
Open Bar — a Brouwerian Intuitionistic Logic1

with a Pinch of Excluded Middle2

Mark Bickford3

Cornell University, USA4

Liron Cohen5

Ben-Gurion University, Israel6

Robert L. Constable7

Cornell University, USA8

Vincent Rahli9

University of Birmingham, UK10

Abstract11

One of the differences between Brouwerian intuitionistic logic and classical logic is their treatment of12

time. In classical logic truth is atemporal, whereas in intuitionistic logic it is time-relative. Thus, in13

intuitionistic logic it is possible to acquire new knowledge as time progresses, whereas the classical14

Law of Excluded Middle (LEM) is essentially flattening the notion of time stating that it is possible15

to decide whether or not some knowledge will ever be acquired. This paper demonstrates that,16

nonetheless, the two approaches are not necessarily incompatible by introducing an intuitionistic17

type theory along with a Beth-like model for it that provide some middle ground. On one hand18

they incorporate a notion of progressing time and include evolving mathematical entities in the19

form of choice sequences, and on the other hand they are consistent with a variant of the classical20

LEM. Accordingly, this new type theory provides the basis for a more classically inclined Brouwerian21

intuitionistic type theory.22

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation23

→ Constructive mathematics24

Keywords and phrases Intuitionism, Extensional type theory, Constructive Type Theory, Realiz-25

ability, Choice sequences, Classical Logic, Law of Excluded Middle, Theorem proving, Coq26

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.2127

1 Introduction28

Classical logic and intuitionistic logic are commonly viewed as distinct philosophies. Much29

of the difference between the two philosophies can be attributed to the way they handle the30

notion of time. In intuitionistic logic time plays a major role as the intuitionistic notions of31

knowledge and truth evolve over time. In particular, the seminal concept of intuitionistic32

mathematics as developed by Brouwer is that of infinitely proceeding sequences of choices33

(called choice sequences) from which the continuum is defined [7, Ch.3]. Choice sequences34

are a primitive concept of finite sequences of entities (e.g., natural numbers) that are never35

complete, and can always be further extended with new choices [28; 8; 47; 48; 33; 49;36

38]. These sequences can be “free” in the sense that they are not necessarily procedurally37

generated. This manifestation of the evolving concept of time in intuitionistic logic entails a38

notion of computability that goes far beyond that of Church-Turing. In fact, the concept39

of evolving knowledge in intuitionistic logic is grounded in Krikpe’s Schema, which in turn40

relies on the notion of choice sequences, and is inconsistent with Church’s Thesis [19, Sec.5].41

Classical logic, on the other hand, is time-invariant. That is, its notions of knowledge and42

truth are constant and so the aspect of time is, intuitively speaking, flattened. As mentioned43

by van Atten, “Many people believe, unlike Brouwer, that mathematical truths are not44

© Mark Bickford and Liron Cohen and Robert L. Constable and Vincent Rahli;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 21; pp. 21:1–21:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CSL.2021.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Open Bar

tensed but eternal—either because such truths are outside time altogether (atemporal) or45

because they hold in all time (omnitemporal)” [7, p.19].46

This critical difference between the two philosophies has been used extensively to refute47

classical results in intuitionistic logic. Brouwer himself used his concept of choice sequences to48

provide weak counterexamples to classical results such as “any real number different from 0 is49

also apart from 0” [26, Ch.8]. Those counterexamples are called weak in the sense that they50

depend on the existence of formulas that have not been either proven or disproven yet (e.g.,51

the Goldbach conjecture). By defining a choice sequence in which the value 1 can only be52

picked once such an undecided conjecture has been resolved (proved or disproved), one could53

resolve this undecided conjecture using the Law of Excluded Middle (LEM), leading to a weak54

counterexample of LEM [13, Ch.1, Sec.1]. Kripke [34, Sec.1.1] also used the unconstrained55

nature of choice sequences to refute other classical results, namely Kuroda’s conjecture and56

Markov’s principle in Kreisel’s FC system [30].1 A constructive version of LEM in which57

the operators are interpreted constructively is also false in realizability theories such as the58

CTT constructive type theory [15; 5] because it allows deciding the undecidable halting59

problem [42, Sec.6.3] (therefore not relying on undecided conjectures). However, a weaker60

version of LEM that does not require providing a realizer of either its left or right disjuncts,61

was proved to be consistent with CTT [18; 29; 42, Sec.6.3]. But using a similar technique62

to Brouwer’s, even this weak version of LEM was shown to be inconsistent with BITT, an63

intuitionistic extension of CTT with a computable notion of choice sequences [10, Appx.A].64

The use of the growing-over-time nature of choice sequences to refute classical axioms,65

and in particular LEM which is a key component of classical reasoning, seems to indicate an66

incompatibility between classical logic and intuitionistic logic. However, in this paper we67

show that this does not have to be the case. To this end, we present a relaxed model of time68

that mitigates the two approaches. Namely, on one hand it supports the evolving nature of69

choice sequences, and on the other hand it enables variants of the classical LEM.70

Concretely, we present OpenTT, a novel intuitionistic extensional type theory that71

incorporates the Brouwerian notion of choice sequences, and is inspired by BITT [10].72

OpenTT goes beyond and departs from BITT in several ways. First, it is validated w.r.t.73

a novel Beth-like model, which we call the open bar model, that is significantly simpler74

than the one presented in [10]. Beth models were originally developed to provide meaning75

to intuitionistic formulas [50; 9; 23, Sec.145; 21, Sec.5.4], and they have proven especially76

well-suited to interpret choice sequences [19]. In such models, formulas are interpreted w.r.t.77

infinite trees of elements (such as numbers). The models are typically formulated using a78

forcing interpretation where the forcing conditions are finite elements of those trees that79

provide meaning to choice sequences at a given point in time. Allowing access within the80

logic to the infinitely proceeding elements of the forcing layer, i.e., the branches of the Beth81

trees formulas are interpreted against, enables the use of the undecided nature of those82

elements to derive the negation of otherwise classically valid formulas such as LEM. The83

open bar model sufficiently weakens the “undecided” nature of those elements to enable84

validating a variant of LEM.85

Another benefit of OpenTT over BITT is that the notion of time induced by the new86

model is flexible enough to capture an intuitionistic theory of computable choice sequences,87

1 This method to refute classical axioms was reused via forcing methods (see, e.g., [20, Sec.7.2.4] for
the relation between forcing and choice sequences). E.g., the independence of Markov’s Principle with
Martin-Löf’s type theory was proven using a forcing method where the “free” nature of forcing conditions
replaces the “free” nature of free choice sequences in Kripke’s proof [16].

M. Bickford and L. Cohen and R. L. Constable and V. Rahli 21:3

and in particular the Axiom of Open Data (a continuity axiom) that was missing from88

BITT [10] and is a key axiom of choice sequence theories. Therefore, OpenTT provides a89

computational setting for exploring the implications of such entities, for example, it can90

enable the development of constructive Brouwerian real number theories. At the same time, it91

also enables validating variants of the classical LEM. In other words, OpenTT together with92

the open bar model presented in the paper enable a more relaxed notion of time, providing a93

basis for a more classically-inclined Brouwerian intuitionistic theory.94

Contributions and roadmap. Sec. 2 describes the core syntactic components of the type95

theory OpenTT. Sec. 3 presents the novel open bar semantic model, which is used to validate96

OpenTT. Then, OpenTT is shown to capture both a theory of choice sequences (Sec. 4), as97

well as a variant of LEM (Sec. 5). Sec. 6 concludes by discussing related and future work.98

All the results in the paper are formalized in Coq, see https://github.com/vrahli/NuprlInCoq/99

tree/ls3/, and we provide clickable hyperlinks to the formalization throughout the paper.100

2 OpenTT and Choice Sequences101

OpenTT is an intuitionistic extensional dependent type theory. It is composed of an untyped102

programming language, and a dependent type system that associates types with programs.103

A type T , viewed as a proposition, is said to be true if it is inhabited, i.e., if some program t104

has type T—in which case t is said to realize T . This connection is made formal through a105

realizability model described in Sec. 3, where types are interpreted as partial equivalence106

relations on programs. In addition to standard program constructs, OpenTT contains107

computable choice sequences.108

Choice sequences are the seminal component in Brouwer’s intuitionistic theory, and109

the one manifesting notions of time and growth over time. Choice sequences are infinitely110

proceeding sequences of elements, which are chosen over time from a previously well-defined111

collection. There are two main classes of choice sequences, which are often referred to as112

lawlike and lawless [46]. The lawlike ones are “completed constructions” [46, Sec.1.2], where113

the choices must be chosen w.r.t. a pre-determined “law” (e.g., a general recursive program).114

The lawless ones, by contrast, are never fully completed and can always be extended over115

time with further choices that are not constrained by any law, that is, they can be chosen116

“freely” (hence the name free choice sequences). In this paper we focus on a theory with free117

choice sequences, which is a key distinguishing feature in Brouwer’s intuitionistic logic, and118

a manifestation of the fact that time is an essential component of Brouwer’s logic because119

unlike lawlike sequences that are time-invariant, lawless ones keep on evolving over time.120

The notion of time in OpenTT is captured through the use of worlds. The worlds121

discussed in Sec. 2.2 constitute, as is standard practice, a poset, and are concretely defined122

as states that store definitions as well as choice sequences’ choices. Thus, a world captures a123

state at a given point in time. The evolving nature of time is then captured via a notion of124

world extension, allowing to add new definitions, choice sequences, and choices.125

OpenTT is inspired by BITT [10]. To make the paper self-contained we shall also126

review the components that are identical to those in BITT, noting the differences, which we127

summarize here. In addition to the standard inference rules for the standard types that are128

listed in Fig. 1 (which are discussed in Appx. B), OpenTT also contains inference rules that129

capture a theory of choice sequences, as described in Sec. 4. Among those, the Axiom of130

Open Data is new compared to BITT. Another key difference between OpenTT and BITT is131

that the former also contains a variant of the Law of Excluded Middle (the salient principle132

CSL 2021

https://github.com/vrahli/NuprlInCoq/tree/ls3/
https://github.com/vrahli/NuprlInCoq/tree/ls3/
https://github.com/vrahli/NuprlInCoq/tree/ls3/

21:4 Open Bar

Figure 1 Syntax of OpenTT
η ∈ CSName (C.S. name) δ ∈ Abstraction (abstraction)
v ∈ Value ∶∶= vt (type) ∣ λx.t (lambda) ∣ ⟨t1, t2⟩ (pair)

∣ ⋆ (axiom) ∣ inl(t) (left injection) ∣ inr(t) (right injection)
∣ i (integer) ∣ η (choice sequence)

vt ∈ Type ∶∶= Πx∶t1.t2 (product) ∣ Σx∶t1.t2 (sum)
∣ Ui (universe) ∣ t1 = t2 ∈ t (equality)
∣ t1+t2 (disjoint union) ∣ {x ∶ t1 ∣ t2} (set)
∣ N (numbers) ∣ t1 < t2 (less than)
∣ N� (T.S. numbers) ∣ t1 <� t2 (T.S. less than)
∣ t1#t2 (free from definitions) ∣ Free (choice sequences)
∣ �t (time squashing)

t ∈ Term ∶∶= x (variable) ∣ t1 t2 (application)
∣ v (value) ∣ let x, y = t1 in t2 (spread)
∣ fix(t) (fixpoint) ∣ case t1 of inl(x)⇒ t2 | inr(y)⇒ t3 (decide)
∣ wDepth (world depth) ∣ if t1=t2 then t3 else t4 (equality test)
∣ δ (abstraction)

of classical logic), described in Sec. 5, which is not valid in the latter.2133

2.1 Syntax134

OpenTT’s programming language is an untyped, call-by-name λ-calculus, whose syntax is135

given in Fig. 1, and operational semantics in Sec. 2.3. For simplicity, numbers are considered136

to be primitive, and we write n for an OpenTT number, where n is a metatheoretical number.137

A term is either (1) a variable; (2) a canonical term, i.e., a value; or (3) a non-canonical138

term. Non-canonical terms are evaluated according to the operational semantics presented in139

Sec. 2.3. As discussed below, abstractions of the form δ can be unfolded through definitions,140

and are otherwise left abstract for the purpose of this paper. In what follows, we use all141

letters as metavariables and their types can be inferred from the context.142

Choice sequences A choice sequence is identified with its name, of the form η, which for the143

purpose of this paper is an abstract type equipped with a decidable equality. For simplicity144

we only discuss choice sequences of numbers, while our Coq formalization supports more145

kinds of choice sequences. OpenTT includes a comparison operator on choice sequences,146

if t1=t2 then t3 else t4, which as defined in Sec. 2.3 reduces to the then branch if t1 and t2147

are two choice sequences with the same name, and otherwise reduces to the else branch.148

