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Abstract. This paper extends the proof methods used by the Nuprl

proof assistant to reason about the computational behavior of its untyped
programs. We have implemented new methods to prove non-trivial bisim-
ulations between programs and have successfully applied these methods
to formally optimize distributed programs such as our synthesized and
verified version of Paxos, a widely used protocol to achieve software based
replication. We prove new results about the basic computational equality
relation on terms, and we extend the theory of partial types as the ba-
sis for stating internal results about the computation system that were
previously treated only in the meta theory of Nuprl. All the lemmas
presented in this paper have been formally proved in Nuprl.

1 Introduction

This paper presents proof techniques implemented in the Nuprl proof assis-
tant [16,28,4] to reason about its own computation system and programming
language, an applied lazy (call-by-name) λ-calculus. Since the computation sys-
tem is universal (Turing complete), we need to reason using partial types in-
troduced by Constable and Smith [38,17] and extended by Crary [18].1 The
bisimulation relation defined by Howe turned out to form a contextual equiva-
lence relation [24,25], and is therefore the basic computational equality on Nuprl
terms. Internally it becomes the equality on the partial type Base of all untyped
Nuprl terms, both programs and data. The canonical values of this type are the
terminating terms, the values of the type system.

Nuprl’s logic is defined on top of this computation system. It is an extensional
Constructive Type Theory (CTT) [16] which relies on ternary partial equivalence
relations that express when two terms are equal in a type. For example, the type
1+1 =N 2 expresses that 1+1 and 2 are equal natural numbers (we write x ∈ T ,
for x =T x ). Each type is defined by such a relation.

Over the past two decades much progress has been made to enrich Nuprl and
make it a practical programming language as well as a logical system in which
one can verify properties of Nuprl programs [38,17,18,22,26,27]. During that pe-
riod, Nuprl’s theory was extended with, e.g., intersection types, union types,
partial types, a call-by-value operator, rules to reason about computation, and
in particular rules about the fixpoint operator. Recently, we have extended Nuprl

1 Crary gave a denotational semantics for an ML dialect using partial types.
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with new operators called canonical form tests (similar to Lisp and Scheme’s type
predicates) so that programs can distinguish between primitive canonical oper-
ators such as the pair or lambda constructors, and we have developed new ways
to reason about these new constructs. This gives us more tools to program in
Nuprl and reason about these programs.

Nuprl’s intersection and partial types add expressive power. They allow us
to reason about a larger class of practical programs and express more program
properties. However, using typed equivalences to transform programs can be
unnecessarily complex because programs are not annotated with types and both
type checking and type inference are undecidable in Nuprl. Instead, we can reason
about untyped program equivalences (e.g., between partial functions), which are
easier to use because they only require trivial type reasoning. Such equivalences
are highly useful for program transformation such as program optimization.

Using untyped reasoning, we have proved many bisimulations involving data
structures such as lists. We have also used these techniques in our work on
process synthesis [11,34], where processes are defined as recursive functions of a
co-recursive type. Our synthesized processes were initially too slow to be used in
industrial strength systems. In response to that issue, we have developed a proof
methodology to simplify and optimize them. We have applied that methodology
to various synthesized consensus protocols such as 2/3-consensus [14] or Multi-
Paxos [29], and observed a significant speed-up. These synthesized consensus
protocols have successfully been used in a replicated database [35]. This paper
illustrates these proof techniques using a simple running example: appending
the empty list to a term. It then illustrates their use to optimize distributed
processes synthesized from protocol specifications.

Finally, being able to reason about Nuprl’s programming language directly
in Nuprl is another step towards a longstanding goal of building a correct-by-
construction, workable logical programming environment [23]. An obvious ques-
tion is then, could we build a verified compiler for Nuprl in Nuprl that generates
reasonably fast code? Modern proof assistants that implement constructive type
theories such as Coq [9,1], Isabelle [8,7], or Nuprl rely on unverified compilers.
Even though the programs they generate, e.g., by extraction from proofs, are
correct-by-construction, one could argue whether the machine code obtained af-
ter compilation is still correct. Thus, we would like these proof assistants to be
expressive enough to program and verify optimized compilers for their underlying
programming languages, and to program these proof assistants in themselves.

The contributions of this paper are as follows: (1) we introduce new formal
untyped reasoning techniques for proving bisimulations, which expose more of
the computation system to formal reasoning; and (2) we apply these techniques
to optimize distributed processes.

2 Nuprl’s Programming Language

2.1 Syntax

Nuprl is defined on top of an applied lazy untyped λ-calculus. Fig. 1 introduces
a subset of this language, where n ranges over integers. Because this language
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v ::= n (integer) | λx .t (lambda)
| 〈t1, t2〉 (pair) | inl(t) (left injection)
| inr(t) (right injection) | Ax (axiom)

t ::= x (variable) | isaxiom( t1 , t2, t3) (isaxiom)
| v (value) | ispair( t1 , t2, t3) (ispair)
| t1 t2 (application) | islambda( t1 , t2, t3) (islambda)
| fix( t ) (fixpoint) | isinl( t1 , t2, t3) (isinl)
| let x := t1 in t2 (call-by-value) | isinr( t1 , t2, t3) (isinr)
| let x ::= t1 in t2 (call-by-valueall) | isint( t1 , t2, t3) (isint)
| let x , y = t1 in t2 (spread)
| case t1 of inl(x) ⇒ t2 | inr(y) ⇒ t3 (decide)
| if t1 = t2 then t3 else t4 (integer equality)

Fig. 1: Syntax of Nuprl’s programming language

is lazy, its values2 (or canonical forms) are either integers, lambda abstractions,
pairs, injections, or Ax. The canonical form Ax (sometimes written as ⋆) is the
unique canonical inhabitant of true propositions that do not have any nontrivial
computational meaning in CTT, such as 0 =N 0 which is an axiom of the logic.
Non-canonical terms (non-values) have arguments that are said to be principal.
These principal arguments indicate which subterms of a non-canonical term
have to be evaluated before checking whether the term itself is a redex or not.
Principal arguments of terms are marked with boxes in the above table. In the
rest of this paper, variables will be obvious from the context (we often use x and
y such as in Fig. 1), we use v for values, and the other letters can be any term.
When it is more readable we write t1(t2) instead of t1 t2.

As mentioned above, we have recently added new primitive operators to
Nuprl: the canonical form tests such as ispair. Adding these primitive forms
was a design decision we made to distinguish between canonical forms (e.g.,
see list ind’s definition below) and therefore exploit Howe’s bisimulation even
further. Our experiments with them have proven to be very fruitful.

Let us now define a few useful abstractions: let ⊥ (bottom) be fix(λx .x ), let
π1(t) be (let x , y = t in x ), and let π2(t) be (let x , y = t in y).

Free and bound variables are defined as usual. We write t [x\u] (and more
generally t [x1\u1; · · · ; xn\un]) for the term t in which all the free occurrences of
x have been replaced by u. Terms are identified up to alpha-equivalence.

Let Top be the following type: for all closed terms t1 and t2, t1 =Top t2.
Top’s equality is trivial because it identifies all elements. This type is especially
useful to assign types to terms in contexts where their structure or behavior is
irrelevant. When discussing types it is important to remember that a type is an
equivalence relation on a set of terms and not simply a set of terms. Type A is
a subtype of type B (written A ⊑ B) if x =A y implies x =B y. This means not
only that every term in A is also in B , but that equality in A refines equality
in B . Hence, T ⊑ Top for every type T . Sec. 3.1 discusses the type Base, which

2 The only other values currently in Nuprl are tokens, atoms, and types, but more values can
be added because the system is open-ended.
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Core calculus:

(λx .F ) a → F [x\a]
let x , y = 〈t1, t2〉 in F → F [x\t1; y\t2]
case inl(t) of inl(x) ⇒ F | inr(y) ⇒ G → F [x\t ]
case inr(t) of inl(x) ⇒ F | inr(y) ⇒ G → G[y\t ]
if n1 = n2 then t1 else t2 → t1, if n1 = n2

if n1 = n2 then t1 else t2 → t2, if n1 6= n2

fix(t) → t fix(t)
let x := t1 in t2 → t2[x\t1], if t1 is a value

Canonical form tests:

ispair(〈t , t ′〉, t1, t2) → t1 ispair(v , t1, t2) → t2, if v is not a pair
isaxiom(Ax, t1, t2) → t1 isaxiom(v , t1, t2) → t2, if v is not axiom
islambda(λx .t , t1, t2) → t1 islambda(v , t1, t2) → t2, if v is not a lambda
isinl(inl(t), t1, t2) → t1 isinl(v , t1, t2) → t2, if v is not a left injection
isinr(inr(t), t1, t2) → t1 isinr(v , t1, t2) → t2, if v is not a right injection
isint(n, t1, t2) → t1 isint(v , t1, t2) → t2, if v is not an integer

Fig. 2: Nuprl’s operational semantics

contains all Nuprl terms, but does not have this property (i.e. not every type T
is a subtype of Base3) because equality on Base is Howe’s bisimulation relation.

2.2 Operational Semantics

Fig. 2 presents some of Nuprl’s reduction rules. This figure does not show the
reduction rule for the call-by-valueall operator because it is slightly more com-
plicated. This operator is like call-by-value but continues recursively evaluating
subterms of pairs and injections.4

At any point in a computation, either a value is produced, or the computation
is stuck, or we can take another step. For example, (let x , y = Ax in F ) is a
meaningless term that cannot evaluate further. It is stuck on the wrong kind of
principal argument: Ax instead of a pair. Using the proof techniques presented
below, in Sec. 4.3 we prove that this term is computationally equivalent to ⊥.
We can prove such results using ispair and isaxiom, and do not know of any
other way discussed in the literature to accomplish this. Intuitively, we prove this
lemma using the fact that isaxiom can compute to different values depending on
whether its first argument computes to Ax or not. For example, isaxiom(t , 0, 1)
reduces to 0 if t is Ax and to 1 if t is, e.g., a pair. Note that even though
they are computationally equal, (let x , y = Ax in F ) and ⊥ are fundamentally
different in the sense that one could potentially detect whether a term is stuck
(by slightly modifying our destructors such as spread or decide), but one cannot
detect whether a term diverges or not.

