of the latest proposal received
that is tagged with the current view, since the latest proposal
might have been received in a previous view and because an
old invalid certificate must not be reused by Byzantine nodes.

Def. 2 (Store Certificates). A store certificate ϕs is of the form
store(v2, h, v1)σ that certifies that a block with hash value h
initially proposed in view v1 was “stored” in view v2.

c) Prepare certificates: Prepare certificates are put to-
gether from store certificates by leaders (l. 39, Fig. 5a) to
combine them into quorum certificates in the middle of a
prepare phase, as well as in the beginning of the prepare
phase (l. 20, Fig. 5a). Note that leaders require that the store
certificates they use to create a prepare certificate are for the
current view (l. 39), thereby requiring that the proposed block
was indeed proposed and stored in the current view. A prepare
certificate guarantees that at least f+1 nodes have stored a
block to safely execute it. Its reception (l. 42, Fig. 5a) prompts
nodes to execute the corresponding block.

Def. 3 (Prepare Certificates). A prepare certificate ϕc of the



form prep(v2, h, v1)σ⃗f+1 , combines f+1 store certificates, and
certifies that block h proposed in view v1 was certified in
view v2. We use ϕc.hash for the hash value h contained in ϕc.

d) Votes: To guarantee that proposals are built on top of
blocks stored by at least f+1 nodes, following an unsuccessful
view, leaders start an additional phase of voting to finish an
incomplete view. During that phase, using TEEvote (l. 21,
Fig. 5c), nodes vote for a block from a previous view that did
not complete. A vote certificate is then put together by a leader
(l. 11, Fig. 5b) by combining these votes, and certifies that a
block was received by at least one correct node.

Def. 4 (Votes). A vote ϕv for a block with hash value h is
of the form vote(h, v)σ . A vote certificate ϕvc combines f+1
votes and is of the form vc(h, v)σ⃗f+1 .

e) Accumulators: An accumulator is generated by
TEEaccum (l. 15, Fig. 5c), which is called by a leader upon
receiving new-view messages from which no certificate can
be put together (l. 23, Fig. 5a). The leader then selects the
new-view certificate with the highest view, and the accumulator
generates a certificate that it has indeed the highest view among
the provided certificates.

Def. 5 (Accumulators). An accumulator acc is of the form
acc(B , v, h, i⃗d)σ , where B is a Boolean that indicates whether
the accumulator certifies a new-view certificate for the block
with hash value h or a predecessor block (see Def. 6) and where
i⃗d is the vector of the f+1 ids of the nodes that contributed
to the accumulator, i.e., that signed the certificates passed as
arguments to TEEaccum. Given such an accumulator, we also
use acc.hash for h, and acc.B for B . We say that the above
accumulator acc is valid (used l. 5, Fig. 5b) if its signature is
correct, and if i⃗d is a vector of f+1 unique ids.

Note that the ids contained in an accumulator are used by
nodes to pull blocks from others as discussed in Sec. VI-E.

f) Quorum certificates: We note ϕqc a quorum certificate,
which can be: (i) a prepare certificate ϕc; or (ii) a vote certificate
ϕvc; or (iii) an accumulator acc. A quorum certificate is
always a set of f+1 certificates that guarantee that at least
a correct node participated in the vote, and therefore holds
the corresponding block (correct nodes only vote for blocks
they have received). If ϕqc is a prepare certificate of the form
prep(v−1, h, v′)σ⃗ or a vote certificate of the form vc(h, v)σ⃗ or
an accumulator of the form acc(true, v−1, h, i⃗d)σ , we say that
ϕqc is for ⟨v, h⟩. A prepare or a vote certificate is certified by
the f+1 nodes that signed σ⃗, and an accumulator is certified
by the f+1 ids in i⃗d . The uses of either v−1 and v in the
certificates come from the fact that prepare certificates of the
previous view are used to create new proposals, while for vote
certificates leaders use the ones generated during the deliver
phase of the current view.

g) New-view certificates: New-view certificates are gen-
erated by nodes either when a view ends successfully with a
block execution (l. 46, Fig. 5a), or abnormally by timing out
(l. 52, Fig. 5a). In the former case, the new-view certificate

is a prepare certificate that guarantees that f+1 nodes have
stored the prepared block using their trusted component. In
the latter, the new-view certificate contains the latest proposal
received by the node.