Types Types are syntactic forms that are given semantics in Sec. 3 via a realizability149

interpretation. The type system contains standard types such as dependent products of the150

form Πx∶t1.t2 and dependent sums of the form Σx∶t1.t2. For convenience we often write151

a =T b for the type a = b ∈ T ; t ∈ T for t =T t; Πx1, . . . , xn∶t1.t2 for Πx1∶t1. . . .Πxn∶t1.t152

(and similarly for the other operators with binders); t1 → t2 for the non-dependent Π type;153

True for (0 = 0 ∈ N); False for (0 = 1 ∈ N); and ¬T for (T → False).154

OpenTT also includes types that allow capturing specific aspects of choice sequences. In155

particular, OpenTT includes a type Free of free choice sequences. It also includes the type156

t#T that indicates that t is a sealed member of T in the sense that it is equivalent to a term157

2 Precisely establishing the relationship between the two systems is left for future work.

M. Bickford and L. Cohen and R. L. Constable and V. Rahli 21:5

Figure 2 Operational semantics of OpenTT
(λx.F) a ↦w F[x\a]
fix(v) ↦w v fix(v)

η(i) ↦w w[η][i], if η has a i’s choice in w
wDepth ↦w ∣w∣

let x, y = ⟨t1, t2⟩ in F ↦w F[x\t1; y\t2]
case inl(t) of inl(x)⇒ F | inr(y)⇒ G ↦w F[x\t]
case inr(t) of inl(x)⇒ F | inr(y)⇒ G ↦w G[y\t]
if η1=η2 then t1 else t2 ↦w ti, where i = 1 if η1 = η2, and i = 2 otherwise

u in T , which is syntactically free from abstractions and choice sequences, which we denote158

by synSealed(u) here (see Sec. 3 for more details). Those types are used to state axioms of159

the theory of choice sequences in Sec. 4.1.160

2.2 Worlds161

OpenTT’s computation system is equipped with a library of definitions in which we also162

store choice sequences. We here call the library a world. A definition entry is a pair of an163

abstraction δ and a term t, written δ == t, which stipulates that δ unfolds to t.3 A choice164

sequence entry is a pair of a choice sequence name, and a list of choices (i.e. terms).4 For165

example, the pair ⟨η, [4, 8, 15]⟩ is an entry for the choice sequence named η, where [4, 8, 15]166

is its list of choices so far. A world is therefore a state that records, at a given point in time,167

all the current definitions together with all the choice sequences that have been started so168

far, along with the choices that have been made so far for those choice sequences.169

▶ Definition 1 (Worlds). A world w is a list of entries, where an entry is either a definition170

entry or a choice sequence entry. We denote by World the type of worlds.171

Next we introduce some necessary operations and properties on worlds.172

▶ Definition 2 (World operations and properties). Let w ∈ World. (1) ∣w∣ denotes w’s depth,173

that is the number of choices of its longest choice sequence. (2) w is called singular, denoted174

sing(w), if it does not have two entries with the same name.175

The depth of worlds is used in Sec. 4.1 to approximate the modulus of continuity of a176

predicate at a choice sequence; while sing is used in Lem. 14.177

A world (or a particular snapshot of the library) can be seen as a the state of knowledge at178

a given point in time. It may grow over time by adding new definitions, new choice sequence179

entries, or more terms to an already existing choice sequence entry. Accordingly, a world w2180

is said to extend a world w1 if it contains more entries and choices, without overriding the181

ones in w1. Note that the extension relation on worlds defines a partial order on World.182

▶ Definition 3 (World extension). A world w2 is said to extend w1, denoted w2 ⪰ w1, if w1183

is a list of the form [e1, . . . , en] and w2 is a concatanation of some world w and [e′1, . . . , e′n],184

where for all 1 ≤ i ≤ n, either ei = e
′
i or ei and e

′
i are choice sequence entries with the same185

name such that the list in ei is an initial segment of that in e′i.186

3 As the precise form of definitions is irrelevant here, we refer the interested reader to [43].
4 Our formalization also includes mechanisms to impose further restrictions on choice sequences which

are not discussed here. See computation/library.v for further details.

CSL 2021

https://github.com/vrahli/NuprlInCoq/blob/ls3/computation/library.v

21:6 Open Bar

2.3 Operational Semantics187

Fig. 2 presents OpenTT’s small-step operational semantics. It defines the t1 ↦w t2 ternary188

relation between two terms and a world, which expresses that t1 reduces to t2 in one step of189

computation w.r.t. the world w. We omit the congruence rules that allow computing within190

terms such as: if t1 ↦w t2 then t1(u)↦w t2(u).191

The application η(i) of a choice sequence η to a number i reduces to w[η][i], i.e., η’s i’s192

choice recorded in w, if such a choice exists, and otherwise the computation gets stuck. Note193

that even though this is a call-by-name calculus, it includes the following congruence rule to194

access choices of choice sequences: if t1 ↦w t2 then η(t1)↦w η(t2).195

In OpenTT we also allow computing the depth of a world w, that is, the number of196

choices recorded in its longest choice sequence entry (this is an addition to BITT). The197

nullary expression wDepth reduces to ∣w∣ in one computation step. It is used to realize an198

axiom of the theory of choice sequences in Sec. 4.1.2. It is important to note that before199

introducing this new computation, all computations were time-invariant computations in the200

sense that if a term t computes to a value v in a world w1, then it will compute to a value201

computationally equivalent5 to v in any world w2 ⪰ w1. For example, for numbers, if a term202

t computes to a number n in some world w, then it also computes to n in all extensions of w.203

Such terms are called time-invariant terms. It is straightforward to see that wDepth is not204

time-invariant, as it can compute to different numbers in different extensions of a world. For205

example, if w1 contains only one choice sequence η for which 4 choices have been made, then206

the expression wDepth reduces to 4 in w1. Now, adding another choice to η gives us a world207

w2 ⪰ w1 in which wDepth reduces to 5. This operator is said to be weakly monotonic in the208

sense that if it returns k in w1, and w2 ⪰ w1, then it can only return a value k′ ≥ k in w2.209

We next introduce types capturing the concept of time-invariance.210

2.4 Space Squashing and Time Squashing211

OpenTT includes a squashing mechanism, which we use (among other things) to validate some212

of the axioms in Sec. 4 and 5. It erases the evidence that a type is inhabited by squashing it213

down to a single constant inhabitant using set types [15, pp.60]: ↓T = {x ∶ True ∣ T}. The214

only member of this type is the constant ⋆, which is True’s single inhabitant. The constant ⋆215

inhabits ↓T if T is true/inhabited, but we do not keep the proof that it is true. See Appx. C216

or [41] for more details on squashing.217

In addition to the space squashing operator OpenTT also features another form of218

squashing called time squashing. As discussed in Sec. 2.3, some computations are time-219

invariant, while others, such as wDepth, are not. These two kinds of computations have220

different properties,6 and this distinction should be captured at the level of types. To this221

end, OpenTT includes type constructors such as the time-squashing operator �. Given a222

type T , one can build the type �T , that in addition to T ’s members also contains terms that223

behave like members of T at a particular instant of time (in a particular world).224

For the purpose of this paper, we only focus on a particular form of time-squashing for225

numbers, omitting the general construction.7 Accordingly, OpenTT features a N� type of226

5 For a precise definition of computational equivalence, see [27].
6 E.g., if t is a time-invariant term that computes to a number m less than n in a world w, then t will

also be less than n in all w ′
⪰ w. However, if t is a non-time-invariant number, t might be less than n in

some extensions of w, and larger in others.
7 See per_qtime in per/per.v for further details on �’s sematics.

https://github.com/vrahli/NuprlInCoq/blob/ls3/per/per.v

M. Bickford and L. Cohen and R. L. Constable and V. Rahli 21:7

non-time-invariant (or time-squashed) numbers. While N is required to only be inhabited227

by time-invariant terms, N� is not, and allows for terms (such as wDepth) to compute to228

different numbers in different world extensions. For example, N� is allowed to be inhabited229

by a term t that computes to 3 in some world w, and to 4 in some world w ′
⪰ w. This230

distinction between N and N� will be critical in the validation of one of the choice sequence231

axioms in Sec. 4.1.2, where we make use of the depth of worlds which is not time-invariant.232

In addition to the time-squashed N� type, OpenTT features a less than relation t1 <� t2233

on time-squashed numbers, whose semantics is described in Sec. 3. Although similar to the234

t1 < t2 type, as for N�, t1 <� t2 differs by not requiring t1 and t2 to be time-invariant.235

3 Open Bar Realizability Model236

This section presents a novel Beth-style model, called the open bar model, used below to237

validate OpenTT, which as mentioned above contains both a theory of choice sequences and238

a weak version of the classical LEM. As is standard in Beth models (or Kripke models [35;239

34]), formulas are interpreted w.r.t. worlds. Using Beth models such as the one used in [10],240

a syntactic expression T is given meaning at a world w if there exists a collection B of worlds241

that covers all possible extensions of w, such that T corresponds to a legal type in all worlds242

in B. Such a collection is called a bar of w. In these models one has to construct such bars243

to prove that expressions are types or that types are inhabited. For example, to prove that244

choice sequences have type N → N, given a choice sequence η and a number n, one must245

exhibit a bar where η(n) indeed computes to a number.246

In this paper we take a different approach, one that avoids having to build bars altogether,247

and only requires building individual extensions of worlds. Intuitively, instead of requiring248

that a property P be true at a bar of a given world w, we require that for each extension w ′
249

of w, P holds for some extension of w ′. Therefore, a major distinction between standard Beth250

models and our model is that in the former the semantics of a logical formula is computed251

based on the interpretation of that formula at a bar for the current world, while the latter only252

requires that in any possible extension of the current world there is always a further extension253

where the formula is given some meaning. Thus, our model only requires exhibiting open254

bars in the sense that not all infinite extensions of the current world necessarily have a finite255

prefix in the bar. Therefore, open bars are derivable from “standard” bars, but the converse256

does not hold. For the proof that choice sequences have type N→ N, this means that given257

an extension w ′ of the current world w, one must exhibit a further extension w ′′ where η(n)258

computes to a number, which can be done by constructing w ′′ in which η contains at least259

n + 1 choices.8 As mentioned, in standard Beth models, in addition to this construction one260

has to also construct the bar. Thus, the notion of open bars seems to provide a more relaxed261

connection between truth and constructions than in the traditional Beth-like interpretation262

of intuitionistic logic, where one must construct bars to establish validity. By not having263

to make the full construction, the open bar model provides some middle ground between264

classical and intuitionistic logic. Furthermore, note that in a standard Beth model, depending265

on how the bar is defined, it is not always possible to constructively exhibit a point in the266

bar, whereas in the open bar model, the existence of the open bar directly gives a point at267

the open bar. This makes the construction of building bars from other bars generally simpler.268

We start by introducing the concept of open bars, which is used below to interpret types.269

270

8 See rules/rules_choice1.v for a proof of this statement.

CSL 2021

https://github.com/vrahli/NuprlInCoq/tree/ls3/rules/rules_choice1.v

21:8 Open Bar

▶ Definition 4 (Open Bars). Let w be a world and f be a (metatheoretical) predicate on
worlds. We say that f is true at an open bar of w if:

O(w, f) = ∀EXT(w, λw ′
.∃EXT(w ′

, λw ′′
.∀EXT(w ′′

, f)))
where ∀EXT(w, f) = ∀w ′

. w ′
⪰ w ⇒ f(w ′)

∃EXT(w, f) = ∃w ′
. w ′

⪰ w ∧ f(w ′)

Informally, an open bar can be thought of as an object such as the one271

depicted on the right. There, the large solid blue nodes indicate worlds272

which we already know to be at the bar, while the small hollow nodes273

indicate worlds not yet at the bar from which the open bar provides274

a way to obtain worlds at the bar. For example, given the root of the275

tree, the open bar might give us the lowest solid blue world w. Given276

a world w ′, such as the one left to w, where different choices have been277

made from w, we can ask the bar to produce another world at the bar compatible with w ′
278