3 Being extentional, function types are in general not subtypes of Base.
4 The call-by-valueall operator is similar to a restricted form of Haskell’s deepseq operator.
It can be defined using the other primitive operators (see Appendix D), but for simplicity
reasons we introduce it as a primitive in this paper.
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2.3 Datatypes

Booleans As usual, we define Booleans using the disjoint union type as follows:
B = Unit + Unit. The Unit type is defined as 0 =Z 0 and therefore Ax is its only
inhabitant (up to computation). We define the Boolean true tt as inl(Ax), and
the Boolean false ff as inr(Ax). Using the decide operator we define a conditional
operator as follows: if t1 then t2 else t3 = case t1 of inl(x ) ⇒ t2 | inr(x ) ⇒ t3.

Lists We define lists as follows using Nuprl’s union type [27] and recursive
type [33] that allows one to build inductive types:5 List(T ) = rec(L.Unit ∪ T×
L). The type constructor ∪ creates the union of two types, not the disjoint union.
The members of A ∪ B are members of A or B, not injections of them. A list
is either a member of Unit, i.e., Ax, or a pair. The empty list nil is defined
as Ax, and the cons operation, denoted by •, as the pair constructor. We can
distinguish an empty list and a non empty list because Unit and the product
type are disjoint. Using fix, we define the following “list induction” operator:

list ind(L, b, f ) =
fix(λF .λL.ispair(L, let h, t = L in f h t (F t), isaxiom(L, b,⊥))) L

To define such a function that takes a list as input, we need to be able to test
whether it is a pair or Ax. If we were to use the spread operator, we could destruct
pairs, but computations would get stuck on Ax which we use to represent the
empty list. Therefore, we need an operator such as the ispair canonical form test
which allows us to perform two different computations depending on whether its
first argument computes to a pair or not. Note that if list ind’s first argument
does not compute to a pair or to Ax, then the term diverges as opposed to
returning an arbitrary value. This is necessary to prove untyped equivalences
between list operations. We define the append and map operations as follows:

t1 @ t2 = list ind(t1 , t2 , λh.λt .λr .h • r)
map(f , t) = list ind(t , nil, λh.λt .λr .(f h) • r)

3 Computational Equivalence

3.1 Simulations and Bisimulations

Howe [24,25] defined the simulation or approximation relation ≤ using the fol-
lowing co-inductive rule: t1 ≤ t2 if and only if (if t1 computes to a canonical
form Θ(u1, . . . , un) of the language defined in Sec. 2.1, then t2 computes to a
canonical form Θ(u ′

1, . . . , u
′

n) such that for all i ∈ {1, . . . , n}, ui ≤ u ′

i). We say
that t1 approximates t2 or that t2 simulates t1. This relation is reflexive (w.r.t.
the terms defined in Sec. 2.1) and transitive. Howe then defined the bisimulation
relation ∼ as the symmetric closure of ≤ (i.e., t1 ∼ t2 iff t1 ≤ t2 and t2 ≤ t1),
and proved that ≤ and ∼ are congruences w.r.t. Nuprl’s computation system.6

5 This new definition of lists replaces the one from Nuprl’s book [16] where lists are considered
as primitive objects. Using Nuprl’s replay functionality, we were able to successfully replay
the entire Nuprl library using this new definition of lists.

6 Howe proved that ∼ is a congruence w.r.t. a lazy computation system by proving that all
the operators of the system satisfy a property called extensionality. Appendix D proves that
the new operators introduced in this paper satisfy that property.
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The following context property follows from the fact that ∼ is a congruence:

∀i : {1, . . . , n}. ti ≤ ui ⇒ G[x1\t1; · · · ; xn\tn] ≤ G[x1\u1; · · · ; xn\un]

Howe’s bisimulation relation respects computation, i.e., if t1 ∼ t2 then (1) t1
computes to a value iff t2 computes to a value, and (2) if t1 computes to a value
v1 then t2 computes to a value v2 with same outer operator such that v1 ∼ v2.

Because ⊥ does not compute to a canonical form, by definition ⊥ ≤ t is
true for any term t ; hence for example 〈Ax,⊥〉 ≤ 〈Ax, Ax〉. Similarly, because
Ax is not a pair, (let x , y = Ax in x ) does not compute to a canonical form,
and by definition, let x , y = Ax in x ≤ t is true for any term t (we prove
let x , y = Ax in F ∼ ⊥ in Sec. 4.3). However, Ax ≤ ⊥ is not true because ⊥
diverges while Ax is a value; hence 〈Ax, Ax〉 ≤ 〈Ax,⊥〉 is not true either.

Let us write halts(t) if t reduces to a value—we say that t converges. We
can define convergence using call-by-value because the call-by-value operator
(let x := t1 in t2) first evaluates t1. The term t1 converges if and only if the
term (let x := t1 in Ax) evaluates to Ax. So we simply define halts(t) to be
the simulation Ax ≤ (let x := t in Ax). Because Ax is a canonical value then
Ax ≤ (let x := t in Ax) is true if and only if (let x := t in Ax) computes to
Ax, i.e., if and only if t computes to a value.

Constable and Smith [38,17] introduced partial types to reason about com-
putations that might not halt. For any type T , the partial type T contains all
members of T as well as all divergent terms, and has the following equality: two
terms are equal in T if they have the same convergence behavior (i.e., either
neither computes to a value or both compute to a value), and when they con-
verge, they are equal in T . An important partial type is Base = Value where
Value is the type of all closed canonical terms of the computation system with
∼ as its equality. Because Base is a partial type, it contains converging as well
as diverging terms, and equal terms have the same convergence behavior.

3.2 Simple Facts About Lists

Sec. 4 proves that for all terms f and t in Top, map(f , t) @ nil ∼ map(f , t).
If t is a list, the first expression (map(f , t) @ nil) requires two passes over

the list t while the second expression (map(f , t)) requires only one. This simple
bisimulation will be our running example to illustrate the techniques we use to
optimize our distributed processes (discussed in Sec. 5).

Note that this lemma would be easy to prove by induction on the list t if we
were using the list type instead of Top. However, we might need to instantiate t
with a term for which it would be non-trivial to prove that it is a list because
Nuprl is based on an extension of the untyped λ-calculus and type inference and
type checking are undecidable. In addition, if we were to use a typed equality
(instead of ∼) for substitution in some context, then we would also have to prove
that the context is functional over the type of the equality. That is, to rewrite in
the term C[t] of type B using t =A u, we have to prove that λz.C[z] is of type
A → B. Moreover, the above equivalence is indeed true for any term t , e.g., it
is true when t is a stream.

6
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Note that it is not true that for all terms t , t @ nil ∼ t . For example, by
definition of @, (λx .x ) @ nil ∼ ⊥. However, the bisimulation λx .x ∼ ⊥ is not
true because the simulation λx .x ≤ ⊥ is not true. This shows that there are some
terms t for which t ≤ t @ nil does not hold.7 However, Sec. 4 proves that for all
terms t , t @ nil ≤ t . A corollary of that lemma is that map(f , t) @ nil ≤ map(f , t).

4 Proof Techniques

This section presents three proof techniques we use to prove bisimulations:
Crary’s least upper bound property [18], patterns of reasoning regarding our
new canonical form tests, and patterns of reasoning regarding our halts opera-
tor. It also presents three derived proof techniques called lifting, normalization,
and strictness. Using these techniques, we prove map(f , t) @ nil ∼ map(f , t), and
in Sec. 5, we optimize distributed processes.

4.1 Least Upper Bound Property

Using the properties of ≤ and that fix(f ) = f fix(f ), it is easy to prove by
induction on n that ∀n : N. f n(⊥) ≤ fix(f ) [18]. So fix(f ) is an upper bound
of its approximations. The least upper bound property [18, Theorem 5.9] is:

Rule [least-upper-bound]. ∀n : N. G(f n(⊥)) ≤ t ⇒ G(fix(f )) ≤ t .

4.2 Canonical Form Tests

In order to reason about its programs, we gave Nuprl the ability to reason about
the canonical form tests such as ispair, isaxiom, etc.8 These effective oper-
ations on Base allow us to reason in the programming language, where in the
past we resorted to reflection in the logic [6].

Membership Rules

Rule [ispair-member]. To prove that ispair(t1, t2, t3) ∈ T, it is enough to
prove halts(t1), and that both t2 and t3 are members of T.

We introduce similar rules for the other canonical form tests. Using this rule
we can trivially prove the following fact:

Lemma 1. For all terms t in Base, if halts(t) then ispair(t , tt, ff) ∈ B.

The same is true for the other tests. Using these facts, we can, e.g., decide
whether a converging term is a pair or not.

Semi-decision Rules Depending on how ispair computes we can deduce
various pieces of information. If we know that ispair(t1, t2, t3) always computes
to t2 and cannot compute to t3 then we know that t1 is a pair. If we know that
ispair(t1, t2, t3) always computes to t3 and cannot compute to t2 then we know
that t1 is not a pair. These properties are captured by the following two rules:

7 Appendix A provides a characterization of the terms that satisfy that property.
8 The proofs that the rules introduced in this section are valid w.r.t. Allen’s PER (Partial
Equivalence Relations) semantics [2,3] are presented in Appendix E.
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⊢ ∀F:Top. (let x,y = Ax in F[x;y] ∼ bottom())

|

BY (SqReasoning

THEN Assert ⌈(if Ax is a pair then 0 otherwise 1) = 1⌉·
THEN (Reduce 0 THEN Auto THEN AutoPairEta [2;1] (-1)))

Fig. 3: Computational equivalence between ⊥ and a stuck term

Rule [ispair]. To prove t ∈ Top× Top (i.e., t is a pair), it is enough to prove
ispair(t , inl(a), inr(b)) ∼ inl(a) for some terms a and b.

Rule [not-ispair]. To prove ispair(t1, t2, t3) ∼ t3, it is enough to prove that
ispair(t1, inl(a), inr(b)) ∼ inr(b) for some terms a and b.