Def. 6 (New-view Certificates). A new-view certificate ϕn is
either a prepare certificate ϕc or of the form nv(b, ϕs, ϕqc),
where ϕs = store(v2,H(b), v1)σ and ϕqc is for ⟨v1, h′⟩, such
that b is a stored block that either extends h′ (when generated
in l. 52, Fig. 5a from a proposal received l. 31) or has
hash value h′ (when generated in l. 52 of Fig. 5a from
a proposal received l. 45). In the latter case, we say that
ϕn is certified by h′, and write certifies(h′, ϕn) (which
is used l. 18, Fig. 5c). If ϕn is either prep(v2, h, v1)σ⃗ or
nv(b, store(v2, h, v1)σ, ϕqc), we say that ϕn is for ⟨v2, h, v1⟩.
Let NV-match(ϕ⃗, k, v) hold if ϕ⃗ is a collection of k new-view
certificates for ⟨v, _, _⟩ signed by different nodes.

C. Protocol Logic

As mentioned in Sec. V, OneShot distinguishes between
3 kinds of decisive executions. Upon receiving new-view
messages, and depending on their content, leaders either
proceed into executing a normal execution (l. 12), a catch-
up execution (l. 21), or a piggyback execution (l. 17).

a) Normal execution: When a leader of a view v receives
a certificate that consensus was achieved on a block b1 in
an earlier view with enough evidence that no proposal was
accepted afterwards, it starts executing a normal phase. In that
case, it simply proposes a block b2 that extends/builds on b1
(l. 12, Fig. 5a). The proposal is then “prepared” by backups
(all nodes besides the leader) (ll. 29–33, Fig. 5a), which send a
message to the leader. These replies are combined by the leader
into a prepare certificate that is sent to the backups (ll. 36–39,
Fig. 5a). Upon receiving such a prepare certificate (ll. 41–46,
Fig. 5a), backups execute b2, start a new view, and reply to the
clients by forwarding the certificate they have received from
the leader. A single message is therefore enough for a client
to trust a reply.

b) Catch-up execution: When a leader of view v knows
about a valid prepared block b1 of a previous view but cannot
directly generate a quorum certificate for b1 (e.g., because it
only received i : 1 ≤ i < f+1 store certificates), it starts
a catch-up execution first by initiating an additional deliver
phase (Fig. 5b) to guarantee that the highest block b1 they
have received is at least stored by one correct node before
extending it. A deliver phase is then triggered (l. 27, Fig. 5a),
and once completed (l. 11, Fig. 5b), the nodes resume as in a
normal execution from the prepare phase (l. 29, Fig. 5a). When
prompted by the leader to execute the deliver phase, the nodes
vote for a block from an unfinished previous view (ll. 1–6,
Fig. 5b). The leader then collects those votes and triggers the
prepare phase (ll. 8–11, Fig. 5b).

c) Piggyback execution: When a leader of view v knows
about a valid prepared block b1 of a previous view and can
reconstruct a quorum certificate because for example it has
received at least f+1 store certificates (l. 17, Fig. 5a), the



leader of view v starts a piggyback execution by proposing a
block b2 that extends b1 (hence the leader piggybacks b1 on
its new proposal b2). After this nodes proceed as in a normal
execution, resulting in the execution of blocks b1 and b2.

D. Storing and Relaying Proposed Blocks

In the previous section, we discussed how OneShot behaves
based on information available to the leader. In this section,
we complement this from the backups’ perspective showcasing
how and what information backups send to leaders in new-view
messages. Precisely, replicas always send some information
computed from the variable prop (l. 3, Fig. 5a) to the leader
of a following view within new-view messages. This variable
is used to store proposals from current or previous leaders and
has the form ⟨b, ϕp, ϕqc⟩. The replicas update prop’s value in
the following cases, otherwise it remains unchanged.

