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Abstract. Nuprl is an interactive theorem prover that implements an

extensional constructive type theory, where types are interpreted as par-

tial equivalence relations on closed terms. Nuprl is both computationally

and type-theoretically open-ended in the sense that both its computa-

tion system and its type theory can be extended as needed by checking a

handful of conditions. For example, Doug Howe characterized the compu-

tations that can be added to Nuprl in order to preserve the congruence

of its computational equivalence relation. We have implemented Nuprl’s

computation and type systems in Coq, and we have showed among other

things that it is consistent. Using our Coq framework we can now easily

and rigorously add new computations and types to Nuprl by mechani-

cally verifying that all the necessary conditions still hold. We have re-

cently exercised Nuprl’s open-endedness by adding nominal features to

Nuprl in order to prove a version of Brouwer’s continuity principle, as

well as choice sequences in order to prove truncated versions of the axiom

of choice and of Brouwer’s bar induction principle. This paper illustrates

the process of extending Nuprl with versions of the axiom of choice.

Keywords: Nuprl, Coq, Semantics, Open-Endedness, Axiom of Choice,

Choice Sequences, Bar Induction, Continuity

1 Introduction

Nuprl. The Nuprl interactive theorem prover [13, 3] implements a dependent type
theory called Constructive Type Theory (CTT), which is based on an untyped
functional programming language. It has a rich type theory including identity (or
equality) types, a hierarchy of universes, W types, quotient types [14], set types,
union and (dependent) intersection types [28], image types [32], partial equiva-
lence relation types [4], approximation and computational equivalence types [35],
and partial types [38, 16]. CTT “mostly” differs from other similar constructive
type theories such as the ones implemented by Agda [10, 1], Coq [8, 15], or
Idris [11, 26], in the sense that CTT is an extensional theory (i.e., propositional
and definitional equality are identified [20]) with types of partial functions [38,
16]. For example, the fixpoint fix(λx.x) diverges. It is nonetheless a member
of many types such as Z, which is the type of integers and diverging terms (es-
sentially the integer type of ML-like programming languages such as OCaml).
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In Nuprl, type checking is undecidable but in practice this is mitigated by type
inference and type checking heuristics implemented as tactics.

Formalization of Nuprl’s metatheory in Coq. Following Allen’s semantics [2],
CTT types are interpreted as Partial Equivalence Relations (PERs) on closed
terms. We have formalized Nuprl’s metatheory in Coq [6, 5]. Our implemen-
tation includes: (1) an implementation of Nuprl’s computation system; (2) an
implementation of Howe’s computational equivalence relation [22], and a proof
that it is a congruence; (3) a definition of Allen’s PER semantics of CTT [2,
16]; (4) definitions of Nuprl’s derivation rules, and proofs that these rules are
valid w.r.t. Allen’s PER semantics; (5) and a proof of Nuprl’s consistency [6,
5]. Our implementation is available at https://github.com/vrahli/NuprlInCoq, and
additional information can be found at http://www.nuprl.org/html/Nuprl2Coq/.

Exploring type theory. Using our implementation of CTT in Coq, we are explor-
ing type theory. For example, (1) we are reformulating CTT using a smaller core
of primitive types, by allowing the theory to directly represent PERs as types [4].
We conjecture that dependent product and sum types will be definable in this
new theory. (2) We have proved the validity of truncated (or squashed—see
Sec. 2.2 for a discussion of truncation/squashing) versions of Brouwer’s continu-
ity principle [27, 17, 40, 12, 41, 44, 37]. w.r.t. Nuprl’s PER semantics [34]. For
that, following Longley’s method [31], we used named exceptions as a probing
mechanism to compute the modulus of continuity of a function. (3) We have
proved the validity of versions of Brouwer’s bar induction principle [27, 21, 17,
12, 41, 37, 43], which we are using to build parametrized families of W types from
parametrized families of co-W types [9]. For that we added “choice sequences” to
Nuprl’s term language [36]. A choice sequence of type T is a Coq function from
natural numbers to terms of type T . They are similar to the infinite sequences
in [7], which are used to prove that the negative translation of the Axiom of
Choice (AC) is realizable. They are also similar to Howe’s set-theoretical func-
tions in [24, 25, 23], which he used to provide a set-theoretical semantics of both
Nuprl and HOL, allowing the shallow embedding of HOL in Nuprl. (4) We have
proved the validity of truncated versions of AC [34, Sec.5.3].

Open-endedness. Because Nuprl was designed to be open-ended, i.e., theorems
about computations and types “hold for a broad class of extensions to the sys-
tem” [19], adding new features to the system often did not require much modifi-
cations to the existing properties of its computation system or to the statements
and proofs of its inference rules. We illustrate this here with AC. Sec. 4 presents
true and false versions of AC, which we have proved by extending CTT’s com-
putation and type systems.