We introduce similar rules for the other canonical form tests. Using these
rules we can prove such results as (similar results are true for the other tests):

Lemma 2. For all terms t, a, b in Base, if halts(t) then t ∼ 〈π1(t), π2(t)〉 ∨
ispair(t , a, b) ∼ b.

Proof. By Lemma 1, ispair(t , tt, ff) ∈ B. Therefore, either ispair(t , tt, ff) ∼
tt or ispair(t , tt, ff) ∼ ff (this is true for any Boolean). If ispair(t , tt, ff) ∼
tt then using rule [ispair] we obtain that t is a pair and therefore t ∼
〈π1(t), π2(t)〉. If ispair(t , tt, ff) ∼ ff then using rule [not-ispair] we obtain
that ispair(t , a, b) ∼ b.

4.3 Convergence

Rule [convergence]. To prove t1 ≤ t2, one can assume halts(t1).

This rule follows directly from≤’s definition. For example, to prove let x , y =
p in F ≤ let x , y = q in G, one can assume that halts(let x , y = p in F ).

Nuprl also has rules to reason about halts(t). If a non-canonical term con-
verges, then its principal arguments have to converge to the appropriate canon-
ical forms as presented in Fig 2. For example the following two rules follow from
the operational semantics of spread and ispair (we have similar rules for the
other non-canonical operators):

Rule [halt-spread]. If halts(let x , y = p in F ) then p computes to a pair.

Rule [halt-ispair]. If halts(ispair(t1, t2, t3)) then halts(t1).

Let us go back to the example presented in Sec. 2.2. We now have enough
tools to prove the following lemma:

Lemma 3. For all terms F in Top, let x , y = Ax in F ∼ ⊥

Proof. Fig 3 presents our Nuprl proof of that fact. That proof goes as fol-
lows: By definition of ∼, we have to prove let x , y = Ax in F ≤ ⊥ and
⊥ ≤ let x , y = Ax in F . The second simulation is trivial. Let us prove the first
one. Using [convergence], we can assume halts(let x , y = Ax in F ) and using
[halt-spread], that Ax is a pair. This reasoning is done by our SqReasoning tac-
tic. Finally, the term ispair(Ax, 0, 1) computes to 1, and because we deduced
that Ax is a pair, it also reduces to 0, and we have an absurdity.
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4.4 Lifting

Now we describe the following derived proof techniques: lifting, normalization
(see Sec. 4.5 below), and strictness (see Sec. 4.6 below) which are used in Sec. 4.7
below. Lifting transforms a term t into t ′ such that t ∼ t ′ and such that t ′ has
a smaller path to the principal argument of a subterm of t . Let us now provide
a few examples. The following bisimulation specifies a lifting operation, where
the path to p is shorter in the second term than in the first term:

Lemma 4. For all terms F and G in Top:

let c, d = (let a, b = p in F ) in G ∼ let a, b = p in (let c, d = F in G)

Proof. To prove that bisimulation, we have to prove that the first term simulates
the second one and vice versa. Let us prove that the second one simulates the first
one (the other direction is similar), i.e., let c, d = (let a, b = p in F ) in G ≤
let a, b = p in (let c, d = F in G). Using [convergence], we can assume
halts(let c, d = (let a, b = p in F ) in G), from which, using [halt-spread]

twice, we obtain that p is a pair. More precisely, we can prove that p is the
pair 〈π1(p), π2(p)〉. By replacing p by 〈π1(p), π2(p)〉 in the above simulation,
and by reducing both sides, we obtain let c, d = F [a\π1(p); b\π2(p)] in G ≤
let c, d = F [a\π1(p); b\π2(p)] in G, which is true by reflexivity of ≤.

Using this lemma, one can, e.g., derive the following chain of rewrites:

let a, b = (let c, d = p in 〈c, d〉) in F
∼ let c, d = p in (let a, b = 〈c, d〉 in F )

∼ let c, d = p in F [a\c; b\d ]

The following bisimulation specifies another lifting operation where the path
to t1 is shorter in the second term than in the first one:

Lemma 5. For all terms t1, t2, t3, t4, and t5 in Top:

ispair(ispair(t1, t2, t3), t4, t5)
∼ ispair(t1, ispair(t2, t4, t5), ispair(t3, t4, t5))

The proof of this is similar to the proof of Lemma 4. Because lifting does not
always result in a smaller term it must therefore be used in a controlled way.

4.5 Normalization

Normalization allows one to make use of the information given by destructors
such as spread or decide, i.e., that some terms are forced to be pairs or injec-
tions by the computation system. Normalization achieves some kind of common
subexpression elimination, which is a standard optimization technique. For ex-
ample, the next lemma says that the expression on left-hand-side has a value if
and only if p (which can be an arbitrary large term) is a pair, and more precisely
in F it has to be the pair 〈a, b〉:

Lemma 6. For all terms p and F in Top:

let x , y = p in F [z\p] ∼ let x , y = p in F [z\〈x , y〉]

The proof of this is similar to the proof of Lemma 4.

9



April 22, 2013

4.6 Strictness

Strictness says that if ⊥ is one of the principal arguments of a term then this
term is computationally equal to ⊥. For example we proved the following lemma:

Lemma 7. For all terms F in Top, (let x , y = ⊥ in F ) ∼ ⊥.

The proof of this is similar to the proof of Lemma 4. Intuitively, such lemmas
are true because to evaluate a non-canonical term, one has to evaluate its prin-
cipal arguments. If one of these principal arguments is ⊥, then the computation
diverges. Therefore, the entire term is computationally equal to ⊥.

4.7 Back To Our List Example

As explained in Sec. 3.2, to prove map(f , t) @ nil ∼ map(f , t), we first prove the
following lemma:

Lemma 8. For all terms t in Top, t @ nil ≤ t .

Proof. Because @ is defined using fix (see Sec. 2.3), we prove that lemma us-
ing the [least-upper-bound] rule (see Sec.4.1). We now have to prove that any
approximation of the fixpoint is simulated by t . Let

F = λF .λL.ispair(L, let x , y = L in x • (F y), isaxiom(L, nil,⊥))

We have (t @ nil) = (fix(F ) t) by definition of append and beta-reduction. We
have to prove that for all natural numbers n, and for all terms t ,

Fn ⊥ t ≤ t

which we prove by induction on n. The base case boils down to proving that
⊥ t ≤ t which is true using strictness. In the interesting induction case, assuming
that for all terms t , Fn−1 ⊥ t ≤ t , we have to prove F (Fn−1 ⊥) t ≤ t , i.e.,

ispair(t , let x , y = t in x • ((Fn−1 ⊥) y), isaxiom(t , nil,⊥)) ≤ t (1)

Let P be ispair(t , let x , y = t in x • ((Fn−1 ⊥) y), isaxiom(t , nil,⊥)). Us-
ing [convergence], we can assume halts(P). Using [halt-ispair], we obtain
halts(t). By Lemma 2, we get t ∼ 〈π1(t), π2(t)〉 or P ∼ isaxiom(t , nil,⊥).

If t ∼ 〈π1(t), π2(t)〉, we have to prove the following simulation obtained from
simulation 1 by replacing t by 〈π1(t), π2(t)〉 and by reducing:

π1(t) • ((F
n−1 ⊥) π2(t)) ≤ 〈π1(t), π2(t)〉

Because the cons operator is defined as the pair constructor, by the context
property it remains to prove the following simulation, which is true by induction
hypothesis: ((Fn−1 ⊥) π2(t)) ≤ π2(t).

If P ∼ isaxiom(t , nil,⊥), we have to prove isaxiom(t , nil,⊥) ≤ t . Using
the version of Lemma 2 for isaxiom, we obtain t ∼ Ax or isaxiom(t , nil,⊥) ∼
⊥. Both cases are trivial: in the first case we have to prove Ax ≤ Ax and in the
second we have to prove ⊥ ≤ t .
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Let us now prove the lemma we set out to prove in Sec. 3.2:

Lemma 9. For all terms t and f in Top, map(f , t) @ nil ∼ map(f , t).

Proof. By definition of ∼, we have to prove map(f , t) @ nil ≤ map(f , t) (which
is true by Lemma 8), and map(f , t) ≤ map(f , t) @ nil. Because map is a fixpoint,
we can prove the latter using the [least-upper-bound] rule. Let

F = λF .λL.ispair(L, let x , y = L in (f x ) • (F y), isaxiom(L, nil,⊥))

We then have to prove that for all natural numbers n and for all terms f and t ,

Fn ⊥ t ≤ map(f , t) @ nil

which we prove by induction on n. Once again, the base case is trivial. As-
sume that for all terms t , Fn−1 ⊥ t ≤ map(f , t) @ nil, we have to prove that
F (Fn−1 ⊥) t ≤ map(f , t) @ nil, i.e., we have to prove the following simulation:

ispair(t , let x , y = t in (f x ) • ((Fn−1 ⊥) y), isaxiom(t , nil,⊥))
≤ map(f , t) @ nil

(2)

Let P = ispair(t , let x , y = t in (f x ) • map(f , y), isaxiom(t , nil,⊥)), which
is map(f , t) unfolded once. We obtain the following sequence of bisimulations by
unfolding the definitions of map and @ in (map(f , t) @ nil):

map(f , t) @ nil ∼ P @ nil

∼ ispair(P , let x , y = t in x • (y @ nil), isaxiom(P , nil,⊥))

Using lifting (Lemma 5) and normalization, we obtain the following bisimulation:

map(f , t) @ nil

∼ ispair(t , let x , y = t in (f x ) • (map(f , y) @ nil), isaxiom(t , nil,⊥))

Therefore, given that we have to prove simulation 2, it means that we have to
prove the following simulation:

ispair(t , let x , y = t in (f x ) • ((Fn−1 ⊥) y), isaxiom(t , nil,⊥))
≤ ispair(t , let x , y = t in (f x ) • (map(f , y) @ nil), isaxiom(t , nil,⊥))

which is true by induction hypothesis and the context property.