(i.e., that extends w ′), and we might get the middle solid blue world.279

The open bar semantics bears resemblance to the well known double negation transla-280

tion [25] in standard Kripke models [35; 34]. Informally, in Kripke interpretations, A→ B is281

interpreted as follows: JA → BKw = ∀EXT(w, λw ′
.JAKw′ ⇒ JBKw′). In such a semantics, the282

formula ¬¬A is then interpreted as ∀EXT(w, λw ′
.¬∀EXT(w ′

, λw ′′
.¬JAKw′′)), which is classically283

equivalent to ∀EXT(w, λw ′
.∃EXT(w ′

, λw ′′
.JAKw′′)). Nonetheless, our interpretation has two284

benefits over such a double negation translation: it is fully constructive, and it internalizes285

this double-negation/open-bar operator within the semantics, thereby avoiding having to use286

it explicitly in the theory. Note that this correspondence is unique to the open bar models,287

and does not hold in BITT’s closed-bar model.288

We now use open bars to provide meaning to OpenTT’s types. As was done for similar289

theories [3; 4; 18; 6; 10], types are interpreted here by Partial Equivalence Relations (PERs)290

on closed terms. This PER semantics can be seen as an inductive-recursive definition291

of (see [22; 17] for similar construction methods):9 (1) an inductive relation T1≡wT2 that292

expresses type equality; (2) a recursive function t1≡wt2∈T that expresses equality in a type.293

The inductive definition T1≡wT2 has one constructor per OpenTT type plus one additional294

constructor giving meaning to a type at a world w, based on its interpretation at an open295

bar of w (see Def. 6). Therefore, the recursive function t1≡wt2∈T has as many cases as there296

are constructors for T ≡wT
′. The rest of this section presents some of these constructors and297

cases that illustrate key aspects of the new semantics. For simplicity we present them as298

equivalences, which are derivable from the formal definition. The others are defined similarly299

in Appx. A or in per/per.v. We first define some useful abstractions.300

▶ Definition 5. A term t is said to inhabit or realize a type T at w if t≡wt∈T . We further301

use the following notations: inh(w, T) for ∃t. t≡wt∈T ; a ⇓w b for ‘a computes to b w.r.t.302

w’, i.e., the reflexive and transitive closure of ↦; and a ⤋w b for ∀EXT(w, λw ′
.a ⇓w′ b) which303

captures that a is time-invariant.10304

As mentioned above, a key aspect of our open bar model is that it is defined to be closed305

under open bars, allowing interpreting all types and their PERs in terms of open bars.306

9 Due to the limited support for induction-recursion in Coq, our formalization instead combines these
two definitions into a single inductive definition following the method described in [4; 14], which results
in the same theory, however defined in a slightly more convoluted way that the one defined here.

10We here omit some technical details; see ccomputes_to_valc_ext in per/per.v for the full definition.

https://github.com/vrahli/NuprlInCoq/tree/ls3/per/per.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/per/per.v

M. Bickford and L. Cohen and R. L. Constable and V. Rahli 21:9

▶ Definition 6 (Open Bar Closure). OpenTT’s semantics is closed under open bars as follows:

T1≡wT2 ⟺ O(w, λw ′
.∃T ′1, T

′
2. T1 ⤋w′ T

′
1 ∧ T2 ⤋w′ T

′
2 ∧ T

′
1≡w′T

′
2)

t1≡wt2∈T ⟺ O(w, λw ′
.∃T ′. T ⤋w′ T

′ ∧ t1≡w′t2∈T
′)

Let us now turn to the semantics of key types of OpenTT under the open bar semantics.307

We start with demonstrating the N type which is in the core types of CTT.308

▶ Definition 7 (Time-Invariant Numbers). The N type is interpreted as follows:

N≡wN ⟺ True t≡wt
′
∈N ⟺ O(w, λw ′

.∃n. t ⤋w′ n ∧ t′ ⤋w′ n)

Note the use of ⤋ above, since such numbers are required to be time-invariant (see Sec. 2.4).309

In the next definition the time-invariant constraint is relaxed, allowing inhabitants of N�310

to compute to different numbers in different world extensions. For example, a term that311

computes to 3 in the current world w and to 4 in all (strict) extensions of w, inhabits N�312

but not N. While N is a subtype of N�, in the sense that all equal members of N are equal313

members of N�, the converse does not hold. For example, wDepth is in N� but not in N.314

▶ Definition 8 (Time-Squashed Numbers). The N� type is interpreted as follows:

N�≡wN� ⟺ True t≡wt
′
∈N� ⟺ O(w, λw ′

.sameNats(w ′
, t, t

′))
where sameNats(w, t, t′) = ∃k. t ⇓w k ∧ t′ ⇓w k

As mentioned in Sec. 2.4, in addition to the N� type, OpenTT also provides a ‘less-than’315

operator on such numbers, which we interpret as follows.316

▶ Definition 9 (Time-Squashed Less-Than). The t1 <� t2 type is interpreted as follows:

t1 <� t2≡wt
′
1 <� t

′
2 ⟺ O(w, λw ′

.sameNats(w ′
, t1, t

′
1) ∧ sameNats(w ′

, t2, t
′
2))

t≡wt
′
∈t1 <� t2 ⟺ O(w, λw ′

.∃k1, k2. t1 ⇓w′ k1 ∧ t2 ⇓w′ k2 ∧ k1 < k2)

Note that given t1 and t2 in N� that compute to 3 and 4 respectively in some world, one317

cannot derive t1 <� t2 as t1 and t2 could keep alternating between 3 and 4 such that t2318

computes to 4 when t1 computes to 3, and vice versa. Though general rules for inferring such319

inequalities can be formalized11, in what follows we only need a concrete instance of t1 <� t2320

in which t1 ∈ N and t2 = wDepth ∈ N� (see Sec. 4.1.2, which makes use of wDepth ∈ N� to321

capture the modulus of continuity of a predicate at a choice sequence). In this case such322

alternations are avoided since wDepth is weakly monotonically increasing.323

OpenTT also includes a type of free choice sequences, interpreted as follows.324

▶ Definition 10 (Choice Sequences). The Free type is interpreted as follows:

Free≡wFree ⟺ True t≡wt
′
∈Free ⟺ O(w, λw ′

.∃η. t ⤋w′ η ∧ t′ ⤋w′ η)

As mentioned in Sec. 2.1, OpenTT includes a t#T type, which states that the term t is a325

sealed member of T . For example True#Ui, False#Ui, and N#Ui are all inhabited types,326

whereas (η ∈ Free)#Ui is not inhabited because this type mentions the choice sequence η.327

Note that t#T and synSealed(t) did not appear in BITT.328

11Technically, our formalization includes both weakly monotonically increasing and decreasing numbers
(denoted here N∧� and N∨� , respectively) allowing one to derive t1 <� t2 in w when t1 ∈ N∨� , t2 ∈ N∧� , and
t2 computes to a number larger than t1 in w.

CSL 2021

21:10 Open Bar

▶ Definition 11 (Free From Definitions). The a#A type is interpreted as follows:

a#A≡wb#B ⟺ A≡w′B ∧ a≡w′b∈A

t≡wt
′
∈a#A ⟺ O(w, λw ′

.∃x. a≡w′x∈A ∧ synSealed(x))

As mentioned above, the other type operators of OpenTT are interpreted in a similar329

fashion. This semantics of OpenTT satisfies the following properties, which are the standard330

properties expected for such a semantics [3; 18], including the monotonocity and locality331

properties expected for a possible-world semantics [50; 23; 21, Sec.5.4]—here monotonicity332

refers to types, and not to computations.12333

▶ Proposition 12 (Type System Properties). The T1≡wT2 and a≡wb∈T relations satisfy the
following properties (where free variables are universally quantified):

transitivity: T1≡wT2 ⇒ T2≡wT3 ⇒ T1≡wT3 t1≡wt2∈T ⇒ t2≡wt3∈T ⇒ t1≡wt3∈T

symmetry: T1≡wT2 ⇒ T2≡wT1 t1≡wt2∈T ⇒ t2≡wt1∈T

computation: T ≡wT ⇒ T ⤋w T
′
⇒ T ≡wT

′
t≡wt∈T ⇒ t ⤋w t

′
⇒ t≡wt

′
∈T

monotonicity: T1≡wT2 ⇒ w ′
⪰ w ⇒ T1≡w′T2 t1≡wt2∈T ⇒ w ′

⪰ w ⇒ t1≡w′t2∈T

locality: O(w, λw ′
.T1≡w′T2)⇒ T1≡wT2 O(w, λw ′

.t1≡w′t2∈T)⇒ t1≡wt2∈T

Using these properties, it follows that OpenTT is consistent w.r.t. the open bar model.334

▶ Theorem 13 (Soundness & Consistency). OpenTT’s inference rules are all sound w.r.t.335

the open bar model, which entails that OpenTT is consistent.13336

4 A Theory of Choice Sequences337

This section focuses on OpenTT’s inference rules that provide an axiomatization of a theory338

of choice sequences. This theory includes two variants of the Axiom of Open Data (Sec. 4.1.1339

and 4.1.2), a density axiom (Sec. 4.2), and a discreteness axiom (Sec. 4.3). We focus our340

attention on the variants of the Axiom of Open Data that captures a form of continuity341

which is the core essence of choice sequences, as those where not handled in BITT.342

4.1 The Axiom of Open Data (AOD)343

The Axiom of Open Data (AOD) is perhaps the seminal axiom in the theory of choice344

sequences. It is a continuity axiom that states that the validity of properties of free345

choice sequences (with certain side conditions) can only depend on finite initial segments346

of these sequences. Let P be a sealed predicate on free choice sequences of numbers (i.e.,347

P#(Free→ Ui) for some universe i), Nn the type {x ∶ N ∣ x < n} of natural number strictly348

less than n, and Bn = Nn → N. The Axiom of Open Data can be formalized as follows:349

Πα∶Free.P(α)→ Σn∶N.Πβ∶Free.(α =Bn
β → P(β)) (AOD)350

Since AOD is a form of continuity principle, and the non-squashed Continuity Principle351

is incompatible with CTT [41; 42] as well as with other computational theories [32; 45; 24],352

we only attempt to validate a squashed version of AOD. That is, since there is no way to353

compute the modulus of continuity of P at α, which is preserved over world extensions (as354

12 See per/nuprl_props.v for proofs of these properties.
13 See rules.v and per/weak_consistency.v for more details.

https://github.com/vrahli/NuprlInCoq/tree/ls3/per/nuprl_props.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/rules.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/per/weak_consistency.v

M. Bickford and L. Cohen and R. L. Constable and V. Rahli 21:11

required by the semantics of N), we instead validate versions of AOD where the sum type is355

squashed. But there are two ways to squash it, as described in Sec. 4.1.1 and 4.1.2.356

There are two additional restrictions we impose in order to validate the squashed variants357

of AOD. First, to validate the axiom we swap α and β in P(α). This has an impact on358

both the PER of this type and the world w.r.t. which it is validated. Given an inhabitant t359

of P(α), we can easily build a proof of P(β) by swapping α and β in t. This is however360

a metatheoretical operation. Therefore, in our variants of AOD the P(β) is squashed.361

Second, note that when swapping one needs to swap α and β in all definitions and choice362

sequences’ choices in the world w.r.t. which it is validated, leading to a different world.363

Therefore, we require that choice sequences cannot occur in definitions and choice sequences’364

choices to ensure that swapping α and β in a world w leads to an equivalent world if α365

and β have the same choices. To see why this is necessary take P to be the predicate366

P = λy.{x ∶ Free ∣ x =Free y}, and the world w to contain the definition δ == α. Then,367

P(α) is equivalent to {x ∶ Free ∣ x =Free α} and δ is a member of P(α) in w, while P(β) is368

equivalent to {x ∶ Free ∣ x =Free β} in this world, and therefore δ is not a member of P(β) if369

α and β are two different choice sequences.370

Before presenting and validating the variants of AOD, we present a few intermediate371

results. First, we prove that from α =Bn
β, we can always construct a world in which α372

and β contain exactly the same choices.14373

▶ Lemma 14 (Intermediate World). Let w1 and w2 be two worlds such that w2 ⪰ w1 and374

sing(w1) (see Def. 2). If η1 and η2 are two free choice sequences that have the same choices375

up to ∣w1∣ in w2, then there must exist a world w, such that w2 ⪰ w ⪰ w1, both η1 and η2376

occur in w, they have the exact same choice in w, and all these choices are numbers.377

Furthermore, the following swapping operator swaps α and β in P(α) to obtain P(β).15378

▶ Definition 15 (Swapping). Let X⋅(η1∣η2) be a swapping operation that swaps η1 and η2379

everywhere in X, where X ranges over all the syntactic forms presented above.380

We can then prove that the various relations introduced in Sec. 3 are preserved by the381

above swapping operator. For example, crucially, we can prove that the t1≡wt2∈T relation,382

which expresses that t1 and t2 are equal members in T , is preserved by swapping.16383

▶ Lemma 16 (Swapping PERs). If t1≡wt2∈T then t1⋅(η1∣η2)≡w⋅(η1∣η2)t2⋅(η1∣η2)∈T ⋅(η1∣η2).384

4.1.1 The Space-Squashed Axiom of Open Data (AOD↓)385

The first variant of AOD we validate is the a space-squashed one, called AOD↓.386

▶ Proposition 17. The following rule of OpenTT is valid w.r.t. the open bar model (where
H is an arbitrary list of hypotheses):

H ⊢ Πα∶Free.P(α)→ ↓Σn∶N.Πβ∶Free.(α =Bn
β → ↓P(β))

Proof. We here outline the proof, see rules/rules_ls3_v0.v for full details. Since the sum type387

is ↓-squashed, a realizer for this formula can simply be λα, x.⋆ (see Sec. 2.4). Let P be a388

14 See Lemma to_library_with_equal_cs in rules/rules_choice_util4.v.
15 See for example swap_cs_term in terms/swap_cs.v, which swaps two choice sequence names in a term.
16 See implies_equality_swap_cs in rules/rules_choice_util4.v for the formal statement and proof.