• In all executions, if a node receives a prepare certificate
(i.e., verification that f+1 nodes stored a block, say b) in
the decide phase, then this node records the certificate (l. 45,
Fig. 5a) as the latest proposal from a leader in prop. In this
case, the ϕqc of prop certifies bock b.
• In a normal or piggyback execution, if a node receives

a new proposal for block b from the leader, i.e., a proposal
generated by propose (l. 13, l. 20, or l. 25, Fig. 5a), it stores
that proposal in prop (l. 31, Fig. 5a) where ϕqc now is a
certificate of the block that b extends (which could be either a
prepare certificate or an accumulator). If a decision is reached
in this view, prop is updated as indicated in the first bullet,
otherwise its value remains unchanged.3

• In a catch-up execution, if a node receives a vote certificate
for a block b during the prepare phase, that follows a deliver
phase (sent l. 11, Fig. 5b and received l. 30, Fig. 5a), it stores
the certificate in prop (l. 31, Fig. 5a). In this case, ϕqc is a vote
certificate (and not a prepare certificate or an accumulator).

E. Pulling Blocks

When a node receives a proposal ⟨b, ϕp, ϕqc⟩ from the leader
(l. 29, Fig. 5a), it might happen that it has not received and
executed the block b0 that ϕqc certifies, and which b extends.
In that case it will start voting for b, and at the same time it
will pull b0 so that it can be executed. This pulling mechanism,
presented in Fig. 6, works as follows. If ϕqc is of the form
prep(v′, h, v)σ⃗f+1 , then the node checks whether it has already
executed the block b0 proposed at view v (l. 5), with hash
value h. If it has not, it then checks whether it has received b0
(l. 6), and if not, it needs to pull it from one of the nodes that
signed the certificate, i.e., the nodes that signed σ⃗f+1, one of
which is correct. This is done by piggybacking a pull request
to one of its messages when one of those nodes is the leader
(l. 11). Leaders also piggyback blocks to their messages to
the requester after receiving such a request (l. 16). To achieve
this, the following needs to be added to Fig. 5: pull needs to
be called l. 31 of Fig. 5a; and the variable blocks, a set of

3In this case, the leader of the following view then can either trigger a
catch-up execution with a deliver phase to vote upon b, or a piggy-back
execution if the next leader receive this proposal from at least f+1 nodes.

Fig. 6 Block pulling subprotocol
1: pulling = ∅ blocks = ∅
2:
3: function pull(ϕqc) where ϕqc is for ⟨v, h⟩
4: i⃗d := the ids of the f+1 nodes that certified ϕqc

5: if a block with hash value h has not been executed then
6: if a block with hash value h has not been received then
7: add ⟨v, h, i⃗d⟩ to pulling

8:
9: all replicas

10: when ⟨v, h, i⃗d⟩ ∈ pulling ∧ i ∈ i⃗d is the current leader
11: piggyback the pull request ⟨v, h⟩ to the next message to i
12:
13: as a leader
14: wait for a pull request of the form ⟨v, h⟩ from i
15: b is such that ⟨v, h, b⟩ ∈ blocks
16: piggyback the pull reply ⟨v, b⟩ to the next message to i
17:
18: all replicas
19: wait for a pull reply of the form ⟨v, b⟩
20: remove ⟨v,H(b)⟩ from pulling

triples of the form ⟨v, h, b⟩ such that h = H(b), used by nodes
to store the blocks they have received, needs to be updated l. 31
and l. 45 of Fig. 5a, and l. 5 of Fig. 5b. To prevent potential
denial-of-service attacks by Byzantine nodes, nodes answer at
most once to a pulling request issued by another node, and
only if they have not already sent it the requested block.

F. Optimizations

In addition to the code described above, OneShot features
the following performance optimizations.

a) Avoiding Re-Votes: When a view ends normally, a
node has recorded a prop (see the variable l. 3, Fig. 5a) of the
form ⟨b, ϕp, ϕc⟩, where ϕp is of the form prop(h, v)σ and ϕc

of the form prep(v, h, v)σ⃗f+1 , with h = H(b), i.e., where ϕc

is a prepare certificate of the proposal ϕp itself, and not of
the block extended by ϕp, as discussed in Sec. VI-D. If the
next view ends without any new proposal being made, then
the node times-out and generates a new-view certificate (l. 52,
Fig. 5a) using the above ϕp and ϕc. Without the check l. 24
of Fig. 5a, the deliver phase would be triggered and would
lead to a block already stored by f+1 nodes to be voted upon
again. To avoid this situation, the accumulator checks l. 18 of
Fig. 5c whether the new-view certificate is certified by itself
(see Def. 6), meaning that it is of the form ⟨b, ϕs, ϕqc⟩ and the
hash value in ϕs is the same as the hash value that ϕqc is for,
and tags the generated accumulator with a Boolean indicating
whether that is the case or not.