5 Process Optimization

Nuprl implements a Logic of Events (LoE) [10,12,13] to specify and reason about
distributed programs, as well as a General Process Model (GPM) [11] to imple-
ment them. We have proved a direct relationship between some LoE combinators
and some GPM combinators. This allows us to automatically generate processes
that are guaranteed to satisfy the logical specifications of LoE.

Using the proof techniques presented in the above section, we were able to
optimize many automatically generated GPM processes. For example, we opti-
mized our synthesized version of Paxos, which is used by the ShadowDB repli-
cated database [35]. Because our synthesized Paxos was initially too slow, it was
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only used to handle database failures, which are critical to handle correctly but
are not frequent. When a failure occurs, Paxos ensures that the replicas agree
on the next set of replicas. We can now also use Paxos to consistently order the
transactions of the replicated databases. Initially, our synthesized code could
only handle one transaction every few seconds. Thanks to our automatic opti-
mizer, the code we synthesize is now about an order of magnitude faster. Our
goal is to be able to handle several thousands of transactions per second. Even
though we have not yet reached that goal, this work is already an encouraging
first step towards generating fast correct-by-construction code.

A GPM process is modeled as a function that takes inputs and computes
a new process as well as outputs. For distributed programs based on message
passing, these inputs and outputs are messages. Formally, a process that takes
inputs of type A, and outputs elements of type B , is an element of (a variant
of) the following co-recursive type:

corec(λP .A → P × Bag(B))

where corec is defined as follows:

corec(G) = ∩n : N.fix(λP .λn.if n = 0 then Top else G (P (n − 1))) n

Note the use of bags, also called multisets, formally defined as quotiented
lists. The reason for using that type is outside the scope of this paper. However,
let us mention that processes can output more than one element and these
elements need not be ordered. In the rest of this paper, we use curly braces
to denote specific bag instances. Lists and bags have many similar operations
such as: bmap the map operation on bags, bnull the null operation, bconcat
the concat operation which flattens bags of bags, and >>= the bind operation
of the bag monad, defined as b >>= f = bconcat(bmap(f , b)). For example,
({1; 2; 2; 4} >>= λx .{x ; x + 1}) = {1; 2; 2; 3; 2; 3; 4; 5}= {1; 2; 2; 2; 3; 3; 4; 5}.

Many of the GPM combinators are defined using fix. Because processes are
typically defined using several combinators, fixpoints end up being deeply nested
which affects the computational complexity of the processes. Using, among other
things, the least upper bound property, we can often reduce the number of
fixpoints occurring in processes. This is our main process optimization technique.

Let us now present some GPM combinators. Processes often need to maintain
an internal state. Therefore, the combinators defined below will all be of the
form fix(λF .λs .λm.G) init , where init is an initial state, and G is a transition
function that takes the current state of the process (s) and an input (m), and
generates a new process and some output.

5.1 Combinators

Base Combinator It builds a process that applies a function to its inputs:

base(f ) = fix(λF .λs.λm.〈F s, f m〉) Ax

Base processes are stateless, which is modeled using the term Ax as the state of
the base combinator.
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Composition Combinator It builds a process that applies a function f to the
outputs of its sub-component X :

f o X = fix(λF .λX .λm.





let X ′, out = X m in

let out ′ ::= bmap(f , out) in
〈F X ′, out ′〉



) X

The state maintained by f o X is the state maintained by X . Note that for
efficiency issues, we use the call-by-valueall operator ::= in order to generate the
outputs out ′.

Buffer Combinator From an initial buffer init and a process X producing
transition functions, this combinator builds a process that buffers its outputs:

buffer(X , init) =

fix(λF .λs.λm.









let X , buf = s in

let X ′, b = X m in

let b′ ::= b >>= λf .(buf >>= f ) in
〈F 〈X ′, if bnull(b′) then buf else b′〉, b′〉









) 〈X , init〉

The state maintained by buffer(X , init) is the pair of the state maintained by
X and its previous outputs (initially init).

5.2 Example

The following process uses the three combinators presented above:

P = buffer((λn.λbuf .{n + buf }) o base(λm.{m}), {0})

This process maintains a state constituted of a single integer, initialized to 0.
Its inputs are integers. At any point in time, its state is the sum of all the inputs
it has received in the past. Because the combinators used in P are defined as
fixpoints, P contains three nested occurrences of fix. We will now show that P
is computationally equivalent to the following even simpler process:

P
′ = fix(λF .λs.λm.let x ::= m + s in 〈F x , {x}〉) 0

Using Nuprl’s powerful tactic mechanism we automatically generate P ′ from
P , and we automatically prove that P ∼ P ′. Our experiments showed that it
takes between 100 and 200 computation steps for P to process a single input
while it takes less than 10 computation steps for P ′ to process a single input.

Standard Form To optimize our processes we take advantage of the fact that
many of them are of the following form:

process(n,L,S ,R, I ) =

fix(λF .λs.λm.









let x1 ::= L s m 1 in

. . .

let xn ::= L s m n x1 · · · xn−1 in

〈F (S s m x1 · · · xn ),R s m x1 · · · xn 〉









) I

where L is a sequence of instructions defined as a function, n is the number of
instructions that the process executes on each input, S computes the next state
of the process, R computes the outputs, and I is its initial state.
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Transformations We prove the next three lemmas using the same proof tech-
nique as in Sec. 4.7. These lemmas show that if processes are built using the
base, composition, and buffer combinators (and many other primitive combina-
tors of the GPM not presented in this paper), then they are guaranteed to be of
the standard form process(n,L, S ,R, I ).

Lemma 10. Given a term f of type Top, the following bisimulation is true:

base(f ) ∼ process(0, λx .⊥, λs.λm.Ax, λs.λm.f m, Ax)

Lemma 11. Given f , L, S , R, and I terms of type Top, and n a natural number,
the following bisimulation is true:

f o process(n,L,S ,R, I )
∼ process( n + 1,

λs.λm.λi . if i = n + 1 then λx1 . . . . λxn . bmap(f ,R s m x1 · · · xn )
else L s m

,

λs.λm.λx1 . . . . λxn . λxn+1 .S s m x1 · · · xn ,

λs.λm.λx1 . . . . λxn . λxn+1 .xn+1 ,

I )

Lemma 12. Given L, S , R, I , and I ′ terms of type Top, and n a natural
number, the following bisimulation is true:

buffer(process(n,L, S ,R, I ), I ′)
∼ process(n + 1,

λs.λm.λi . if i = n + 1
then λx1 . . . . λxn . (R π1(s) m x1 · · · xn ) >>= λf .(π2(s) >>= f )
else L π1(s) m

,

λs.λm.λx1 . . . . λxn . λxn+1 . 〈 S π1(s) m x1 · · · xn
, if bnull(xn+1 ) then s else xn+1 〉

,

λs.λm.λx1 . . . . λxn . λxn+1 .xn+1 ,

〈I , I ′〉)

Transformation of P into P
′ Using the bisimulations presented above, we

automatically rewrite P into P ′, and because our bisimulations are untyped,
proving that P is computationally equivalent to P ′ is also trivial: it only requires
us to prove that some terms are in Top, and all closed terms are trivially in Top.

6 Related Work and Conclusion

This paper describes computational proof techniques based on bisimulations
which we use in the Nuprl proof assistant in order to optimize distributed pro-
cesses (programs in general). McCarthy [32] recognized the value of type free
reasoning, and we took that to heart in the design of CTT by providing type
free rules about computation, called “direct computation rules”. Now we know
that this kind of reasoning can be made even richer.

Gordon [20] characterizes contextual equivalence as some form of co-inductively
defined bisimulation. Using co-inductive reasoning, Gordon can easily prove, e.g.,
various bisimulations between streams. For example, he proves that iterate(f , f x )
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and map(f , iterate(f , x )) are bisimilar, where iterate(f , x ) is defined in Nuprl
as fix(λF .λx .〈x ,F (f x )〉) x . Nuprl’s corresponding method to prove such results
is the least upper bound property. Gordon proves this result using a co-inductive
reasoning, while we prove it by induction on the natural number we obtain by
approximating the two fixpoints used to define map and iterate. Apart from
that difference, the resulting proofs are similar in spirit.

Note that we have not yet formally proved that the processes returned by our
optimizer have a better complexity than the processes it takes as inputs. Using
Isabelle/HOL, Aspinall, Beringer, and Momigliano [5] developed an optimization
validation technique, based on a proof-carrying code approach, to prove that op-
timized programs use less resources than the non-optimized versions. Currently,
we cannot measure the complexity of programs inside Nuprl because if t1 reduces
to t2 then t1 ∼ t2, and hence we cannot distinguish between them in any context.

We hope to solve this issue by either using some kind of reflection, or intro-
ducing a subtype of Base where equality would be alpha-equality. Also, in order
to enhance the usability of our processes in industrial strength systems, we need
to identify and verify other optimizations. As mentioned in Sec. 1, we view this
work as a step towards making Nuprl a usable programming framework. In the
meantime, we have built a Lisp translator for our processes.

In the last two decades, much work has been done on compiler verification.
See Dave [19] for earlier references. To name a few: Using Coq, Leroy has de-
veloped and certified a compiler for a C-like language [30]. He generated the
compiler using Coq’s extraction mechanism to Caml code. The compiler is cer-
tified thanks to “a machine-checked proof of semantic preservation” [30]. Also
using Coq, Chlipala [15] developed a verified compiler for an impure functional
programming language with references and exceptions that produces code in an
idealized assembly language. He proved the correctness of the compiler using
a big-step operational semantics. Li [31] designed a verified compiler in HOL,
from an high-level ML-like programming language implemented in HOL to ARM
assembly code. Each transformation of the compiler generates a correctness ar-
gument along with a piece of code.

Following this line of work, we now would like to tackle the task of building
a verified compiler for Nuprl in Nuprl.
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A Remark About u @ nil ∼ u

Note that u @ nil ∼ u is not only true for u = map(f , t) but for a larger class
of terms. Therefore, an obvious question is, how can we characterize that class
of terms? It turns out that these terms are the ones that satisfy the following
property which we call P : if they have a value then they are either Ax or are
pairs such that this property applies recursively on their second components.
Let us present two such characterizations. One of them is more “syntactical”
(ListLike1) and the other one more “semantical” (ListLike2). Both lists and
streams satisfy these properties.