CSL 2021

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ls3_v0.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_choice_util4.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/terms/swap_cs.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_choice_util4.v

21:12 Open Bar

sealed predicate on free choice sequences, α a free choice sequence, and instantiate n with389

∣w∣, the depth of the current world w. From α =Bn
β, we get that α and β have the same390

choices up to ∣w∣ in the extension w ′ of w, and we have to show that P(β) is true in w ′.391

Lem. 14 entails that α and β have exactly the same choices in some world w ′′ between w392

and w ′. Using Lem. 16 we swap α and β in P(α) and w ′′. Thus, because choice sequences393

cannot occur in definitions and choices, P(β) is valid in a world equivalent to w ′′ and hence in394

w ′′ too.17 Finally, using monotonicity (Lem. 12), we obtain that P(β) is true also in w ′. ◀395

4.1.2 The Time-Squashed Axiom of Open Data (AOD�)396

Next, we present a time-squashed version of AOD, where instead of ↓-squashing the sum type397

the N� time-squashed type is used, and B�n = {x ∶ N ∣ x <� n}→ N Is used instead of Bn.
18

398

Πα∶Free.P(α)→ Σn∶N�.Πβ∶Free.(α =B�n β → ↓P(β)) (AOD�)399

Note that because n is not a member of N anymore but of N�, we use B�n instead of400

Bn here to state that α and β are equal sequences up to n. If n ∈ N� then x < n, where401

x ∈ N, and Bn are not types anymore: the semantics of x < n requires both x and n to be402

time-invariant numbers (see Sec. 2.4). Therefore, we use x <� n here instead, which does not403

require numbers to be time-invariant as per its semantics presented in Def. 9.404

Before diving into the proof of AOD�’s validity, we first present a few intermediate results.405

▶ Lemma 18. The N type is a subtype of N�, in the sense that all equal members in N
are also equal members in N� (which implies that t1 <� t2 is a type even when t1 ∈ N and
t2 ∈ N�), and the wDepth expression is a member of N� (i.e., it is equal to itself in N�).

19

I.e. the following rules are valid in OpenTT.

H ⊢ t1 =N t2
H ⊢ t1 =N� t2 H ⊢ wDepth =N� wDepth

For AOD↓, because its Σ type is ↓-squashed, we did not have to provide a witness for the406

modulus of continuity of P at α. Instead, we could simply find a suitable metatheoretical407

number in the proof of its validity, without having to provide an expression from the object408

theory that computes that number. In the metatheoretical proof, we computed the depth409

of the current world, which is a metatheoretical number k, and simply used k, which is a410

number in the object theory, as an approximation of the modulus of continuity of P at α. The411

situation is different in AOD� because the Σ type is no longer ↓-squashed. We now have to412

provide an expression from the object theory that computes that modulus of continuity. As413

mentioned, we use wDepth, which is an expression of OpenTT , the object theory. Thus, we414

now have to prove that wDepth has the right type, namely, N�, which we proved in Lem. 18.415

Using these results we prove that AOD� is valid w.r.t. the semantics presented in Sec. 3.416

▶ Proposition 19. The following rule of OpenTT is valid w.r.t. the open bar model:

H ⊢ Πα∶Free.P(α)→ Σn∶N�.Πβ∶Free.(α =B�n β → ↓P(β))

17 See Lemma member_swapped_css_libs in rules/rules_choice_util4.v.
18Note that as in AOD↓, P(β) is also ↓-squashed here. We leave for future work to derive a version where

P(β) is not squashed. Note also that the modulus of continuity n is here in N�. We have validated
another version of this axiom in rules/rules_ls3_v1.v where n ∈ N∧� , i.e., where n is required to be
weakly monotonically increasing, which is true about wDepth (see Sec. 2.3 and 2.4).

19 See rule_qnat_subtype_nat_true in rules/rules_ref.v and rule_depth_true in rules/rules_qnat.v.

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_choice_util4.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ls3_v1.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ref.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_qnat.v

M. Bickford and L. Cohen and R. L. Constable and V. Rahli 21:13

Proof. We here outline the proof (which is similar to that of Prop.17), while full details417

are in rules/rules_ls3_v2.v. Since now the sum type is not ↓-squashed, we have to provide a418

witness for it. The realizer we provide for this formula is: λα, x.⟨wDepth, λβ, y.⋆⟩. Let P419

be a sealed predicate on free choice sequences, and let α be a free choice sequence. We now420

have to prove that wDepth ∈ N�, which follows from Lem. 18. Since wDepth computes to ∣w∣,421

where w is the current world, we can then use ∣w∣ as an approximation of the modulus of422

continuity of P at α, as in Prop. 17’s proof. One difference with Prop. 17’s proof is that we423

have here that α =B�n β (which we prove to be a type using Lem. 18) instead of α =Bn
β.424

This however still suffices to show that α and β have the same choices up to ∣w∣ in the425

extension w ′ of w. From here, the proof proceeds just as that of Prop. 17. ◀426

4.2 The Density Axiom (DeA)427

Another common free choice sequence axiom, sometimes called the density axiom [44], states428

that for any finite sequence of numbers f , there is a free choice sequence that contains f as429

initial segment (this is Axiom 2.1 in [31, Sec.2], also referred to as LS1 in [19]).430

In BITT the following Density Axiom (DeA) was validated: Πn∶N.Πf ∶Bn.Σα∶Free.(f =Bn
431

α) [10]. The proof of its validity was by generating an appropriate choice sequence space that432

contains the values of the finite sequence f as part of its name. More precisely, given a finite433

sequence f of n terms in N from the object theory, BITT includes computations to extract434

those n numbers, say k1, . . . , kn, and build a choice sequence with the metatheoretical list of435

numbers [k1, . . . , kn] as part of its name, and which is used to witness DeA’s Σ type. In436

OpenTT we opted against including such names for two reasons. First, in the open bar model437

it is possible to validate a squashed version of DeA (where the Σ type is squashed) without438

including lists of numbers in choice sequence names. This is because the open bar model439

allows for internal choices to be made (see Prop. 20 below). Moreover, deterministically440

generating choice sequence names is not preserved by swapping (which would be required for441

example for Lem. 16 to hold). Given a term t that deterministically generates η1, it might be442

that swapping η1 for η2 turns η1 into η2 and leaves t unchanged, while t does not generate η2.443

Therefore, we do not include metatheoretical lists of numbers as part of choice sequence444

names in OpenTT and only validate the following ↓-squashed version of DeA, called DeA↓.445

▶ Proposition 20. The following rule of OpenTT is valid w.r.t. the open bar model:

H ⊢ Πn∶N.Πf ∶Bn.↓Σα∶Free.(f =Bn
α)

Proof. As this axiom is ↓-squashed, we realize it using λn, f.⋆. To prove its validity in some446

world w, assume n ∈ N and f ∈ Bn in some w ′
⪰ w. We have to exhibit some w ′′

⪰ w ′ that447

contains a free choice sequence that has f as its initial segment. This world w ′′ can simply be448

w ′ augmented with a fresh (w.r.t. w ′) choice sequence that has f as its initial segment.20 ◀449

Note that the Beth model in [10] requires exhibiting a choice sequence such that DeA450

holds at a bar b of w. Without a mechanism to enforce initial segments, it could be that451

the choice sequence picked to witness α does not include the correct choices in some of b’s452

branches. This is why BITT features choice sequence names that enforce initial segments.453

Thanks to open bars, OpenTT is able to do without enforcing initial segments within choice454

sequence names while still featuring a version of DeA, at the detriment of requiring its Σ455

20 See rules/rules_choice1.v for more details.

CSL 2021

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ls3_v2.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_choice1.v

21:14 Open Bar

type be ↓-squashed. (Troelstra calls the free choice sequences that enforce initial segments456

lawless, and the ones where no initial segment is enforced proto-lawless [44, Sec.2.4].)457

4.3 The Discreteness Axiom (DiA)458

One final common free choice sequence axiom, sometimes called the discreteness axiom [39],459

states that equality between free choice sequences is decidable (it is Axiom 2.2 in [31, Sec.2],460

also referred to as LS2 in [19]). As for BITT, OpenTT features intensional and extensional461

versions of the Discreteness Axiom (DiA), which we have proven to be valid w.r.t. the open462

bar model (we only present the extensional version here due to space constraints).21463

▶ Proposition 21. The following rule of OpenTT is valid w.r.t. the open bar model (the
conclusion is inhabited by λα, β.if α=β then tt else ff):

H ⊢ Πα, β∶Free.α =B β+¬α =B β

5 The Law of Excluded Middle464

This section demonstrates that OpenTT provides a key axiom from classical logic, namely465

the Law of Excluded Middle (LEM). Even though various other classical principles could466

be considered here (and will be considered in future work), we focus on LEM as it is the467

central axiom differentiating classical logic from intuitionistic logic. Thus, we show that in468

addition to capturing the intuitionistic concept of choice sequences, OpenTT also includes469

the following ↓-squashed version of LEM, called LEM↓, that is validated w.r.t. the open bar470

model: ΠP ∶Ui.↓(P+¬P).471

For BITT, even this weak LEM↓ axiom, that does not have any computational content472

(as it is realized by λP.⋆), is inconsistent [10]. More precisely, ¬LEM↓ is valid w.r.t. the473

Beth metatheory presented in [10]. Intuitively, this is because LEM↓ states that there exists474

a bar of the current world such that either: (1) P is true at the bar, or (2) it is false in475

all extensions of the bar. This is false (i.e., the negation is true) because, for example, for476

P = (Σn∶N.η(n) =N 1), where η is a free choice sequence, (1) is false because η could be477

the sequence that never chooses 1, and (2) is false because there is an extension of the bar478

where η chooses 1. Stronger versions of this axiom, such as the non-↓-squashed version, are479

therefore also false. This counterexample for BITT does not serve as a counterexample for480

OpenTT because given a world w it is always possible to find an extension where η eventually481

holds 1. Hence, OpenTT is more amenable to classical logic than theories based on standard482

Beth models, such as BITT. As illustrated in Prop. 22’s proof below, intuitively, this is483

due to the fact that the open bar model implements a notion of time which allows to select484

futures (i.e., extensions), thereby allowing for some internal choices to be made.485

▶ Proposition 22. The following rule of OpenTT is valid w.r.t. the open bar model (using
LEM in the metatheory).