2 Background on Nuprl

2.1 Constructive Type Theory

Nuprl’s programming language is an untyped (à la Curry), lazy and applied (with
pairs, injections, a fixpoint operator,. . . ) λ-calculus. Its term language is open-
ended in the sense that it contains all possible terms that follow a given structure
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described, for example, in [22], and mentioned below. Therefore, most terms do
not have any operational semantics according to Nuprl’s computation system.
A type is a value of the computation system. Among other things, Allen’s PER
semantics associates PERs to these values, i.e., types are interpreted as partial
equivalence relations (PERs) on closed terms [2]. As illustrated in [6, Fig.6],
Allen’s PER semantics can be seen as an inductive-recursive definition of: (1)
an inductive relation T1≡T2 that expresses type equality; and (2) a recursive
function a≡b∈T that expresses equality in a type.

Type equality is mostly intentional in the sense that two types that are
interpreted by the same PER are not necessarily equal. Most notably, identity
types of the form a =T b, which expresses that a and b are equal members
of the type T , can only be inhabited by the constant ⋆, i.e., they do not have
any computational content as opposed to HoTT [42]. However, the two types
0 =N 0 and 1 =N 1 are not equal, even though they have the same PER. Note that
Uniqueness of Identify Proofs (UIP) is true by definition in Nuprl. As mentioned
above, because of this treatment of equality, Nuprl is also extensional in the sense
that propositional and definitional equality are identified [20]. Also, function
extensionality is true by definition of dependent product (function) types.

It turns out that Nuprl’s type system is not only closed under computation
but more generally under Howe’s computational equivalence ∼, which he proved
to be a congruence [22]. For example, one can prove that λx.(x+1)+0 ∼ λx.x+1
without requiring one to infer a type for x. In any context C, when t ∼ t′ we can
rewrite t into t′ without having to prove anything about types. We rely on this
relation to prove equalities between programs (bisimulations) without concern
for typing [35]. See Sec. 2.3 below for more details.

As mentioned above, we have implemented Nuprl’s term language, its compu-
tation system, Howe’s ∼ relation, and Allen’s PER semantics in Coq [6, 5]. We
have also showed that Nuprl is consistent by (1) proving that Nuprl’s inference
rules are valid w.r.t. Allen’s PER semantics, and (2) proving that False is not
inhabited. Using these two facts, we derive that there cannot be a proof deriva-
tion of False, i.e., Nuprl is consistent (see [6, 5, 33, Appx.A] for more details).
We are using our Coq formalization to prove the validity of all the inference rules
of Nuprl, and have already verified a large number of them.

2.2 Squashing

It is sometimes necessary to truncate or squash types for them to be true or
consistent with Martin-Löf-like type theories such as Nuprl. For example, the
non-truncated version of Brouwer’s continuity principle, i.e., where the existen-
tial quantifier is interpreted constructively, is false in type theories such as Agda
or Nuprl [29, 39, 18, 34, 36], while its truncated version is true in Nuprl [34].
Similar results hold about AC as discussed in Sec. 4, as well as about Brouwer’s
bar induction principle [36].

In Nuprl, there are various ways of squashing or truncating a type. The most
widely used squashing operator in Nuprl throws away the evidence that a type
is inhabited and squashes it down to a single inhabitant using, e.g., set types:
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↓T = {Unit | T} (as defined in [13, pp.60]). The only member of this type is
the constant ⋆, which is Unit’s single inhabitant, and which is similar to () in
languages such as OCaml, Haskell or SML. The constant ⋆ inhabits ↓T if T is
true/inhabited, but we do not keep the proof that it is true. See [33, Appx.F]
for more information regarding squashing. Using the HoTT terminology, we also
sometimes truncate types at the propositional level [42, pp.117]. In Nuprl propo-
sitional truncation corresponds to squashing a type down to a single equivalence
class, i.e. all inhabitants are equal, using, e.g., quotient types [14]: ⇃T = T//True.
⇃T is a proof-irrelevant type. Its members are the members of T , and they are
all equal to each other in ⇃T because if x, y ∈ T then (x =T y ⇐⇒ True). Note
that the implication ⇃T → ↓T is true because it is inhabited by λx.⋆, but we
cannot prove the converse because to prove ⇃T we have to exhibit an inhabitant
of T , which ↓T does not give us because only ⋆ inhabits ↓T .