We can formally define P as the following proposition:

ListLike1(t) = ∩n : N.ListLike1N(t , n)

where ListLike1N is defined as follows:

ListLike1N(t , n)

= fix









λF .λn.if n = 0 then λt .Unit

else λt . ∩ x : halts(t).ispair





t ,
F π2(t),
isaxiom(t , tt, ff)













n t

We have proved that for all terms t in Base, ListLike1(t) iff t @ nil ∼ t ;
and we have proved, among other things, that for all terms t and f in Base,
ListLike1(map(f , t)) is true.

We can also formally define P as the following proposition:

ListLike2 = corec(λT .Unit ∪ Top× T )

We have proved that for all terms t in Base, t ∈ ListLike2 iff t @ nil ∼ t ;
and we have proved, among other things, that for all terms t and f in Base,
map(f , t) ∈ ListLike2.

B Connection to Domain Theory

Our approach is quite similar to the Domain Theoretic techniques of reasoning
about programs [36,37,21]. The members of Base, along with the relation≤, form
a partial order. The least upper bound property discussed in Sec. 4.1 essentially
says that this partial order is complete for chains of a particular form. Even
though it does not explicitly say that all chains have a least upper bound in
Base, it is useful in many proofs.

C Constructive Proof of Crary’s Compactness Property

In addition to the least upped bound property presented in Sec. 4.1, Crary [18]
proves the following compactness property: for all terms G and f , if G(fix(f ))
converges, then there exists a natural number n such that halts(G(f n(⊥))).

Using compactness we can characterize lists using the following recursive
function that checks whether or not a term is a list, and diverges if it is not:

islist(t) = fix(λF .λt .ispair(t ,F π2(t), isaxiom(t , tt,⊥))) t
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We have proved the following results:

Lemma 13. For all terms t in Base, if halts(islist(t)) then t ∈ List(Base).

We prove that result using compactness since halts(islist(t)) is of the
form halts(G(fix(f ))).

Lemma 14. For all type T and for all terms t in List(T ), halts(islist(t)).

We prove that result by induction on the list t .
Crary gives a non-constructive proof of the compactness property in his the-

sis. He also provides enough hints for deriving a constructive proof. For the sake
of completeness, we formally present the constructive proof here. Informally, this
lemma says that if fix(f ) converges, then there is a number n such that the nth

approximation to fix(f ) converges, i.e., f n(⊥) converges. For brevity, we will
denote f n(⊥) by f n . This proof is a direct consequence of his Lemma 5.8. We
restate it here for the reader’s convenience. It’s constructive proof can be found
in the appendix of his thesis [18].

Lemma 15 (Crary [18, Lemma 5.8]). For all f , e1, e2 (where f is closed
and x is the only free variable of e1), if e1[x\fix(f)] →

∗ e2, then there exists j
and e′2 such that e2 ≡ e′2[x\fix(f)] and for all k ≥ j, e′2[x\f

k−j ] ≤ e1[x\f
k].

We write t1 ≡ t2 to mean that t1 and t2 are alpha-equal terms. Now, we
provide a meta-theoretical proof of compactness. Suppose G(fix(f )) converges.
Let v be the canonical value to which it converges.9 Since G is the principal
argument, we know that G →∗ λx.b for term b. One more reduction step gives
us G(fix(f )) →∗ (λx .b) fix(f ) →1 b[x\fix(f)] →∗ v . We can now invoke
Lemma 15 with e1 as b and e2 as v. We get a number j and a term e′2 such
that v ≡ e′2[x\fix(f)] and for all k ≥ j, e′2[x\f

k−j ] ≤ b[x\fk]. In particular let
us chose k = j. By definition, f0 is ⊥. So, we have e′2[x\⊥] ≤ b[x\f j]. Because
v is a value, e′2[x\fix(f)] and e′2[x\⊥] must be values too. So, by definition
of ≤, b[x\f j] converges to a value with same outer canonical operator as v.
Because G(f j ) →∗ b[x\f j ], G(f j ) also converges. This completes the proof of
compactness (with n as j).

D Extensionality of the New Operators

Howe [24] showed that to ensure that ≤ and hence ∼ is a congruence, we need
to make sure that all the operators satisfies an extensionality condition. This
section sketches meta-theoretical proofs that the new operators introduced in
this paper (fix, call-by-value, call-by-valueall, and the canonical form tests such
as ispair) are extensional.

First, let us present some relations introduced by Howe [24]: let u →k b be
true if u reduces to b in k steps.10 let u →<k b be true if u reduces to b in
strictly less than k steps. let ≤∗ be an extension of ≤ which satisfies congruence

9 In meta-theory, we have access to the entire sequence of reductions from G(fix(f )) to v.
10 This definition contrasts with Howe’s notation [24] where b is required to be a value.
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by definition. Howe writes: “Informally, a ≤∗ b if b can be obtained from a via
one bottom-up pass of replacements of subterms by terms that are larger under
≤.” Howe mentions that the following holds: if a ≤∗ b and b ≤ c then a ≤∗ c.

Note that in a deterministic computation system like ours, if u → v or
u →k v, or u →<k v, then u ≤ v and v ≤ u.

Howe defines the extensionality condition on operators as follows [24, Def. 5]:
An operator τ is extensional if for any closed term τ(t1, . . . , tn), τ(t

′

1, . . . , t
′

n) and
a, and for any k ≥ 0, if

1. τ(t1, . . . , tn) →
k a,

2. τ(t1, . . . , tn) ≤
∗ τ(t ′1, . . . , t

′

n) and
3. for every closed u, u′ and v, if u →<k u′ and u ≤∗ v then u′ ≤∗ v,

then a ≤∗ τ(t ′1, . . . , t
′

n).
The fixpoint operator fix is extensional because it can be defined as follows:

(λx .f (x x )) (λx .f (x x ))

The call-by-valueall operator is also extensional because it can be defined as
follows:

fix





























λF .λt .

let x := t in

ispair





















x ,

let a, b = x in let c := F a in let d := F b in 〈c, d〉,

isinl













x ,

let y := F outl(x) in inl(y),

isinr





x ,

let y := F outr(x) in inr(y),
x

































































t

Lemma 16. The call-by-value operator is extensional.

Proof. Let let x := t1 in t2 , let x := t ′1 in t ′2 , and a be closed terms. Let us
assume:

1. let x := t1 in t2 →k a and a is a value.
2. t1 ≤∗ t′1, and t2 ≤∗ t′2
3. for every closed u, u′, and v, if u →<k u′ and u ≤∗ v then u′ ≤∗ v

We have to prove a ≤∗ let x := t ′1 in t ′2 . Using a variant of [halt-spread]

for the call-by-value operator, and assumption 1, t1 must compute to a value b
of the form Θ(u1, . . . , un). We then have the following sequence of reductions:

let x := t1 in t2 →<k let x := b in t2 → t2 [x\b] →
<k a

Because t1 →<k b and because by assumption 2, t1 ≤∗ t′1, then by assump-
tions 3, we have b ≤∗ t ′1 . Using Howe’s Lemma 2 [24], we have t ′1 →<l b′, for
some natural number l, and some closed terms b′ is of the form Θ(u ′

1, . . . , u
′

n)
such that for all i ∈ {1, . . . , n}, ui ≤

∗ u ′

i. So we have let x := t ′1 in t ′2 →<l+1
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t ′2 [x\b
′]. Because let x := t ′1 in t ′2 →<l+1 t ′2 [x\b

′], we obtain t ′2 [x\b
′] ≤

let x := t ′1 in t ′2 . Assumption 2 says t2 ≤∗ t ′2 and we have b ≤∗ b′, so us-
ing Howe’s Lemma 1 [24], we obtain t2 [x\b] ≤

∗ t ′2 [x\b
′]. Therefore, we have

t2 [x\b] ≤
∗ let x := t ′1 in t ′2 . Finally, using Assumption 3, because t2 [x\b] →

<k

a, we obtain a ≤∗ let x := t ′1 in t ′2 .

Lemma 17. The ispair operator is extensional.

Proof. To prove this requirement, we can assume the following for closed terms
t, t1, t2, t

′, t′1, t
′

2:

1. ispair(t, t1, t2) →
k a and a is a value.

2. t ≤∗ t′, t1 ≤∗ t′1, and t2 ≤∗ t′2
3. for every closed u, u′, and v, if u →<k u′ and u ≤∗ v then u′ ≤∗ v

We have to prove a ≤∗ ispair(t′, t′1, t
′

2). Using [halt-ispair] and assump-
tion 1, t must converge to a value b. We can decide whether b is a pair or some
other canonical value (by checking b’s outer canonical operator). Depending on
whether or not b is a pair, either of the two following cases can happen:

1. ispair(t, t1, t2) →
<k ispair(b, t1, t2) → t1 →<k a, if b is a pair

2. ispair(t, t1, t2) →
<k ispair(b, t1, t2) → t2 →<k a, if b is not a pair

We consider case 1. The other case is similar. In this case, b is of the form
〈c, d〉 for some closed terms c, d . Because t reduces to 〈c, d〉 in less than k steps,
and because by assumption 2, t ≤∗ t ′, then by assumption 3 we have 〈c, d〉 ≤∗

t′. Using Howe’s Lemma 2 [24], we have t′ →<l 〈c′, d ′〉, c ≤∗ c′ and d ≤∗

d′ for some natural number l, and some closed terms c′ and d′. So we have
ispair(t′, t′1, t

′

2) →<l+1 t′1. Because ispair(t′, t′1, t
′

2) →<l+1 t′1, we have t′1 ≤
ispair(t′, t′1, t

′

2). Assumption 2 says that t1 ≤∗ t ′1 . Therefore, we obtain t1 ≤∗

ispair(t′, t′1, t
′

2). Finally, using assumption 3, and because t1 →<k a, we obtain
a ≤∗ ispair(t′, t′1, t

′

2).