H ⊢ ΠP ∶Ui.↓(P+¬P)

Proof. We have to show that for every world w ′ that extends the current world w, there486

exists a world w ′′ that extends w ′ such that P+¬P is inhabited in all extensions of w ′′. Let w ′
487

be an extension of w. We need to find a w ′′
⪰ w ′ that makes the above true. Using classical488

21 See rules/rules_choice2.v and rules/rules_choice5.v for further details.

https://github.com/vrahli/NuprlInCoq/tree/ls3/rules/rules_choice2.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/rules/rules_choice5.v

M. Bickford and L. Cohen and R. L. Constable and V. Rahli 21:15

logic we assume that ∃EXT(w ′
, λw ′′

.inh(w ′′
, P)) is either true of false. If it is true, we obtain489

a w ′′
⪰ w ′ at which P is inhabited, and we therefore conclude. Otherwise, we use w ′, which is490

a trivial extension of w ′. We must now show that P+¬P is inhabited in all extensions of w ′.491

We prove that it is inhabited by inr(⋆) by showing that in all w ′′
⪰ w ′, P is not inhabited at492

w ′′. Assuming that P is inhabited at w ′′, we get that ∃EXT(w ′
, λw ′′

.inh(w ′′
, P)) is true, which493

contradicts our assumption.22 ◀494

6 Conclusion and Related Work495

The paper presents OpenTT, a novel intuitionistic type theory that features both a theory496

of choice sequences and a variant of the classical Law of Excluded Middle. This was made497

possible thanks to the open bar model, which internalizes a more relaxed notion of time than498

traditional Beth models that allows selecting futures. Thus, OpenTT provides a theoretical499

framework for studying the interplay between intuitionistic and classical logic.500

Much work has been done on combining classical and constructive logics. One standard501

method is to use double negation translations [25] to embed classical logic in constructive502

logic. Another approach is to mix the two logics within the same framework. For example,503

PIL [37] mixes both logics through a polarization mechanism. Of particular relevance is504

Moschovakis’s theory that includes choice sequences and is consistent with all classically true505

arithmetic sentences via a Kripke model [40].506

As mentioned in the Introduction, there is a long line of work on providing intuitionistic507

counterexamples to classically valid axioms using variants of choice sequences. For example,508

in [16] Markov’s Principle is proved to be false in a Martin-Löf type theory extended with a509

“generic” element, which behaves as a free choice sequence of Booleans. Since we have shown510

that OpenTT is compatible with a variant of LEM, we plan to investigate the status of other511

classically valid principles, such as Markov’s Principle and the Axiom of Choice.512

As for the open bar model, Kripke (and Beth) models are often used to model stateful513

theories. For example, in [36] the Kripke semantics of function types allows the returned514

values of functions to extend the state at hand. In contrast, the open bar model allows515

all computations to extend worlds. Other examples include [1; 2; 12; 11], where Kripke516

semantics are used to interpret theories with reference cells. We leave the study of other517

forms of stateful computations for future work.518

Unlike Kripke models, Beth models can interpret formulas that only eventually hold. The519

notion of “eventuality” in the open bar model slightly differs from the one in Beth models,520

and as hinted at in Sec. 3, is related to the “possibility” operator of modal logic [35]. A521

formal study of these connections is left for future work.522

Several forms of choice sequence axioms have been studied in the literature. Some of them523

are currently time or space squashed in OpenTT. We plan on exploring versions of these524

axioms that are “less squashed” in the sense that they have more computational content.525

Finally, the comprehensive account of choice sequences in OpenTT also opens the door526

for the exploration of the computational implications of the existence of such entities. For527

one, Brouwer used choice sequences to define the constructive real numbers as sequences528

of nested rational intervals. The computational account of choice sequences in OpenTT529

provides a framework for the formalization of Brouwerian constructive real analysis, and530

then comparing it to the more standard formalizations.531

22 See rules/rules_classical.v for more details.

CSL 2021

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_classical.v

21:16 REFERENCES

References532

[1] Amal J. Ahmed, Andrew W. Appel and Roberto Virga. “A Stratified Semantics of General533

References Embeddable in Higher-Order Logic”. In: LICS. IEEE Computer Society, 2002,534

p. 75. doi: 10.1109/LICS.2002.1029818.535

[2] Amal Jamil Ahmed. “Semantics of Types for Mutable State”. PhD thesis. Princeton University,536

2004.537

[3] Stuart F. Allen. “A Non-Type-Theoretic Definition of Martin-Löf’s Types”. In: LICS. IEEE538

Computer Society, 1987, pp. 215–221.539

[4] Stuart F. Allen. “A Non-Type-Theoretic Semantics for Type-Theoretic Language”. PhD thesis.540

Cornell University, 1987.541

[5] Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori542

Lorigo and Evan Moran. “Innovations in computational type theory using Nuprl”. In: J.543

Applied Logic 4.4 (2006). http://www.nuprl.org/, pp. 428–469.544

[6] Abhishek Anand and Vincent Rahli. “Towards a Formally Verified Proof Assistant”. In: ITP545

2014. Vol. 8558. LNCS. Springer, 2014, pp. 27–44. doi: 10.1007/978-3-319-08970-6_3.546

[7] Mark van Atten. On Brouwer. Wadsworth Philosophers. Cengage Learning, 2004.547

[8] Mark van Atten and Dirk van Dalen. “Arguments for the continuity principle”. In: Bulletin of548

Symbolic Logic 8.3 (2002), pp. 329–347.549

[9] Evert Willem Beth. The foundations of mathematics: A study in the philosophy of science.550

Harper and Row, 1966.551

[10] Mark Bickford, Liron Cohen, Robert L. Constable and Vincent Rahli. “Computability Beyond552

Church-Turing via Choice Sequences”. In: LICS 2018. ACM, 2018, pp. 245–254. doi: 10.1145/553

3209108.3209200.554

[11] Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob Thamsborg and555

Hongseok Yang. “Step-indexed kripke models over recursive worlds”. In: POPL. ACM, 2011,556

pp. 119–132. doi: 10.1145/1926385.1926401.557

[12] Lars Birkedal, Kristian Støvring and Jacob Thamsborg. “Realisability semantics of paramet-558

ric polymorphism, general references and recursive types”. In: Mathematical Structures in559

Computer Science 20.4 (2010), pp. 655–703. doi: 10.1017/S0960129510000162.560

[13] Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. London Mathe-561

matical Society Lecture Notes Series. Cambridge University Press, 1987.562

[14] Venanzio Capretta. “A polymorphic representation of induction-recursion”. www.cs.ru.nl/563

~venanzio/publications/induction_recursion.ps. 2004.564

[15] Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer, Robert565

W. Harper, Douglas J. Howe, Todd B. Knoblock, Nax P. Mendler, Prakash Panangaden, James566

T. Sasaki and Scott F. Smith. Implementing mathematics with the Nuprl proof development567

system. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1986.568

[16] Thierry Coquand and Bassel Mannaa. “The Independence of Markov’s Principle in Type569

Theory”. In: FSCD 2016. Vol. 52. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,570

2016, 17:1–17:18. doi: 10.4230/LIPIcs.FSCD.2016.17.571

[17] Thierry Coquand, Bassel Mannaa and Fabian Ruch. “Stack semantics of type theory”. In:572

LICS 2017. IEEE Computer Society, 2017, pp. 1–11. doi: 10.1109/LICS.2017.8005130.573

[18] Karl Crary. “Type-Theoretic Methodology for Practical Programming Languages”. PhD thesis.574

Ithaca, NY: Cornell University, Aug. 1998.575

[19] Dirk van Dalen. “An interpretation of intuitionistic analysis”. In: Annals of mathematical logic576

13.1 (1978), pp. 1–43.577

[20] Jacques Dubucs and Michel Bourdeau. Constructivity and Computability in Historical and578

Philosophical Perspective. Vol. 34. Jan. 2014. doi: 10.1007/978-94-017-9217-2.579

[21] Michael A. E. Dummett. Elements of Intuitionism. Second. Clarendon Press, 2000.580

[22] Peter Dybjer. “A General Formulation of Simultaneous Inductive-Recursive Definitions in581

Type Theory”. In: J. Symb. Log. 65.2 (2000), pp. 525–549.582

[23] VH Dyson and Georg Kreisel. Analysis of Beth’s semantic construction of intuitionistic logic.583

Stanford University. Applied Mathematics and Statistics Laboratories, 1961.584

https://doi.org/10.1109/LICS.2002.1029818
http://www.nuprl.org/
https://doi.org/10.1007/978-3-319-08970-6_3
https://doi.org/10.1145/3209108.3209200
https://doi.org/10.1145/3209108.3209200
https://doi.org/10.1145/3209108.3209200
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1017/S0960129510000162
www.cs.ru.nl/~venanzio/publications/induction_recursion.ps
www.cs.ru.nl/~venanzio/publications/induction_recursion.ps
www.cs.ru.nl/~venanzio/publications/induction_recursion.ps
https://doi.org/10.4230/LIPIcs.FSCD.2016.17
https://doi.org/10.1109/LICS.2017.8005130
https://doi.org/10.1007/978-94-017-9217-2

REFERENCES 21:17

[24] Martín H. Escardó and Chuangjie Xu. “The Inconsistency of a Brouwerian Continuity Principle585

with the Curry-Howard Interpretation”. In: TLCA 2015. Vol. 38. LIPIcs. Schloss Dagstuhl -586

Leibniz-Zentrum fuer Informatik, 2015, pp. 153–164. doi: 10.4230/LIPIcs.TLCA.2015.153.587

[25] Gilda Ferreira and Paulo Oliva. “On Various Negative Translations”. In: CL&C. Vol. 47.588

EPTCS. 2010, pp. 21–33. doi: 10.4204/EPTCS.47.4.589

[26] Arend Heyting. Intuitionism: an introduction. North-Holland Pub. Co., 1956.590

[27] Douglas J. Howe. “Equality in Lazy Computation Systems”. In: LICS 1989. IEEE Computer591

Society, 1989, pp. 198–203.592

[28] Stephen C. Kleene and Richard E. Vesley. The Foundations of Intuitionistic Mathematics,593

especially in relation to recursive functions. North-Holland Publishing Company, 1965.594

[29] Alexei Kopylov and Aleksey Nogin. “Markov’s Principle for Propositional Type Theory”. In:595

CSL 2001. Vol. 2142. LNCS. Springer, 2001, pp. 570–584. doi: 10.1007/3-540-44802-0_40.596

[30] Georg Kreisel. “A Remark on Free Choice Sequences and the Topological Completeness Proofs”.597

In: J. Symb. Log. 23.4 (1958), pp. 369–388. doi: 10.2307/2964012.598

[31] Georg Kreisel. “Lawless sequences of natural numbers”. In: Compositio Mathematica 20 (1968),599

pp. 222–248.600

[32] Georg Kreisel. “On weak completeness of intuitionistic predicate logic”. In: J. Symb. Log. 27.2601

(1962), pp. 139–158. doi: http://dx.doi.org/10.2307/2964110.602

[33] Georg Kreisel and Anne S. Troelstra. “Formal systems for some branches of intuitionistic603

analysis”. In: Annals of Mathematical Logic 1.3 (1970), pp. 229–387. doi: http://dx.doi.604

org/10.1016/0003-4843(70)90001-X.605

[34] Saul A. Kripke. “Semantical Analysis of Intuitionistic Logic I”. In: Formal Systems and606

Recursive Functions. Vol. 40. Studies in Logic and the Foundations of Mathematics. Elsevier,607

1965, pp. 92–130. doi: https://doi.org/10.1016/S0049-237X(08)71685-9.608

[35] Saul A. Kripke. “Semantical Analysis of Modal Logic I. Normal Propositional Calculi”. In:609

Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 9.5-6 (1963), pp. 67–96.610

doi: 10.1002/malq.19630090502.611

[36] Paul Blain Levy. “Possible World Semantics for General Storage in Call-By-Value”. In: CSL612

2002. Vol. 2471. LNCS. Springer, 2002, pp. 232–246. doi: 10.1007/3-540-45793-3_16.613

[37] Chuck Liang and Dale Miller. “Kripke semantics and proof systems for combining intuitionistic614

logic and classical logic”. In: Ann. Pure Appl. Log. 164.2 (2013), pp. 86–111. doi: 10.1016/j.615

apal.2012.09.005.616

[38] Joan R. Moschovakis. “An intuitionistic theory of lawlike, choice and lawless sequences”. In:617

Logic Colloquium’90: ASL Summer Meeting in Helsinki. Association for Symbolic Logic. 1993,618

pp. 191–209.619

[39] Joan Rand Moschovakis. Choice Sequences and Their Uses. 2015.620

[40] Joan Rand Moschovakis. “Intuitionistic Analysis at the End of Time”. In: Bulletin of Symbolic621

Logic 23.3 (2017), pp. 279–295. doi: 10.1017/bsl.2017.25.622

[41] Vincent Rahli and Mark Bickford. “A nominal exploration of intuitionism”. In: CPP 2016.623

Extended version: http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf. ACM,624