2.3 Howe’s Computational Equivalence

Howe’s computational equivalence is defined on closed terms as follows: t ∼ u if
t 4 u ∧ u 4 t. Howe coinductively defines the approximation (or simulation)
relation 4 as the largest relation R on closed terms such that R ⊂ [R], where
[·] is the following closure operator (also defined on closed terms): t [R] u if
whenever t computes to a value θ(b), then u also computes to a value θ(b′) such
that b R b′. We write θ(b) for the term with outer operator θ and subterms b,
where each subterm is essentially a pair of a list of binding variables and a term.
For example λx.x has one subterm that has one binding variable x. See [22, 6,
5] for details. By definition, one can derive, e.g., that ⊥ 4 t for all closed term t.

To prove that ∼ is a congruence, Howe first proves that 4 is a congruence [22].
Unfortunately, this is not easy to prove directly. Howe’s “trick” was to define an-
other inductive relation 4∗, which is a congruence and contains 4 by definition.
To prove that 4∗ and 4 are equivalent and therefore that 4 and ∼ are congru-
ences, it suffices to prove that 4∗ respects computation, i.e., given that t 4∗ u,
if t computes to a value of the form θ(b) then u also computes to a value θ(b′)
such that b 4∗ b′. Howe defined a condition called extensionality [22, Def.5] that
non-canonical (i.e., non-values) operators of lazy computation systems have to
satisfy for 4∗ to imply 4. Essentially, a non-canonical operator is extensional if
it never reduces a term by making a decision based on non-canonical subterms,
which is the case about Nuprl’s non-canonical operators. For example, the fol-
lowing “bad” non-canonical operator is not extensional: if we allow bad(f(a)),
where f(a) is the application of f to a, to reduce to a, and bad(v), where v is a
value, to reduce to v, then bad((λx.x + 1) 1) would reduce to 1, and (λx.x + 1) 1
would reduce to 2, while bad(2) would reduce to 2, which is different from 1.

3 Open-Endedness and Exploration

One can extend CTT by either adding new computations, new types, or new
inference rules. Typically, to add a new computation, one simply has to prove
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that it satisfies various preservation properties such as: if a term t1 computes to
a term t2 then the free variables of t2 are included in the free variables of t1 and
t1[x\u] (the substitution of x for u in t1) computes to t2[x\u]. Also, in the case
of non-canonical operators, one has to prove that they are extensional.

We have recently added several operators to Nuprl: (1) named exceptions [34];
(2) a try/catch operator [34]; (3) a fresh operator to generate fresh names [34];
(4) choice sequences; (5) an eager application operator; as well as (6) various
values denoting types such as our PER types [4]. In the case of exceptions, which
are some sorts of values in the sense that they do not compute further, we had to
modify one inference rule [33, Appx.C]. The proofs that our try/catch and eager
application operators are extensional were standard. However, proving that our
fresh operator is extensional required modifying the definition of 4∗ as discussed
in [34, Sec.4.2]. Adding choice sequences made us loose the decidability of several
relations such as α-equality or even syntactic equality, which it turned out we did
not need [36, Sec.4.1]. We also had to modify one inference rule. Because types
are values of the computation system, when adding a type we usually do not
have to modify theorems and proofs about computations. However, we have to
(1) provide an interpretation for the type: essentially a PER. (2) Then, because
a type system has to satisfy some properties, as explained in [6, Sec.6.3], such
as: PERs respect computation, we have to prove that the new type constructor
satisfies these properties. We can then start stating and proving the validity of
type inference rules regarding the new type constructor.

4 The Axiom of Choice

We now illustrate the process of extending Nuprl’s computation system and type
theory in order to validate axiom of choice type inference rules.

4.1 Squashed or Non-squashed?

The axiom of choice (where A and B are types, and P is of type A → B → P)

Πa:A.Σb:B.P a b ⇒ Σf :BA.Πa:A.P a f(a)

follows from the usual inference rules of the universal (dependent product) and
existential (dependent sum) quantifiers [34, Sec.5.3]. However, this non-squashed
version of AC is not always enough because existential quantifiers cannot always
be interpreted as Σ but sometimes as truncated Σ’s (see for example [18, 34,
36]). Therefore, we sometimes need instances of AC where Σ is either ⇃-squashed
or ↓-squashed. In that case it is not obvious anymore which instances of AC are
consistent with or provable in Nuprl. This section provides some answers.