E Validity of the New Rules

This section shows that the rules discussed in the paper are all valid, and are
therefore consistent with Nuprl. To prove that result, we use Allen’s PER (Partial
Equivalence Relations) semantic method [2,3]

The Nuprl programming/logical system can be presented in three phases.
First, one defines the computation system, then one defines the type system,
and finally one defines the proof rules.

Using Allen’s method, one gives the semantics of types and of proof rules.
The semantics of Nuprl’s types is characterized by ternary partial equivalence
relations that express when two terms are equal in a type. In this paper we are
especially interested in equality types of the form t1 =T t2, simulation types of
the form t1 ≤ t2, and bisimulation types of the form t1 ∼ t2.

Nuprl’s type theory relies on a hierarchy of universes Type1, Type2, Type3,
etc., such that for all i ∈ N

+, Typei+1 contains all types that can be built using
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universes no higher than Typei. The type Type1 contains all types that can be
built without using universes. We write Type or P for Typei where i can be any
member of N+.

Crary [18] introduced the simulation and bisimulation relations as meta-
theoretical relations, and introduced an extra form of type judgment (sequent)
to prove bisimulations. In this paper, simulations and bisimulations are also
types of the logic and values of the computation system. They are inhabited by
Ax when the propositions they represent are true.

E.1 Simulation and Bisimulation Types

Let us now extend Crary’s type specifications and type definitions [18, Sec. 4.4]
as follows: Two simulations are equal as types if they are both true or both false
(i.e., the equality between simulation types is extensional):

t1 ≤ t2 =Type u1 ≤ u2 ⇐⇒ (t1 ≤ t2 ⇐⇒ u1 ≤ u2)

Similarly,

t1 ∼ t2 =Type u1 ∼ u2 ⇐⇒ (t1 ∼ t2 ⇐⇒ u1 ∼ u2)

The equality in simulation and bisimulation types can be characterized as follows:

Ax ∈ t1 ≤ t2 ⇐⇒ t1 ≤ t2 ∈ Type ∧ t1 ≤ t2

Ax ∈ t1 ∼ t2 ⇐⇒ t1 ∼ t2 ∈ Type ∧ t1 ∼ t2

We characterize the equality between equality types of the form t1 =T t2,
and the equality in equality types as follows:

t1 =T t2 =Type u1 =U u2 ⇐⇒ T =Type U ∧ t1 =T u1 ∧ t2 =T u2

Ax ∈ t1 =T t2 ⇐⇒ t1 =T t2 ∈ Type ∧ t1 =T t2

The next step is to define for each type constructor an inductive relation
that satisfies the specification of the type. These relations can then be combined
into one to form a type system. Crary [18, Def. 4.9] defines such a relation and
proves that it adheres to the corresponding type specification he provides [18,
Fig. 4.5]. That relation can be expressed by two following relations: T1=T2 that
expresses which terms are types and which are equal types, and t1=t2∈T that
expresses which terms belong to a type and which are equal within that type.
We have informally checked that Crary’s proof can be extended with relations
that satisfy the specifications of simulation and bisimulation types. We leave the
formal extension of Crary’s proof for future work.

E.2 Hypotheses, Sequents, and Proof Rules

Nuprl sequents are of the form H ⊢ C ⌊ext t⌋, where H is a list of pairs vari-
able/type of the form x1 : T1 , . . . , xn : Tn such that the variables x1 , . . . , xn
are all distinct from each other. Moreover, every free variable of Ti is one of
x1 , . . . , xi−1 and every free variable of C or of t is one of x1 , . . . , xn . The list H
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is called the hypothesis or assumption list of the sequent, C its conclusion, and
t its extract or evidence.

A sequent of the form x1 : T1 , . . . , xn : Tn ⊢ C ⌊ext t⌋ roughly means that
assuming that for all i ∈ {1, . . . , n}, if xi has type Ti , then t is a member of type
C . This is not exactly true because Ti might depend on x1 , . . . , xi−1 . We make
that definition precise below.

We write H ⊢ C for H ⊢ C ⌊ext Ax⌋.
A rule is of the following form, where [name] is the name of the rule:

H ⊢ C ⌊ext t⌋
BY [name]

H1 ⊢ C1 ⌊ext t1⌋
...
Hn ⊢ Cn ⌊ext tn⌋

As usual, a rule is just an implication: if for all i ∈ {1, . . . , n}, Hi ⊢ Ci ⌊ext ti⌋
is a “true” sequent, then so is H ⊢ C ⌊ext t⌋.

In order to formally define what it means for a rule to be true, let us first
repeat some useful relations on hypotheses and sequents.

First, let for any metavariable t, let t(n) stand for the list t1, . . . , tn.
We say that a list of hypotheses H is true at a list of terms l , and write

H @ l , if the following formula holds:

x1 : T1, . . . , xn : Tn @ t(n)
⇐⇒
∀j < n. tj+1∈Tj+1[t(j)/x(j)]

∧ ∀t ′(j). ∀i < j. ti+1=t
′

i+1∈Ti+1[t(i)/x(i)]
⇒ Tj+1[t(j)/x(j)]=Tj+1[t

′

(j)/x(j)]

We say that a sequent of the form H ⊢ C ⌊ext t⌋ is true at a list of terms l,
and write H ⊢ C ⌊ext t⌋ @ l, if the following formula holds:

x1 : T1, . . . , xn : Tn ⊢ C ⌊ext t⌋ @ t(n)
⇐⇒
∀t′1, . . . , t

′

j .
x1 : T1, . . . , xn : Tn @ t(n) ∧ ∀i < n. ti+1=t

′

i+1∈Ti+1[t(i)/x(i)]
⇒ C[t(n)/x(n)]=C[t ′(n)/x(n)] ∧ t[t(n)/x(n)]=t[t

′

(n)/x(n)]∈C[t(n)/x(n)]

Finally, a sequent of the form x1 : T1, . . . , xn : Tn ⊢ C ⌊ext t⌋ is true iff
∀t(n). x1 : T1, . . . , xn : Tn ⊢ C ⌊ext t⌋ @ t(n).

We say that a rule of the form

H ⊢ C ⌊ext t⌋
BY [name]

H1 ⊢ C1 ⌊ext t1⌋
...
Hn ⊢ Cn ⌊ext tn⌋

is valid iff the truth of H1 ⊢ C1 ⌊ext t1⌋, . . . , Hn ⊢ Cn ⌊ext tm⌋ implies the truth
of H ⊢ C ⌊ext t⌋.
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H ⊢ G[fix(f)/x] ≤ t
BY [least-upper-bound]
H , j : N ⊢ G[f j(⊥)/x] ≤ t

Fig. 4: Least upper bound rule

H ⊢ a ≤ a
BY [sqle-refl]

H ⊢ a ∼ a
BY [sqequal-refl]

H ⊢ a ∼ b
BY [sqequal-base]
H ⊢ a =Base b

H ⊢ a b ∼ c d
BY [sqequal-app-D]
H ⊢ a ∼ c
H ⊢ b ∼ d

H ⊢ λx.a ∼ λx.b
BY [sqequal-lam-D]
H , x : Base ⊢ a ∼ b

H ⊢ a ∼ b
BY [sqequal-sqle]
H ⊢ a ≤ b
H ⊢ b ≤ a

Fig. 5: Simulation and bisimulation rules

H ⊢ ispair(a, b, c) ∈ T

BY [ispair-member]
H ⊢ halts(a)
H ⊢ b ∈ T

H ⊢ c ∈ T

H ⊢ a ∈ Base

H ⊢ isaxiom(a, b, c) ∈ T

BY [isaxiom-member]
H ⊢ halts(a)
H ⊢ b ∈ T

H ⊢ c ∈ T

H ⊢ a ∈ Base

H ⊢ isinl(a, b, c) ∈ T

BY [isinl-member]
H ⊢ halts(a)
H ⊢ b ∈ T

H ⊢ c ∈ T

H ⊢ a ∈ Base

H ⊢ isinr(a, b, c) ∈ T

BY [isinr-member]
H ⊢ halts(a)
H ⊢ b ∈ T

H ⊢ c ∈ T

H ⊢ a ∈ Base

H ⊢ isint(a, b, c) ∈ T

BY [isint-member]
H ⊢ halts(a)
H ⊢ b ∈ T

H ⊢ c ∈ T

H ⊢ a ∈ Base

H ⊢ islambda(a, b, c) ∈ T

BY [islambda-member]
H ⊢ halts(a)
H ⊢ b ∈ T

H ⊢ c ∈ T

H ⊢ a ∈ Base

Fig. 6: Canonical form test rules—membership rules

E.3 Validity of the New Rules

Figures 4, 5, 6, 7, and 8 present the rules introduced in this paper.