2016, pp. 130–141. doi: 10.1145/2854065.2854077.625

[42] Vincent Rahli and Mark Bickford. “Validating Brouwer’s continuity principle for numbers626

using named exceptions”. In: Mathematical Structures in Computer Science (2017), pp. 1–49.627

doi: 10.1017/S0960129517000172.628

[43] Vincent Rahli, Liron Cohen and Mark Bickford. “A Verified Theorem Prover Backend Sup-629

ported by a Monotonic Library”. In: LPAR-22. Vol. 57. EPiC Series in Computing. EasyChair,630

2018, pp. 564–582.631

[44] A. S. Troelstra. “Analysing choice sequences”. In: J. Philosophical Logic 12.2 (1983), pp. 197–632

260. doi: 10.1007/BF00247189.633

[45] A.S. Troelstra. “A Note on Non-Extensional Operations in Connection With Continuity and634

Recursiveness”. In: Indagationes Mathematicae 39.5 (1977), pp. 455–462. doi: 10.1016/1385-635

7258(77)90060-9.636

[46] A.S. Troelstra. Choice Sequences: A Chapter of Intuitionistic Mathematics. Clarendon Press,637

1977.638

CSL 2021

https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.4204/EPTCS.47.4
https://doi.org/10.1007/3-540-44802-0_40
https://doi.org/10.2307/2964012
https://doi.org/http://dx.doi.org/10.2307/2964110
https://doi.org/http://dx.doi.org/10.1016/0003-4843(70)90001-X
https://doi.org/http://dx.doi.org/10.1016/0003-4843(70)90001-X
https://doi.org/http://dx.doi.org/10.1016/0003-4843(70)90001-X
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71685-9
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1007/3-540-45793-3_16
https://doi.org/10.1016/j.apal.2012.09.005
https://doi.org/10.1016/j.apal.2012.09.005
https://doi.org/10.1016/j.apal.2012.09.005
https://doi.org/10.1017/bsl.2017.25
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
https://doi.org/10.1145/2854065.2854077
https://doi.org/10.1017/S0960129517000172
https://doi.org/10.1007/BF00247189
https://doi.org/10.1016/1385-7258(77)90060-9
https://doi.org/10.1016/1385-7258(77)90060-9
https://doi.org/10.1016/1385-7258(77)90060-9

21:18 REFERENCES

[47] Anne S. Troelstra. “Choice Sequences and Informal Rigour”. In: Synthese 62.2 (1985), pp. 217–639

227.640

[48] Anne S. Troelstra. Choice sequences: a chapter of intuitionistic mathematics. Clarendon Press641

Oxford, 1977.642

[49] Wim Veldman. “Understanding and Using Brouwer’s Continuity Principle”. In: Reuniting643

the Antipodes — Constructive and Nonstandard Views of the Continuum. Vol. 306. Synthese644

Library. Springer Netherlands, 2001, pp. 285–302. doi: 10.1007/978-94-015-9757-9_24.645

[50] Beth E. W. “Semantic Construction of Intuitionistic Logic”. In: Journal of Symbolic Logic646

22.4 (1957), pp. 363–365.647

https://doi.org/10.1007/978-94-015-9757-9_24

REFERENCES 21:19

A OpenTT’s Semantics648

Sec. 3 provided part of OpenTT’s semantics. We presented there the semantics of distinguish-649

ing features of OpenTT. Let us now present the rest of its semantics. As mentioned in Sec. 3,650

this semantics has been formalized in Coq, and can be found in per/per.v and per/nuprl.v.651

Moreover, as the Coq formalization follows a slightly different presentation (as mentioned in652

Sec. 3 it combines the inductive relation T1≡wT2 and the recursive function t1≡wt2∈T into a653

single inductive definition following the method described in [4; 14]). An inductive-recursive654

formalization of the open bar semantics of OpenTT in Agda can be found in Appx. D.655

▶ Definition 23 (Products). Product types are interpreted as follows:

Πx1∶A1.B1≡wΠx2∶A2.B2

⟺ ∀EXT(w, λw ′
.A1≡w′A2 ∧∀a1, a2. a1≡w′a2∈A1 ⇒ B1[x1\a1]≡w′B2[x2\a2])

f1≡wf2∈Πx∶A.B ⟺ O(w, λw ′
.∀a1, a2. a1≡w′a2∈A⇒ f1(a1)≡w′f2(a2)∈B[x1\a1])

▶ Definition 24 (Sums). Sum types are interpreted as follows:

Σx1∶A1.B1≡wΣx2∶A2.B2

⟺ ∀EXT(w, λw ′
.A1≡w′A2 ∧∀a1, a2. a1≡w′a2∈A1 ⇒ B1[x1\a1]≡w′B2[x2\a2])

t1≡wt2∈Σx∶A.B ⟺ O(w, λw ′
.∃a1, a2, b1, b2. t1 ⤋w′ ⟨a1, b1⟩ ∧ t2 ⤋w′ ⟨a2, b2⟩

∧ a1≡w′a2∈A ∧ b1≡w′b2∈B[x1\a1]
)

▶ Definition 25 (Universes). To interpret universes, we need to use parameterized (by a
universe level) T1≡i,wT2 and t1≡i,wt2∈T relations instead of the ones used so far. We can then
define T1≡wT2 as ∃i. T1≡i,wT2 and t1≡wt2∈T as ∃i. t1≡i,wt2∈T . We do not present the full
construction here as it is standard. However, let us point out that using the above definitions
we can then interpret universes inductively over i, resulting in the following interpretations:

Ui≡j,wUi ⟺ i < j T1≡j,wT2∈Ui ⟺ T1≡j,wT2

▶ Definition 26 (Equality). Equality types are interpreted as follows:

(a1 = a2 ∈ A)≡w(b1 = b2 ∈ B) ⟺ A≡wB ∧ a1≡wb1∈A ∧ a2≡wb2∈A

t1≡wt2∈(a = b ∈ A) ⟺ O(w, λw ′
.t1 ⤋w′ ⋆ ∧ t2 ⤋w′ ⋆ ∧ a≡w′b∈A)

▶ Definition 27 (Disjoint Union). Disjoint union types are interpreted as follows:

A1+A2≡wB1+B2 ⟺ A1≡wB1 ∧A2≡wB2

t1≡wt2∈A+B ⟺ O(w, λw ′
. (∃x, y. t1 ⤋w′ inl(x) ∧ t2 ⤋w′ inl(y) ∧ x≡w′y∈A)
∨ (∃x, y. t1 ⤋w′ inr(x) ∧ t2 ⤋w′ inr(y) ∧ x≡w′y∈B)

)

▶ Definition 28 (Sets). Set types are interpreted as follows:

{x1 ∶ A1 ∣ B1}≡w{x2 ∶ A2 ∣ B2}
⟺ ∀EXT(w, λw ′

.A1≡w′A2 ∧∀a1, a2. a1≡w′a2∈A1 ⇒ B1[x1\a1]≡w′B2[x2\a2])

t1≡wt2∈{x ∶ A ∣ B} ⟺ O(w, λw ′
.t1≡w′t2∈A ∧ inh(w ′

, B[x\t1]))

CSL 2021

https://github.com/vrahli/NuprlInCoq/blob/ls3/per/per.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/per/nuprl.v

21:20 REFERENCES

▶ Definition 29 (Less Than). Less than types are interpreted as follows:

t1 < t2≡wu1 < u2 ⟺ t1≡wu1∈N ∧ t2≡wu2∈N

t1≡wt2∈(u1 < u2) ⟺ O(w, λw ′
.∃k1, k2. t1 ⇓w k1 ∧ t2 ⇓w k2 ∧ k1 < k2)

The time squashing type �T is defined using Howe’s computational equivalence [27],656

which is omitted from this paper for space reasons (see [27] for a definition of this relation,657

as well as cequiv/cequiv.v). It turns out that OpenTT is not only closed under computation658

but more generally under Howe’s computational equivalence ∼, which we have proved to be659

a congruence following Howe’s method [27]. We define t1 ≈w t2 as ∀EXT(w, λw ′
.t1 ∼w t2).660

▶ Definition 30 (Time Squashing). Time squashing types are interpreted as follows:

�T ≡w�U ⟺ T ≡wU∈N

t1≡wt2∈(�T) ⟺ O(w, λw ′
.∃u1, u2. w ∼ t1u1 ∧ w ∼ t2u2 ∧ t1 ≈w t2 ∧ u1≡w′u2∈T)

B OpenTT’s Inference Rules661

In OpenTT, sequents are of the form h1, . . . , hn ⊢ T ⌊ext t⌋. Such a sequent denotes that,662

assuming h1, . . . , hn, the term t is a member of the type T , and that therefore T is a type. The663

term t in this context is called the extract or evidence of T . Extracts are sometimes omitted664

when irrelevant to the discussion. In particular, we typically do so when the conclusion T of a665

sequent is an equality type of the form a = b ∈ A, since equality types can only be inhabited666

by the constant ⋆, we then typically omit the extract in such sequents. An hypothesis h is667

of the form x ∶ A, where the variable x stands for the name of the hypothesis and A its type.668

A rule is a pair of a conclusion sequent S and a list of premise sequents, S1,⋯, Sn (written669

as usual using a fraction notation, with the premises on top). Let us now provide a sample670

of OpenTT’s key inference rules for some of its types not discussed above. The reader is671

invited to check https://github.com/vrahli/NuprlInCoq/blob/ls3/ for a complete list of rules,672

as well as [15], from which OpenTT borrowed most of its rules for its standard types.673

B.1 Products674

The following rules are the standard Π-elimination rule, Π-introduction rule, type equality675

for Π types, and λ-introduction rule, respectively.676

H , f ∶ Πx∶A.B, J ⊢ a ∈ A H , f ∶ Πx∶A.B, J , z ∶ f(a) ∈ B[x\a] ⊢ C ⌊ext e⌋
H , f ∶ Πx∶A.B, J ⊢ C ⌊ext e[z\⋆]⌋

677 H , z ∶ A ⊢ B[x\z] ⌊ext b⌋ H ⊢ A ∈ Ui
H ⊢ Πx∶A.B ⌊ext λz.b⌋

678 H ⊢ A1 = A2 ∈ Ui H , y ∶ A1 ⊢ B1[x1\y] = B2[x2\y] ∈ Ui
H ⊢ Πx1∶A1.B1 = Πx2∶A2.B2 ∈ Ui

679 H , z ∶ A ⊢ t1[x1\z] = t2[x2\z] ∈ B[x\z] H ⊢ A ∈ Ui
H ⊢ λx1.t1 = λx2.t2 ∈ Πx∶A.B

Note that the last rule requires to prove that A is a type because the conclusion requires to680

prove that Πx∶A.B is a type, and the first hypothesis only states that B is a type family681

over A, but does not ensures that A is a type.682

https://github.com/vrahli/NuprlInCoq/blob/ls3/cequiv/cequiv.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/

REFERENCES 21:21

The following rule is the standard function extensionality rule:

H , z ∶ A ⊢ f1(z) = f2(z) ∈ B[x\z] H ⊢ A ∈ Ui
H ⊢ f1 = f2 ∈ Πx∶A.B

The following captures that PERs are closed under β-reductions:

H ⊢ t[x\s] = u ∈ T
H ⊢ (λx.t) s = u ∈ T

B.2 Sums683

The following rules are the standard Σ-elimination rule, Σ-introduction rule, type equality684

for the Σ type, and pair-introduction rule, respectively.685

H , p ∶ Σx∶A.B, a ∶ A, b ∶ B[x\a], J[p\⟨a, b⟩] ⊢ C[p\⟨a, b⟩] ⌊ext e⌋
H , p ∶ Σx∶A.B, J ⊢ C ⌊ext let a, b = p in e⌋

686 H ⊢ a ∈ A H ⊢ b ∈ B[x\a] H , z ∶ A ⊢ B[x\z] ∈ Ui
H ⊢ Σx∶A.B ⌊ext ⟨a, b⟩⌋

687 H ⊢ A1 = A2 ∈ Ui H , y ∶ A1 ⊢ B1[x1\y] = B2[x2\y] ∈ Ui
H ⊢ Σx1∶A1.B1 = Σx2∶A2.B2 ∈ Ui

688 H , z ∶ A ⊢ B[x\z] ∈ Ui H ⊢ a1 = a2 ∈ A H ⊢ b1 = b2 ∈ B[x\a1]
H ⊢ ⟨a1, b1⟩ = ⟨a2, b2⟩ ∈ Σx∶A.B

The following rule states that PERs are closed under spread-reductions:

H ⊢ u[x\s; y\t] = t2 ∈ T
H ⊢ let x, y = ⟨s, t⟩ in u = t2 ∈ T

B.3 Equality689

The following rules are the standard equality-introduction rule:23, equality-elimination rule
(which states that equality types are inhabited by the ⋆ constant), hypothesis rule, symmetry
and transitivity rules, respectively.