b) Avoiding sending large blocks: When a backup sends
a new-view certificate to the leader l. 52 of Fig. 5a, it sends
the block of the latest proposal it knows. In case the backup
already has a signature certifying that the leader has already
received this block, the backup can omit re-sending it. This can
for example happen when the backup has received a prepare
certificate l. 42 of Fig. 5a of the form prep(v, h, v)σ⃗, where
the new leader is one of the nodes that has signed σ⃗. In that
case, the backup knows that the new leader has received b, and
instead of sending ⟨b, ϕs, ϕqc⟩, can simply send ⟨ϕs, ϕqc⟩.



c) Preempting catch-up executions: When a leader starts
the deliver phase in a catch-up execution, it also keeps on
waiting for a prepare certificate from the previous view. If it
receives such a certificate before it has started the prepare phase,
it will then stop handling votes from the deliver phase, and
instead directly start a normal execution, thereby preempting
the catch-up execution.

VII. PROOF OF CORRECTNESS

We now prove OneShot’s safety and liveness under partial
synchrony using a similar proof style as in [6].

Lemma 1. OneShot is safe, i.e., correct nodes do not execute
conflicting blocks.

Proof. OneShot constrains the behavior of leaders using several
mechanisms. First, in order to propose a block, a leader has
to use the TEEprepare function to generate a certificate
prop(h, v)σ. This function can be called only once per view:
a certificate is generated only if phase = ph0 after which the
phase is incremented. Therefore in a given view, a leader can
only make one proposal, which is checked by at least one
correct node (f+1 nodes). A check entails (i) verifying that a
proposal is built on its predecessor certificate l. 32 of Fig. 5a,
and (ii) checking the validity of accumulators l. 5 of Fig. 5b.

A block can be executed by a correct node if it is stored
by f+1 nodes using TEEstore. This guarantees that a
store certificate store(view , h, v)σ′ is generated only when
the view v is recorded as the last prepared view using prepv .
Moreover, only proposals with views at least as high as prepv
can be stored. For two conflicting blocks b1 and b2, respectively
proposed at views v1 and v2, to be executed by two correct
nodes, both blocks must be stored by f+1 nodes. Because
the two blocks are conflicting and leaders can only make one
proposal per view, it must be that v1 ̸= v2. Assume w.l.o.g.
that v1 < v2 and let us consider what happens between the two
views. The leader of view v1+1 will either wait until it gets a
prepare certificate from view v1 signed by f+1 nodes (a normal
execution), in which case it must be for b1 because nodes, even
Byzantine nodes, can only store one block per view, and there
must be a node (possibly Byzantine) at the intersection of the
f+1 that stored b1 and this prepare certificate. The leader will
then propose a block that extends b1 (any block not extending
b1 cannot be accepted by f+1 nodes). Otherwise the leader will
collect f+1 new-view messages, and make a proposal based
on those messages. Therefore there is a (possibly Byzantine)
node j that has stored b1 and sent one of these new-view
messages. If v1+1 is a piggyback execution, the leader will
re-construct a prepare certificate for b1 since the new-view
message from j is part of that certificate. In case of a catch-up
execution, the leader calls its accumulator, which generates a
certificate for b1 (the last prepared block) and hence proposes
an extension of b1. Therefore, in case a view between v1 and
v2 ends with f+1 nodes storing a block, this block must be
received and extended by the next leader as it either waits
for a prepare certificate from the previous view, or for f+1
new-view messages. In case a view between v1 and v2 ends

without f+1 nodes storing the block b proposed in that view,
some nodes might still store it and send it in their new-view
messages. The leader of the next view might extend a block
conflicting with b. However, safety is still maintained because
no node has received a prepare certificate to execute b.

OneShot makes use of exponential backoff and leader
election mechanisms [6], which guarantee that after the Global
Stabilization Time (GST) there will eventually be a view with
a correct leader such that all correct nodes stay in that view
long enough to reach agreement. We now prove the progress
part of this statement.