We showed in [34, Sec.5.3] that we can directly prove in Nuprl the following
⇃-squashed versions of AC0,B and AC1,B, where B = N

N:

Πn:N.⇃Σf :B.P n f ⇒ ⇃Σf :BN.Πn:N.P n f(n)

Πn:B.⇃Σf :B.P n f ⇒ ⇃Σf :BB.Πn:B.P n f(n)
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We mentioned in [36, Appx.B] that we have proved the validity of the follow-
ing ↓-squashed version of AC0,NBase in our Coq framework using classical logic
and choice sequences of terms of type NBase = {t : Base | (t : Base)#}, where
(t : T )# says that the term t is in the type T and does not contain any name,
and Base is the type of closed terms with ∼ as its equality:

Πn:N.↓Σf :NBase.P n f ⇒ ↓Σf :NBaseN.Πn:N.P n f(n)

We showed in [36, Appx.B] that the ⇃-squashed version of Brouwer’s weak
continuity principle (WCP) and the negation of its unsquashed version, which are
provable in Nuprl, imply the negation of the following ⇃-version of AC2,0 (where
T is a non-empty type):

ΠP :NB → T → P.
(Πf :NB.⇃Σn:N. P f n) ⇒ ⇃ΣN :NB → T. Πf :NB.P f (N f)

Let us repeat the proof here. It suffices to prove that N
B does not have the

following choice principle (while B and N do):

ChoicePrinciple(T ) = ΠP :T → P.(Πt:T.⇃P (t)) ⇐⇒ (⇃Πt:T.P (t))

which follows easily from both the facts that the ⇃-version of WCP is true in Nuprl
and its unsquashed version is false. Let us prove ¬ChoicePrinciple(NB), i.e.,
assuming the hypothesis ChoicePrinciple(NB) we have to prove False. We
instantiate this hypothesis with the following function, which we call C (where
Nk is the type of natural numbers strictly less than k):

λF.ΣM :NB.Πf, g:B.f =(NM(f)→N) g → F (f) =N F (g)

We now get to assume (Πt:NB.⇃C(t)) ⇐⇒ (⇃Πt:NB.C(t)). Because the ⇃-
squashed version of WCP is true in Nuprl, we also get to assume Πt:NB.⇃C(t).
From the above double implication, we obtain ⇃Πt:NB.C(t). Because we are
proving False, we can unsquash this new hypothesis, i.e., we get to assume
Πt:NB.C(t), which is the unsquashed version of WCP, which is false.

4.2 Choice Sequences

As mentioned above, in order to prove the validity of AC0,NBase, a ↓-squashed
version of AC, we added choice sequences of terms to Nuprl’s term syntax:

Inductive Term := vterm (v : Var) | sterm (s : nat → Term) | oterm (op : Opid) (bs : list BTerm)
with BTerm := bterm (vs : list Var) (t : Term).

Our choice sequences are Coq functions from natural numbers to Nuprl terms.
Additionally, we require that such choice sequences do not contain free variables
or names [36, Sec.4.2]. This addition had interesting consequences such as: most
relations on terms became undecidable such as syntactic equality and α-equality.
Also, because of this additional limit constructor in the definition of terms, the
return types of functions that are recursively applied to choice sequences had
to be turned into W-like types with limit constructors. For example, we had
to change the statement of our general induction principle on terms. Originally,
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this lemma went by induction on the size of term, which was simply a natural
number. With choice sequences, the size of a term is now an ordinal number
with a limit operator for the size of sequences:

Fixpoint osize (t : Term) : ord :=
match t with
| vterm ⇒ OS OZ

| sterm f ⇒ OS (OL (fun x ⇒ osize (f x)))
| oterm op bterms ⇒ OS (oaddl (map osize bterm bterms))
end

with osize bterm (bt : BTerm) : ord := match bt with bterm lv nt ⇒ osize nt end.

where oaddl is an addition operation on lists of ordinals, which are defined as
follows: Inductive ord := OZ | OS (o : ord) | OL (s : nat → ord). We also had
proved equalities between terms, where now in order to still prove an equality,
we need to use in addition the function extensionality axiom to prove that two
choice sequences are equal. We leave for future work the investigation of whether
we can do without additional axioms using custom equality relations.

5 Conclusion

Much remains to be done to bridge the gap between our Coq implementation
and Nuprl’s current implementation. Following the footsteps of [30], we would
like to synthesize a version of Nuprl from our implementation. Nevertheless, our
Coq implementation of CTT already turned out to be very useful to investigate
extensional type theory on a large scale, which often was made relatively easy
by the fact that Nuprl is open-ended in many ways. However, we are sometimes
making decisions that limit Nuprl’s open-endedness. For example, because we
have now added exceptions to Nuprl, it is not clear how or even whether we could
add a parallel operator to Nuprl as mentioned in [34, Sec.8]. As another example,
we have often used the fact that Nuprl’s computation system is deterministic
in our implementation, which will prevent us from adding non-deterministic
operators. It is not clear yet whether we can do without this property, and most
importantly it is not clear how to avoid such accidental limitations.
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