H ⊢ A = B ∈ Ui H ⊢ a1 = b1 ∈ A H ⊢ a2 = b2 ∈ B

H ⊢ a1 = a2 ∈ A = b1 = b2 ∈ B ∈ Ui

690 H , z ∶ a = b ∈ A, J[z\⋆] ⊢ C[z\⋆] ⌊ext e⌋
H , z ∶ a = b ∈ A, J ⊢ C ⌊ext e⌋

691
H , x ∶ A, J ⊢ x ∈ A

692 H ⊢ b = a ∈ T
H ⊢ a = b ∈ T

H ⊢ a = c ∈ T H ⊢ c = b ∈ T
H ⊢ a = b ∈ T

23The actual rule is slightly more general as it allows a1 and b1 to be “computationally equivalent” (and
similarly for a2 and b2). However, since we have not introduced this concept here, we present a simpler
version of this rule only.

CSL 2021

21:22 REFERENCES

The following rule allows fixing the extract of a sequent:

H ⊢ T ⌊ext t⌋
H ⊢ t ∈ T

The following rule allows rewriting with an equality in an hypothesis:

H , x ∶ B, J ⊢ C ⌊ext t⌋ H ⊢ A = B ∈ Ui
H , x ∶ A, J ⊢ C ⌊ext t⌋

B.4 Universes693

Let i is a lower universe than j. The following rules are the standard universe-introduction
rule and the universe cumulativity rule, respectively.

H ⊢ Ui = Ui ∈ Uj
H ⊢ T ∈ Uj
H ⊢ T ∈ Ui

B.5 Sets694

The following rule is the standard set-elimination rule:

H , z ∶ {x ∶ A ∣ B}, a ∶ A, b ∶ B[x\a] , J[z\a] ⊢ C[z\a] ⌊ext e⌋
H , z ∶ {x ∶ A ∣ B}, J ⊢ C ⌊ext e[a\z]⌋

Note that we have used a new construct in the above rule, namely the hypothesis b ∶ B[x\a] ,
which is called a hidden hypothesis. The main feature of hidden hypotheses is that their
names cannot occur in extracts (which is why we “box” those hypotheses). Intuitively, this
is because the proof that B is true is discarded in the proof that the set type {x ∶ A ∣ B} is
true and therefore cannot occur in computations. Hidden hypotheses can be unhidden using
the following rule:

H , x ∶ T, J ⊢ a = b ∈ A ⌊ext ⋆⌋
H , x ∶ T , J ⊢ a = b ∈ A ⌊ext ⋆⌋

which is valid since the extract is ⋆ and therefore does not make use of x.695

The following rules are the standard set-introduction rule, type equality for the set type,
and introduction rule for members of set types, respectively.

H ⊢ a ∈ A H ⊢ B[x\a] H , z ∶ A ⊢ B[x\z] ∈ Ui
H ⊢ {x ∶ A ∣ B} ⌊ext a⌋

696 H ⊢ A1 = A2 ∈ Ui H , y ∶ A1 ⊢ B1[x1\y] = B2[x2\y] ∈ Ui
H ⊢ {x1 ∶ A1 ∣ B1} = {x2 ∶ A2 ∣ B2} ∈ Ui

697 H , z ∶ A ⊢ B[x\z] ∈ Ui H ⊢ a = b ∈ A H ⊢ B[x\a]
H ⊢ a = b ∈ {x ∶ A ∣ B}

B.6 Disjoint Unions698

The following rules are the standard disjoint union-elimination rule, disjoint union-introduction
rules, type equality for the disjoint union type, and injection-introduction rules, respectively.

H , d ∶ A+B, x ∶ A, J[d\inl(x)] ⊢ C[d\inl(x)] ⌊ext t⌋
H , d ∶ A+B, y ∶ B, J[d\inr(y)] ⊢ C[d\inr(y)] ⌊ext u⌋

H , d ∶ A+B, J ⊢ C ⌊ext case d of inl(x)⇒ t | inr(y)⇒ u⌋

699

REFERENCES 21:23

H ⊢ A ⌊ext a⌋ H ⊢ B ∈ Ui
H ⊢ A+B ⌊ext inl(a)⌋

H ⊢ B ⌊ext b⌋ H ⊢ A ∈ Ui
H ⊢ A+B ⌊ext inr(b)⌋

700 H ⊢ A1 = A2 ∈ Ui H ⊢ B1 = B2 ∈ Ui
H ⊢ A1+B1 = A2+B2 ∈ Ui

701 H ⊢ a1 = a2 ∈ A H ⊢ B ∈ Ui
H ⊢ inl(a1) = inl(a2) ∈ A+B

H ⊢ b1 = b2 ∈ B H ⊢ A ∈ Ui
H ⊢ inr(b1) = inr(b2) ∈ A+B

The following rules state that PERs are closed under decide-reductions:

H ⊢ t[x\s] = t2 ∈ T
H ⊢ (case inl(s) of inl(x)⇒ t | inr(y)⇒ u) = t2 ∈ T

H ⊢ u[y\s] = t2 ∈ T
H ⊢ (case inr(s) of inl(x)⇒ t | inr(y)⇒ u) = t2 ∈ T

C Squashing702

As mentioned in Sec. 2.4, OpenTT includes a squashing mechanism, which is used to erase703

the computational content of a type by turning its PER into a trivial one.24 More precisely,704

given a type T , the type ↓T , defined as {x ∶ True ∣ T}, is true iff T is true. However, while705

the type T might have a trivial PER, i.e., it might be inhabited by arbitrarily complex706

programs, ↓T can only be inhabited by ⋆, which is True’s only inhabitant. Indeed, as shown707

in Def. 28 and Appx. B.5, a member of {x ∶ True ∣ T} is a member of True, such that T is708

true. However, T ’s realizer is thrown away and is not part of {x ∶ True ∣ T}’s realizer.709

More precisely, one can derive ↓T from T because given a member t of T , one can trivially
show that that ⋆ is a member of ↓T . We can capture this by the following derived rule:

H ⊢ T ⌊ext t⌋
H ⊢ ↓T ⌊ext ⋆⌋

However, the opposite is not true in general. One cannot in general derive T from ↓T because
given the realizer ⋆ of ↓T , it is not always possible to recover a realizer of T . We can capture
this by the following derived rule:

H , z ∶ ↓T, x ∶ T , J[z\⋆] ⊢ C[z\⋆] ⌊ext e⌋
H , z ∶ ↓T, J ⊢ C ⌊ext e⌋

To illustrate the point that we cannot in general derive T from ↓T , let us see how far we
can go when trying to prove:

x ∶ ↓T ⊢ T

Using the above squash-elimination derived rule, we have to prove:

x ∶ ↓T, z ∶ T ⊢ T

However, we are now stuck, as we have in general no way of deriving an extract of T given710

these hypotheses. The unhiding rule mentioned Appx. B.5 can only be used when the711

conclusion is an equality type, and the hypothesis rule mentioned in Appx. B.3, requires the712

z hypothesis to be “visible” (not hidden) in order to use z as a realizer of the conclusion.713

24 See for example [41] for more details on squashing.

CSL 2021

21:24 REFERENCES

D Semantics of OpenTT in Agda714

Let us now provides a formalization of the open bar semantics of OpenTT in Agda. The715

code provided in this section can also be found here: agda/worldi.lagda716

We first postulate and define enough about worlds to interpret OpenTT w.r.t. open bars.717

postulate718

– Worlds719

world : Set720

– w2 extends w1721

⪰ : (w2 : world) → (w1 : world) → Set722

– extension is reflexive723

extRefl : ∀ w → w ⪰ w724

– extension is transitive725

extTrans : ∀ {w3 w2 w1} (e2 : w3 ⪰ w2) (e1 : w2 ⪰ w1) → w3 ⪰ w1726

727

– f holds in all extensions728

allW : ∀ (w : world) (f : ∀ (w’ : world) (e : w’ ⪰ w) → Set) → Set729

allW w f = ∀ (w’ : world) (e : w’ ⪰ w) → f w’ e730

731

– f holds in one extensions732

exW : ∀ (w : world) (f : ∀ (w’ : world) (e : w’ ⪰ w) → Set) → Set733

exW w f = ∃ world (λ w’ → ∃ (w’ ⪰ w) (λ e → f w’ e))734

735

– f holds in an open bar736

inOpenBar : ∀ (w : world) (f : ∀ (w’ : world) (e : w’ ⪰ w) → Set) → Set737

inOpenBar w f =738

allW w (λ w1 e1 → exW w1 (λ w2 e2 → allW w2 (λ w3 e3 →739

f w3 (extTrans e3 (extTrans e2 e1)))))740

741

– f holds in an open bar that depends on another open bar h742

inOpenBar’ : ∀ w {g} (h : inOpenBar w g) (f : ∀ w’ (e : w’ ⪰ w) (x : g w’ e) → Set) → Set743

inOpenBar’ w h f =744

allW w (λ w0 e0 →745

let p = h w0 e0 in746

let w1 = proj1 p in747

let e1 = proj1 (proj2 p) in748

let q = proj2 (proj2 p) in749

exW w1 (λ w2 e2 → allW w2 (λ w3 e3 →750

let e’ = extTrans e3 e2 in751

f w3 (extTrans e’ (extTrans e1 e0)) (q w3 e’))))752

We now define part of OpenTT’s syntax and postulate its operational semantics.753

postulate754

choice_sequence_name : Set755

756

data Var : Set where757

var : N → Var – variable are simply numbers758

759

data Term : Set where760

– Numbers761

NAT : Term762

QNAT : Term763

LT : Term → Term → Term764

QLT : Term → Term → Term765

NUM : N → Term766

– Products767

PI : Term → Var → Term → Term768

LAMBDA : Var → Term → Term769

APPLY : Term → Term → Term770

– Sums771

SUM : Term → Var → Term → Term772

PAIR : Term → Term → Term773

SPREAD : Term → Var → Var → Term774

– Sets –- they don’t have constructors/destructors775

SET : Term → Var → Term → Term776

https://github.com/vrahli/NuprlInCoq/blob/ls3/agda/worldi.lagda

REFERENCES 21:25

– Disjoint unions777

UNION : Term → Term → Term778

INL : Term → Term779

INR : Term → Term780

DECIDE : Term → Var → Term → Var → Term781

– Equality782

EQ : Term → Term → Term → Term783

AX : Term784

– Choice sequences785

FREE : Term786

CS : choice_sequence_name → Term787

– Time squashing788

TSQUASH : Term → Term789

– Free from definitions790

FFDEFS : Term → Term → Term791

– Universes792

UNIV : N → Term793

794

postulate795

– standard substitution function on terms796

subst : Var → Term → Term → Term797

– operational semantics of the language798

_⇓_at_ : ∀ (T T’ : Term) (w : world) → Set799

– ’computes to’ is reflexive800

compRefl : ∀ (T : Term) (w : world) → T ⇓ T at w801

– Howe’s computational equivalence relation802

_∼_at_ : ∀ (T T’ : Term) (w : world) → Set803

– states that the argument does not contain any definition or choice sequence804

nodefs : Term → Set805

infix 30 _⇓_at_806

infix 30 _∼_at_807

808

– T computes to T’ in all extensions of w809

_⤋_at_ : ∀ (T T’ : Term) (w : world) → Set810

T ⤋ T’ at w = allW w (λ w’ _ → T ⇓ T’ at w’)811

infix 30 _⤋_at_812

813

– T computationally equivalent to T’ in all extensions of w814

_≈_at_ : ∀ (T T’ : Term) (w : world) → Set815

T ≈ T’ at w = allW w (λ w’ _ → T ∼ T’ at w’)816

infix 30 _≈_at_817

818

compAllRefl : ∀ (T : Term) (w : world) → T ⤋ T at w819

compAllRefl T w = λ w’ e → compRefl T w’820

821

– t1 and t2 compute to the same number and stay the same number in all extensions822

strongMonEq : ∀ (w : world) (t1 t2 : Term) → Set823

strongMonEq w t1 t2 = ∃ N (λ n → t1 ⤋ (NUM n) at w × t2 ⤋ (NUM n) at w)824

825

– t1 and t2 compute to the same number but that number can change over time826

weakMonEq : ∀ (w : world) (t1 t2 : Term) → Set827

weakMonEq w t1 t2 = allW w (λ w’ _ → ∃ N (λ n → t1 ⇓ (NUM n) at w’ × t2 ⇓ (NUM n) at w’))828