Lemma 2. OneShot is live, i.e., after GST, there exists a
bounded time period T such that if all correct nodes remain
in view v during T and v’s leader is correct, then a block is
executed.

Proof. If the leader of view v receives a prepare certificate from
the previous view for a block b0, it starts a normal execution,
proposing a block b1 that extends b0. All correct nodes will
accept the proposal and store it since the proposal is for the
latest view. The leader is able to collect store certificates from
f+1 nodes because at least the f+1 correct nodes will send
theirs, from which it is then able to form a prepare certificate.
The leader sends this certificate to all nodes, and all correct
nodes will execute the block once they have pulled all previous
blocks (Sec. VI-E).

If the leader receives f+1 new-view messages and is able
to re-construct a prepare certificate from those messages, it
starts a piggyback execution, and proceeds as above.

If the leader receives f+1 new-view messages and cannot
reconstruct a prepare certificate, it calls its accumulator to
generate a certificate for the highest proposal b0. It then starts
the deliver phase to get a vote certificate for b0, thereby starting
a catch-up execution. At least all f+1 correct nodes will vote
for b0, and so the leader is able to collect a vote certificate. It
then extends b0 with its own proposal b1, in which case the
view proceeds similar to a normal execution.

VIII. EVALUATION

We evaluate OneShot’s performance (including the optimiza-
tions described in Sec. VI-F), and compare it to Damysus and
HotStuff. All three protocols are implemented in C++ , and both
Damysus and OneShot make use of Intel SGX enclaves [13]
to run their trusted services. Although our trusted services are
generic enough to be potentially implemented in any trusted
execution environment, we use SGX because its Linux SDK
provides a convenient development environment4. Replicas use
ECDSA signatures with prime256v1 elliptic curves (available
in OpenSSL [48]), and are connected using Salticidae [49].

We deploy the protocols on AWS EC2 machines with one
t2.micro instance per node. Each figure represents the average
of 100 views (10 repetitions of 10 views each). The fault
threshold varies as follows: f ∈ {1, 2, 4, 10, 20, 30}, resulting
in systems of 91 nodes for HotStuff, and 61 nodes for Damysus

4We acknowledge that there are known SGX security vulnerabilities [47].



Fig. 7 Throughput and latency without failures using EU (left), US (middle) and Worldwide (right) regions

(a) EU regions & 0 B pl. (b) US regions & 0 B pl. (c) Worldwide regions & 0 B pl.

(d) EU regions & 256 B pl. (e) US regions & 256 B pl. (f) Worldwide regions & 256 B pl.

and OneShot when f = 30. Blocks contain 400 transactions
each, and all transaction payloads are either of size 0B or
256B. In addition to its payload, a transaction contains 2× 4B
for metadata (a client id, and a transaction id), as well as the
hash value of the previous block of size 32B, thereby adding
40B to each transaction in addition to its payload. Therefore,
in the experiments with 0B payloads, blocks have a size of
400×40B=15.6KB, and in the experiments with 256B payloads,
blocks have a size of 400×(40 + 256)B=115.6KB. Payloads of
0B are used to evaluate the protocols’ overhead, while payloads
of 256B are used to observe the trend when increasing the size
of blocks, which as shown below allows observing a significant
latency increase and throughput decrease for all protocols.

Note that the executions of distributed systems for solving
consensus are often divided into normal case executions (fault-
free executions) and “abnormal” executions (where failures

happen). For example, in addition to its normal case operation,
PBFT includes a view-change operation, which is triggered
when the current leader is suspected to be faulty. Typically, the
normal case execution of these systems (such as [16, 50]) is the
one happening the most in practice. The “abnormal” executions
only happen rarely. Therefore, the focus is often put on making
the normal case executions fast, and on evaluating that they
are indeed fast. Following this approach, the evaluation below
focuses on OneShot’s normal case execution.

As explained in Sec. V, OneShot’s “abnormal” executions
are the catch-up and piggyback executions that can happen for
example when substantial network disruptions slow down some
nodes, which can be compounded with the effect of Byzantine
nodes being deliberately slow. However, such scenarios are rare
in practice and are intrinsic to any (fault-tolerant) distributed
system. Furthermore, the preemption mechanism presented in



Sec. VI-F allows preempting such catch-up and piggyback
executions with improved network conditions.