Lemma 18. [least-upper-bound] is valid

Proof. Let us assume that the sequent H , j : N ⊢ G[f j(⊥)/x] ≤ t is true and let
us prove that the sequent H ⊢ G[fix(f)/x] ≤ t is true. Let H be x1 : T1, . . . , xn :
Tn. Let t1, . . . , tn, t

′

1, . . . , t
′

n be closed terms. Let us assume:

x1 : T1, . . . , xn : Tn @ t(n)

and
∀i < n. ti+1=t

′

i+1∈Ti+1[t(i)/x(i)]

We have to prove:

(G[fix(f)/x] ≤ t)[t(n)/x(n)]=(G[fix(f)/x] ≤ t)[t ′(n)/x(n)] (3)

and
Ax=Ax∈(G[fix(f)/x] ≤ t)[t(n)/x(n)] (4)

Using our first hypothesis, we obtain that for all i ∈ N:

(G[f i(⊥)/x] ≤ t)[t(n)/x(n)]=(G[f i(⊥)/x] ≤ t)[t ′(n)/x(n)] (5)
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H ⊢ t ∈ Top× Top

BY [ispair]
H ⊢ ispair(t , inl(a), inr(b)) ∼ inl(a)

H ⊢ t ∼ Ax

BY [isaxiom]
H ⊢ isaxiom(t , inl(a), inr(b)) ∼ inl(a)

H ⊢ t ∼ inl(outl(t))
BY [isinl]
H ⊢ isinl(t , inl(a), inr(b)) ∼ inl(a)

H ⊢ t ∼ inr(outr(t))
BY [isinr]
H ⊢ isinr(t , inl(a), inr(b)) ∼ inl(a)

H ⊢ t ∈ Z

BY [isint]
H ⊢ isint(t , inl(a), inr(b)) ∼ inl(a)

H ⊢ t ∼ λv .(t v)
BY [islambda]
H ⊢ islambda(t , inl(a), inr(b)) ∼ inl(a)

H ⊢ ispair(t , c, d) ∼ d

BY [not-ispair]
H ⊢ ispair(t , inl(a), inr(b)) ∼ inr(b)

H ⊢ isaxiom(t , c,d) ∼ d

BY [not-isaxiom]
H ⊢ isaxiom(t , inl(a), inr(b)) ∼ inr(b)

H ⊢ isinl(t , c,d) ∼ d

BY [not-isinl]
H ⊢ isinl(t , inl(a), inr(b)) ∼ inr(b)

H ⊢ isinr(t , c, d) ∼ d

BY [not-isinr]
H ⊢ isinr(t , inl(a), inr(b)) ∼ inr(b)

H ⊢ isint(t , c,d) ∼ d

BY [not-isint]
H ⊢ isint(t , inl(a), inr(b)) ∼ inr(b)

H ⊢ islambda(t , c, d) ∼ d

BY [not-islambda]
H ⊢ islambda(t , inl(a), inr(b)) ∼ inr(b)

Fig. 7: Canonical form test rules—semi-decision rules

H ⊢ t1 ≤ t2
BY [convergence]
H , y : halts(t1) ⊢ t1 ≤ t2
H ⊢ halts(t1) ∈ P

H ⊢ p ∈ Top × Top

BY [halt-spread]
H ⊢ halts(let x , y = p in F )

H ⊢ d ∈ Top + Top

BY [halt-decide]
H ⊢ halts(case d of inl(x) ⇒ F | inr(y) ⇒ G)

H ⊢ f ∼ λv .(f v)
BY [halt-apply]
H ⊢ halts(f a)

H ⊢ halts(t1)
BY [halt-callbyvalue]
H ⊢ halts(let x := t1 in t2)

H ⊢ halts(t1)
BY [halt-ispair]
H ⊢ halts(ispair(t1, t2, t3))

H ⊢ halts(t1)
BY [halt-isaxiom]
H ⊢ halts(isaxiom(t1, t2, t3))

H ⊢ halts(t1)
BY [halt-isinl]
H ⊢ halts(isinl(t1, t2, t3))

H ⊢ halts(t1)
BY [halt-isinr]
H ⊢ halts(isinr(t1, t2, t3))

H ⊢ halts(t1)
BY [halt-isint]
H ⊢ halts(isint(t1, t2, t3))

H ⊢ halts(t1)
BY [halt-islambda]
H ⊢ halts(islambda(t1, t2, t3))

Fig. 8: Canonical form test rules—convergence rules

Ax=Ax∈(G[f i(⊥)/x] ≤ t)[t(n)/x(n)] (6)
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We prove 4 from 6 and using Crary’s least upper bound theorem [18, The-
orem 5.9]. To prove 3, we have to prove that (G[fix(f)/x] ≤ t)[t(n)/x(n)] if
and only if (G[fix(f)/x] ≤ t)[t ′(n)/x(n)]. Because we know that (G[fix(f)/x] ≤
t)[t(n)/x(n)] is true (from 4), it remains to prove that (G[fix(f)/x] ≤ t)[t ′(n)/x(n)]
is also true. Using Crary’s least upper bound theorem [18, Theorem 5.9], it is
enough to prove that for all i ∈ N, (G[f i(⊥)/x] ≤ t)[t ′(n)/x(n)] is true. Using 5,
it is equivalently enough to prove that for all i ∈ N, (G[f i(⊥)/x] ≤ t)[t(n)/x(n)]
is true. We conclude using 6.

Lemma 19. [sqle-refl] is valid

Proof. Let us prove that the sequent H ⊢ a ≤ a is true. LetH be x1 : T1, . . . , xn :
Tn. Let t1, . . . , tn, t

′

1, . . . , t
′

n be closed terms. Let us assume:

x1 : T1, . . . , xn : Tn @ t(n)

and

∀i < n. ti+1=t
′

i+1∈Ti+1[t(i)/x(i)]

We have to prove:

(a ≤ a)[t(n)/x(n)]=(a ≤ a)[t ′(n)/x(n)]

and

Ax=Ax∈(a ≤ a)[t(n)/x(n)]

which are both true by definition because ≤ is reflexive.

Lemma 20. [sqequal-refl] is valid

Proof. Let us prove that the sequent H ⊢ a ∼ a Let H be x1 : T1, . . . , xn : Tn.
Let t1, . . . , tn, t

′

1, . . . , t
′

n be closed terms. Let us assume:

x1 : T1, . . . , xn : Tn @ t(n)

and

∀i < n. ti+1=t
′

i+1∈Ti+1[t(i)/x(i)]

We have to prove:

(a ∼ a)[t(n)/x(n)]=(a ∼ a)[t ′(n)/x(n)]

and

Ax=Ax∈(a ∼ a)[t(n)/x(n)]

which are both true by definition because ∼ is reflexive.

Lemma 21. [sqequal-base] is valid
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Proof. Let us assume that H ⊢ a =Base b is true and let us prove that H ⊢ a ∼ b
is true. Let H be x1 : T1, . . . , xn : Tn. Let t1, . . . , tn, t

′

1, . . . , t
′

n be closed terms.
We assume that:

x1 : T1, . . . , xn : Tn @ t(n)

and
∀i < n. ti+1=t

′

i+1∈Ti+1[t(i)/x(i)]

We have to prove:

(a ∼ b)[t(n)/x(n)]=(a ∼ b)[t ′(n)/x(n)] (7)

and
Ax=Ax∈(a ∼ b)[t(n)/x(n)] (8)

Using our hypothesis, we obtain that:

(a =Base b)[t(n)/x(n)]=(a =Base b)[t
′

(n)/x(n)]

and
Ax=Ax∈(a =Base b)[t(n)/x(n)]

By definition of the equality in Base we obtain:

a[t(n)/x(n)]=a[t
′

(n)/x(n)]∈Base (9)

b[t(n)/x(n)]=b[t
′

(n)/x(n)]∈Base (10)

and
a[t(n)/x(n)]=b[t(n)/x(n)]∈Base (11)

Therefore, using 9 and 10, we get that a[t(n)/x(n)] ∼ a[t ′(n)/x(n)] and b[t(n)/x(n)] ∼
b[t ′(n)/x(n)]. By transitivity of ∼, we obtain that 7 is true. From 11, we obtain
that a[t(n)/x(n)] ∼ b[t(n)/x(n)] and so 8 is also true

Lemma 22. [sqequal-app-D] is valid

Proof. Let us assume that H ⊢ a ∼ c and H ⊢ b ∼ d are true and let us prove
that H ⊢ a b ∼ c d is true. Let H be x1 : T1, . . . , xn : Tn. Let t1, . . . , tn, t

′

1, . . . , t
′

n

be closed terms. We assume that:

x1 : T1, . . . , xn : Tn @ t(n)

and
∀i < n. ti+1=t

′

i+1∈Ti+1[t(i)/x(i)]

We have to prove:

(a b ∼ c d)[t(n)/x(n)]=(a b ∼ c d)[t ′(n)/x(n)]

and
Ax=Ax∈(a b ∼ c d)[t(n)/x(n)]
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Using our hypotheses, we obtain that:

(a ∼ c)[t(n)/x(n)]=(a ∼ c)[t ′(n)/x(n)]

(b ∼ d)[t(n)/x(n)]=(b ∼ d)[t ′(n)/x(n)]

Ax=Ax∈(a ∼ c)[t(n)/x(n)]

Ax=Ax∈(b ∼ d)[t(n)/x(n)]

We conclude using the fact that ∼ is a congruence.

Lemma 23. [sqequal-lam-D] is valid

Proof. Let us assume that H , x : Base ⊢ a ∼ b is true and let us prove that
H ⊢ λx.a ∼ λx.b is true. Let H be x1 : T1, . . . , xn : Tn. Let t1, . . . , tn, t

′

1, . . . , t
′

n

be closed terms. We assume that:

x1 : T1, . . . , xn : Tn @ t(n)

and
∀i < n. ti+1=t

′

i+1∈Ti+1[t(i)/x(i)]

We have to prove:

(λx.a ∼ λx.b)[t(n)/x(n)]=(λx.a ∼ λx.b)[t ′(n)/x(n)]

and
Ax=Ax∈(λx.a ∼ λx.b)[t(n)/x(n)]

Using our first hypothesis, we obtain that:

∀u. u∈Base

⇒

(

(a ∼ b)[t(n), u/x(n), x]=(a ∼ b)[t ′(n), u/x(n), x]
∧ Ax=Ax∈(a ∼ b)[t(n), u/x(n), x]

)

We conclude by definition of ∼ [24].

Note that other similar rules exist for the other operators of the language.

Lemma 24. [sqequal-sqle] is valid

Proof. Let us assume that H ⊢ a ≤ b and H ⊢ b ≤ a are true and let us prove
that H ⊢ a ∼ b is true. Let H be x1 : T1, . . . , xn : Tn. Let t1, . . . , tn, t

′

1, . . . , t
′

n be
closed terms. We assume that:

x1 : T1, . . . , xn : Tn @ t(n)

and
∀i < n. ti+1=t

′

i+1∈Ti+1[t(i)/x(i)]

We have to prove:

(a ∼ b)[t(n)/x(n)]=(a ∼ b)[t ′(n)/x(n)]
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and
Ax=Ax∈(a ∼ b)[t(n)/x(n)]

Using our hypotheses, we obtain that:

(a ≤ b)[t(n)/x(n)]=(a ≤ b)[t ′(n)/x(n)]

(b ≤ a)[t(n)/x(n)]=(b ≤ a)[t ′(n)/x(n)]

Ax=Ax∈(a ≤ b)[t(n)/x(n)]

Ax=Ax∈(b ≤ a)[t(n)/x(n)]

We conclude by definition of ∼.