We now provide an inductive-recursive realizability semantics of OpenTT.829

– PERs and world dependent PERs830

per : Set1831

per = Term → Term → Set832

833

wper : Set1834

wper = world → per835

836

– eqTypes and eqInType provide meaning to types w.r.t. already interpreted universes,837

– given by univs (1st conjunct defines the equality between such universes, while the838

– second conjunct defines the equality in such universes)839

univs : Set1840

univs = ∃ N (λ n → wper × wper)841

CSL 2021

21:26 REFERENCES

842

– equality between types (an inductive definition)843

– and equality in types (a recursive function)844

data eqTypes (u : univs) (w : world) (T1 T2 : Term) : Set845

eqInType : (u : univs) (w : world) {T1 T2 : Term} → (eqTypes u w T1 T2) → per846

Equality between type is defined as the following inductive definition847

data eqTypes u w T1 T2 where848

EQTNAT : T1 ⤋ NAT at w → T2 ⤋ NAT at w → eqTypes u w T1 T2849

EQTQNAT : T1 ⤋ QNAT at w → T2 ⤋ QNAT at w → eqTypes u w T1 T2850

EQTLT : (a1 a2 b1 b2 : Term)851

→ T1 ⤋ (LT a1 b1) at w852

→ T2 ⤋ (LT a2 b2) at w853

→ strongMonEq w a1 a2854

→ strongMonEq w b1 b2855

→ eqTypes u w T1 T2856

EQTQLT : (a1 a2 b1 b2 : Term)857

→ T1 ⤋ (QLT a1 b1) at w858

→ T2 ⤋ (QLT a2 b2) at w859

→ weakMonEq w a1 a2860

→ weakMonEq w b1 b2861

→ eqTypes u w T1 T2862

EQTFREE : T1 ⤋ FREE at w → T2 ⤋ FREE at w → eqTypes u w T1 T2863

EQTPI : (A1 B1 A2 B2 : Term) (v1 v2 : Var)864

→ T1 ⤋ (PI A1 v1 B1) at w865

→ T2 ⤋ (PI A2 v2 B2) at w866

→ (eqta : allW w (λ w’ _ → eqTypes u w’ A1 A2))867

→ (eqtb : allW w (λ w’ e → ∀ a1 a2 → eqInType u w’ (eqta w’ e) a1 a2868

→ eqTypes u w’ (subst v1 a1 B1) (subst v2 a2 B2)))869

→ eqTypes u w T1 T2870

EQTSUM : (A1 B1 A2 B2 : Term) (v1 v2 : Var)871

→ T1 ⤋ (SUM A1 v1 B1) at w872

→ T2 ⤋ (SUM A2 v2 B2) at w873

→ (eqta : allW w (λ w’ _ → eqTypes u w’ A1 A2))874

→ (eqtb : allW w (λ w’ e → ∀ a1 a2 → eqInType u w’ (eqta w’ e) a1 a2875

→ eqTypes u w’ (subst v1 a1 B1) (subst v2 a2 B2)))876

→ eqTypes u w T1 T2877

EQTSET : (A1 B1 A2 B2 : Term) (v1 v2 : Var)878

→ T1 ⤋ (SET A1 v1 B1) at w879

→ T2 ⤋ (SET A2 v2 B2) at w880

→ (eqta : allW w (λ w’ _ → eqTypes u w’ A1 A2))881

→ (eqtb : allW w (λ w’ e → ∀ a1 a2 → eqInType u w’ (eqta w’ e) a1 a2882

→ eqTypes u w’ (subst v1 a1 B1) (subst v2 a2 B2)))883

→ eqTypes u w T1 T2884

EQTEQ : (a1 b1 a2 b2 A B : Term)885

→ T1 ⤋ (EQ a1 a2 A) at w886

→ T2 ⤋ (EQ b1 b2 B) at w887

→ (eqtA : allW w (λ w’ _ → eqTypes u w’ A B))888

→ (eqt1 : allW w (λ w’ e → eqInType u w’ (eqtA w’ e) a1 b1))889

→ (eqt2 : allW w (λ w’ e → eqInType u w’ (eqtA w’ e) a2 b2))890

→ eqTypes u w T1 T2891

EQTUNION : (A1 B1 A2 B2 : Term)892

→ T1 ⤋ (UNION A1 B1) at w893

→ T2 ⤋ (UNION A2 B2) at w894

→ (eqtA : allW w (λ w’ _ → eqTypes u w’ A1 A2))895

→ (eqtB : allW w (λ w’ _ → eqTypes u w’ B1 B2))896

→ eqTypes u w T1 T2897

EQTSQUASH : (A1 A2 : Term)898

→ T1 ⤋ (TSQUASH A1) at w899

→ T2 ⤋ (TSQUASH A2) at w900

→ (eqtA : allW w (λ w’ _ → eqTypes u w’ A1 A2))901

→ eqTypes u w T1 T2902

EQFFDEFS : (A1 A2 x1 x2 : Term)903

→ T1 ⤋ (FFDEFS A1 x1) at w904

→ T2 ⤋ (FFDEFS A2 x2) at w905

→ (eqtA : allW w (λ w’ _ → eqTypes u w’ A1 A2))906

REFERENCES 21:27

→ (eqx : allW w (λ w’ e → eqInType u w’ (eqtA w’ e) x1 x1))907

→ eqTypes u w T1 T2908

EQTUNIV : proj1 (proj2 u) w T1 T2 → eqTypes u w T1 T2909

EQTBAR : inOpenBar w (λ w’ _ → eqTypes u w’ T1 T2) → eqTypes u w T1 T2910

Equality in types is defined as the following recursive function.911

eqInType _ w (EQTNAT _ _) t1 t2 = inOpenBar w (λ w’ _ → strongMonEq w’ t1 t2)912

eqInType _ w (EQTQNAT _ _) t1 t2 = inOpenBar w (λ w’ _ → weakMonEq w’ t1 t2)913

eqInType _ w (EQTLT a1 _ b1 _ _ _ _ _) t1 t2 =914

inOpenBar w (λ w’ _ → ∃ N (λ n → ∃ N (λ m → t1 ⇓ (NUM n) at w’ × t2 ⇓ (NUM m) at w’ × n < m)))915

eqInType _ w (EQTQLT a1 _ b1 _ _ _ _ _) t1 t2 =916

inOpenBar w (λ w’ _ → ∃ N (λ n → ∃ N (λ m → t1 ⇓ (NUM n) at w’ × t2 ⇓ (NUM m) at w’ × n < m)))917

eqInType _ w (EQTFREE _ _) t1 t2 =918

inOpenBar w (λ w’ _ → ∃ choice_sequence_name (λ n → t1 ⤋ (CS n) at w’ × t2 ⤋ (CS n) at w’))919

eqInType u w (EQTPI _ _ _ _ _ _ _ _ eqta eqtb) f1 f2 =920

inOpenBar w (λ w’ e → ∀ (a1 a2 : Term) (eqa : eqInType u w’ (eqta w’ e) a1 a2)921

→ eqInType u w’ (eqtb w’ e a1 a2 eqa) (APPLY f1 a1) (APPLY f2 a2))922

eqInType u w (EQTSUM _ _ _ _ _ _ _ _ eqta eqtb) t1 t2 =923

inOpenBar w (λ w’ e → ∃ Term (λ a1 → ∃ Term (λ a2 → ∃ Term (λ b1 → ∃ Term (λ b2 →924

∃ (eqInType u w’ (eqta w’ e) a1 a2) (λ ea →925

t1 ⤋ (PAIR a1 b1) at w’926

× t2 ⤋ (PAIR a2 b2) at w’927

× eqInType u w’ (eqtb w’ e a1 a2 ea) b1 b2))))))928

eqInType u w (EQTSET _ _ _ _ _ _ _ _ eqta eqtb) t1 t2 =929

inOpenBar w (λ w’ e → ∃ Term (λ b → ∃ (eqInType u w’ (eqta w’ e) t1 t2) (λ ea →930

eqInType u w’ (eqtb w’ e t1 t2 ea) b b)))931

eqInType u w (EQTEQ a1 b1 _ _ _ _ _ _ eqtA eqt1 eqt2) t1 t2 =932

inOpenBar w (λ w’ e → t1 ⤋ AX at w’ × t2 ⤋ AX at w’ × eqInType u w’ (eqtA w’ e) a1 b1)933

eqInType u w (EQTUNION _ _ _ _ _ _ eqtA eqtB) t1 t2 =934

inOpenBar w (λ w’ e → ∃ Term (λ a → ∃ Term (λ b →935

(t1 ⤋ (INL a) at w’ × t2 ⤋ (INR b) at w’ × eqInType u w’ (eqtA w’ e) a b)936

⊎937

(t1 ⤋ (INR a) at w’ × t2 ⤋ (INR b) at w’ × eqInType u w’ (eqtB w’ e) a b))))938

eqInType u w (EQTSQUASH _ _ _ _ eqtA) t1 t2 =939

inOpenBar w (λ w’ e → ∃ Term (λ a1 → ∃ Term (λ a2 →940

(t1 ∼ a1 at w’) × (t2 ∼ a2 at w’) × (t1 ≈ t2 at w’)941

× eqInType u w’ (eqtA w’ e) a1 a2)))942

eqInType u w (EQFFDEFS _ _ x1 _ _ _ eqtA _) t1 t2 =943

inOpenBar w (λ w’ e → ∃ Term (λ x →944

(t1 ⤋ AX at w’) × (t2 ⤋ AX at w’)945

× eqInType u w’ (eqtA w’ e) x1 x × nodefs x))946

eqInType u w (EQTUNIV _) T1 T2 = proj2 (proj2 u) w T1 T2947

eqInType u w (EQTBAR f) t1 t2 =948

{– inOpenBar’ w f (λ w’ _ (x : eqTypes u w’ _ _) → eqInType u w’ x t1 t2)–}949

{– This is an unfolding of the above, as agda doesn’t like the above –}950

allW w (λ w0 e0 →951

let p = f w0 e0 in952

let w1 = proj1 p in953

let e1 = proj1 (proj2 p) in954

let q = proj2 (proj2 p) in955

exW w1 (λ w2 e2 → allW w2 (λ w3 e3 → eqInType u w3 (q w3 (extTrans e3 e2)) t1 t2)))956

We finally close the construction as follows:957

– Two level-m universes are equal if they compute to (UNIV m)958

eqUnivi : (m : N) → wper959

eqUnivi m w T1 T2 = inOpenBar w (λ w’ _ → T1 ⤋ (UNIV m) at w’ × T2 ⤋ (UNIV m) at w’)960

961

– Two terms are equal in universe m if they are equal according to eqTypes962

eqInUnivi : (m : N) → wper963

eqInUnivi 0 = λ _ _ _ → ⊥964

eqInUnivi (suc m) w T1 T2 = eqTypes (m , (eqUnivi m , eqInUnivi m)) w T1 T2 ⊎ eqInUnivi m w T1 T2965

966

uni : N → univs967

uni n = (n , (eqUnivi n , eqInUnivi n))968

969

– Finally, the ’equal types’ and ’equal in types’ relations970

CSL 2021

21:28 REFERENCES

eqtypes : (w : world) (T1 T2 : Term) → Set971

eqtypes w T1 T2 = ∃ N (λ n → eqTypes (uni n) w T1 T2)972

973

eqintype : (w : world) (T a b : Term) → Set974

eqintype w T a b = ∃ N (λ n → ∃ (eqTypes (uni n) w T T) (λ p → eqInType (uni n) w p a b))975

	Introduction
	OpenTT and Choice Sequences
	Syntax
	Worlds
	Operational Semantics
	Space Squashing and Time Squashing

	Open Bar Realizability Model
	A Theory of Choice Sequences
	The Axiom of Open Data (AOD)
	The Space-Squashed Axiom of Open Data (AOD"37039C7)
	The Time-Squashed Axiom of Open Data (AOD)

	The Density Axiom (DeA)
	The Discreteness Axiom (DiA)

	The Law of Excluded Middle
	Conclusion and Related Work
	OpenTT's Semantics
	OpenTT's Inference Rules
	Products
	Sums
	Equality
	Universes
	Sets
	Disjoint Unions

	Squashing
	Semantics of OpenTT in Agda