We now present three sets of experiments, which allow
comparing OneShot’s latency and throughput with those of
Damysus and HotStuff, under different network conditions: one
where nodes are deployed across regions in Europe, where the
largest average network latency is 29ms; one where nodes
are deployed across regions in the US, where the largest
average network latency is 65ms; and one where nodes are
deployed across regions across the world, where the largest
average network latency is 278ms. As we can observe from
those experiments, OneShot performs better than Damysus and
HotStuff in all considered scenarios. Note that the performance
improvement over Damysus is essentially due to the reduced
number of communication phases that comes with no additional
TEE overhead, while the simplifications of the trusted services
discussed in Sec. VI-A have little impact on this improvement.
Furthermore, the results are broadly on a par with each other
in all three scenarios.

a) EU deployments: Fig. 7 shows experiments with nodes
deployed across 4 regions in Europe (Ireland, London, Paris,
and Frankfurt, where the largest average latency is between
Ireland and Frankfurt and is 29ms), comparing the throughput
and latency (measured by the replicas) of the 3 protocols
mentioned above. We observe in these figures the following
throughput gains and latency decreases over HotStuff and
Damysus, where an entry X(Y,Z) means that the gain or
decrease is on average X%, with values ranging from Y% to
Z%. The throughput gains are as follows:

HotStuff Damysus
0B +439% (244, 647) +144% (59, 190)
256B +151% (119, 174) +36% (23, 43)

while the latency decrease are as follows:

HotStuff Damysus
0B −79% (70, 86) −57% (37, 65)
256B −60% (54, 63) −26% (18, 30)

b) US deployments: Fig. 7 shows experiments with nodes
deployed across 4 regions in the US (North Virginia, Ohio,
North California, and Oregon, where the largest average latency
is between Oregon and North Virginia and is 65ms). The
throughput gains are as follows:

HotStuff Damysus
0B +1242% (340, 1938) +150% (56, 201)
256B +500% (212, 820) +35% (27, 44)

Latency decreases:

HotStuff Damysus
0B −89% (77, 95) −59% (36, 66)
256B −80% (67, 90) −26% (21, 30)

c) Worldwide deployments: Fig. 7 shows experiments
with nodes deployed across 11 regions across the world (4 in
the US in North Virginia, Ohio, North California, and Oregon;
4 in Europe in Ireland, London, Paris, and Frankfurt; 2 in Asia

in Singapore and Sydney; and 1 in Canada Central; where the
largest average latency is between Sydney and Paris and is
278ms). The throughput gains are as follows:

HotStuff Damysus
0B +338% (127, 602) +131% (62, 212)
256B +101% (57, 154) +30% (16, 45)

Latency decreases:

HotStuff Damysus
0B −73% (55, 85) −53% (38, 68)
256B −48% (36, 60) −22% (14, 31)

d) Unstable and Degraded Network Conditions: While
theoretically it can happen that OneShot provides worse
performance than Damysus under highly unstable and degraded
network conditions, as explained above, such scenarios are rare
in practice. To demonstrate how seldom such cases happen
in practice, we ran local experiments with 256B payloads,
10ms network latency, and artificially triggered catch-up and
piggyback executions, that are triggered either 25%, 33% or
50% of the views. The only scenario where the performance of
OneShot dropped to be the same as that of Damysus was when
the worst case catch-up execution of OneShot was artificially
triggered 50% of the time. In that case, OneShot’s throughput
became comparable with Damysus’s, while still being higher
than HotStuff’s. This is in part due to the fact that those
executions can potentially retransmit large blocks. In practice
it would be exceedingly rare for this situation to happen as
triggering catch-up executions requires substantially degraded
network conditions.

IX. CONCLUSION

We described OneShot, the first streamlined hybrid BFT
protocol that achieves the minimal number of communication
rounds. It does so by leveraging the knowledge available to
the nodes about the state of the system to adapt executions:
normal and piggyback executions are triggered when enough
nodes know about the latest proposal, leading to one and
two accepted blocks, respectively; and catch-up executions are
triggered when there might not be a correct node that holds
the latest proposal, leading to two accepted blocks. We showed
that, OneShot indeed outperforms both Damysus and HotStuff,
and proved its correctness. As other streamlined protocols,
OneShot can be seamlessly turned into a chained version.
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