Remark 25 (Guaspari’s trick). Some of our rules require terms to be in Base.
However, thanks to David Guaspari’s trick, when proving simulations and bisim-
ulations we can turn parameters of type Top into parameters of type Base. This
trick mainly uses [sqle-refl] and [sqequal-refl].

Let us assume that we trying to prove H , x : Top, J ⊢ a ∼ b. By compu-
tation, we can turn that sequent into H , x : Top, J ⊢ (λx.a) x ∼ (λx.b) x .
By [sqequal-app-D], it is enough to prove H , x : Top, J ⊢ λx.a ∼ λx.b and
H , x : Top, J ⊢ x ∼ x. The second sequent it true by [sqequal-refl]. We prove
the first sequent using [sqequal-lam-D]. It then remain to prove:H , x : Top, J , y :
Base ⊢ a[y/x] ∼ b[y/x]

Lemma 26. [ispair-member] is valid

Proof. Let us assume that H ⊢ halts(a), H ⊢ b ∈ T , H ⊢ c ∈ T , and H ⊢ a ∈
Base are true. Let us now prove that H ⊢ ispair(a, b, c) ∈ T is true. Let H be
x1 : T1, . . . , xn : Tn. We have to prove that:

∀t(n). x1 : T1, . . . , xn : Tn ⊢ ispair(a, b, c) ∈ T @ t(n)

i.e. given closed terms t1, . . . , tn, t
′

1, . . . , t
′

n, and assuming both x1 : T1, . . . , xn :
Tn @ t(n) and ∀i < n. ti+1=t

′

i+1∈Ti+1[t(i)/x(i)] then we have to prove:

(ispair(a, b, c) ∈ T )[t(n)/x(n)]=(ispair(a, b, c) ∈ T )[t ′(n)/x(n)] (12)

and
Ax=Ax∈(ispair(a, b, c) ∈ T )[t(n)/x(n)] (13)

Using the assumptions above, we obtain:

halts(a)[t(n)/x(n)]=halts(a)[t
′

(n)/x(n)] (14)

(b ∈ T )[t(n)/x(n)]=(b ∈ T )[t ′(n)/x(n)] (15)

(c ∈ T )[t(n)/x(n)]=(c ∈ T )[t ′(n)/x(n)] (16)

(a ∈ Base)[t(n)/x(n)]=(a ∈ Base)[t ′(n)/x(n)] (17)
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Ax=Ax∈halts(a)[t(n)/x(n)] (18)

Ax=Ax∈(b ∈ T )[t(n)/x(n)] (19)

Ax=Ax∈(c ∈ T )[t(n)/x(n)] (20)

Ax=Ax∈(a ∈ Base)[t(n)/x(n)] (21)

Using 17 we obtain that:

a[t(n)/x(n)]=a[t
′

(n)/x(n)]∈Base

Therefore a[t(n)/x(n)] and a[t ′(n)/x(n)] have the same convergence behavior and
if a[t(n)/x(n)] converges then a[t(n)/x(n)] ∼ a[t ′(n)/x(n)]. Using 14 and 18 we ob-
tain that both: halts(a[t(n)/x(n)]) and halts(a[t ′(n)/x(n)]). It is then decidable
whether this a[t(n)/x(n)] computes to a pair:

– If a[t(n)/x(n)] computes to a pair then a[t ′(n)/x(n)] also computes to a pair
because a[t(n)/x(n)] ∼ a[t ′(n)/x(n)]. Therefore ispair(a, b, c)[t(n)/x(n)] com-
putes to b[t(n)/x(n)] and ispair(a, b, c)[t ′(n)/x(n)] computes to b[t ′(n)/x(n)].
We obtain that (b ∈ T )[t(n)/x(n)]=(ispair(a, b, c) ∈ T )[t(n)/x(n)] and (b ∈
T )[t ′(n)/x(n)]=(ispair(a, b, c) ∈ T )[t ′(n)/x(n)] and we conclude using 15
and 19.

– If a[t(n)/x(n)] does not compute to a pair then a[t ′(n)/x(n)] does not compute
to a pair because a[t(n)/x(n)] ∼ a[t ′(n)/x(n)]. Therefore ispair(a, b, c)[t(n)/x(n)]
computes to c[t(n)/x(n)] and ispair(a, b, c)[t

′

(n)/x(n)] computes to c[t ′(n)/x(n)].
We obtain that (c ∈ T )[t(n)/x(n)]=(ispair(a, b, c) ∈ T )[t(n)/x(n)] and (c ∈
T )[t ′(n)/x(n)]=(ispair(a, b, c) ∈ T )[t ′(n)/x(n)] and we conclude using 16
and 20.

The proofs that [isaxiom-member], [isinl-member], [isinr-member], [isint-member],
and [islambda-member] are valid are similar to the one above.

Lemma 27. [ispair] is valid

Proof. Let us assume that H ⊢ ispair(t , inl(a), inr(b)) ∼ inl(a) is true. Let
us now prove that H ⊢ t ∈ Top × Top is true. Let H be x1 : T1, . . . , xn : Tn.
Let t1, . . . , tn, t

′

1, . . . , t
′

n be closed terms. Let us assume that x1 : T1, . . . , xn :
Tn @ t(n) and ∀i < n. ti+1=t

′

i+1∈Ti+1[t(i)/x(i)] then we have to prove:

t [t(n)/x(n)] ∈ Top× Top=t [t ′(n)/x(n)] ∈ Top× Top (22)

and
Ax=Ax∈t [t(n)/x(n)] ∈ Top× Top (23)
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Using our first assumption, we obtain:

(ispair(t , inl(a), inr(b)) ∼ inl(a))[t(n)/x(n)]
=(ispair(t , inl(a), inr(b)) ∼ inl(a))[t ′(n)/x(n)]

(24)

Ax=Ax∈(ispair(t , inl(a), inr(b)) ∼ inl(a))[t(n)/x(n)] (25)

Because 25 is true, t [t(n)/x(n)] must compute to a pair, i.e., 23 is true. Be-
cause 24 is true, and because (ispair(t , inl(a), inr(b)) ∼ inl(a))[t(n)/x(n)] is
true, then (ispair(t , inl(a), inr(b)) ∼ inl(a))[t ′(n)/x(n)] must also be true,
i.e., t [t ′(n)/x(n)] must compute to a pair. Knowing that both t [t(n)/x(n)] and
t [t ′(n)/x(n)] compute to pairs is enough to prove 22.

The proofs that [isaxiom], [isinl], [isinr], [isint], and [islambda] are
valid are similar to the one above.

Lemma 28. [not-ispair] is valid

Proof. Let us assume that H ⊢ ispair(t, inl(a), inr(b)) ∼ inr(b) is true. Let
us now prove that H ⊢ ispair(t, c, d) ∼ d is true. Let H be x1 : T1, . . . , xn : Tn.
Let t1, . . . , tn, t

′

1, . . . , t
′

n be closed terms. Let us assume that x1 : T1, . . . , xn :
Tn @ t(n) and ∀i < n. ti+1=t

′

i+1∈Ti+1[t(i)/x(i)] then we have to prove:

(ispair(t, c, d) ∼ d)[t(n)/x(n)]=(ispair(t, c, d) ∼ d)[t ′(n)/x(n)] (26)

and

Ax=Ax∈(ispair(t, c, d) ∼ d)[t(n)/x(n)] (27)

Using our first assumption, we obtain:

(ispair(t , inl(a), inr(b)) ∼ inr(b))[t(n)/x(n)]
=(ispair(t , inl(a), inr(b)) ∼ inr(b))[t ′(n)/x(n)]

(28)

Ax=Ax∈(ispair(t , inl(a), inr(b)) ∼ inr(b))[t(n)/x(n)] (29)

Because 29 is true, we know that t [t(n)/x(n)] must compute to a value that is
not a pair. Therefore 27 is true. Because 29 and (ispair(t , inl(a), inr(b)) ∼
inr(b))[t(n)/x(n)] are true, then (ispair(t , inl(a), inr(b)) ∼ inr(b))[t ′(n)/x(n)]
must also be true, i.e., t [t ′(n)/x(n)] must compute to a value that is not a pair.
Therefore Ax=Ax∈(ispair(t, c, d) ∼ d)[t ′(n)/x(n)] is true and we get that 26 is
true.

The proofs that [not-isaxiom], [not-isinl], [not-isinr], [not-isint], and
[not-islambda] are valid are similar to the one above.

Lemma 29. [convergence] is valid
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Proof. Let us assume that H , y : halts(a) ⊢ a ≤ b and H ⊢ halts(a) ∈ P are
true. Let us now prove that H ⊢ a ≤ b is true. Let H be x1 : T1, . . . , xn : Tn.
Let t1, . . . , tn, t

′

1, . . . , t
′

n be closed terms. Let us assume that x1 : T1, . . . , xn :
Tn @ t(n) and ∀i < n. ti+1=t

′

i+1∈Ti+1[t(i)/x(i)] then we have to prove:

(a ≤ b)[t(n)/x(n)]=(a ≤ b)[t ′(n)/x(n)] (30)

and
Ax=Ax∈(a ≤ b)[t(n)/x(n)] (31)

From our first hypothesis that H , y : halts(a) ⊢ a ≤ b is true, we obtain




Ax∈halts(a)[t(n)/x(n)]
∧ ∀t ′(n). ∀i < n. ti+1=t

′

i+1∈Ti+1[t(i)/x(i)]
⇒ halts(a)[t(n)/x(n)]=halts(a)[t

′

(n)/x(n)]





⇒

(

(a ≤ b)[t(n)/x(n)]=(a ≤ b)[t ′(n)/x(n)]
∧ Ax∈(a ≤ b)[t(n)/x(n)]

)

(32)

From our second hypothesis that H ⊢ halts(a) ∈ P is true, we obtain

∀t ′(n). ∀i < n. ti+1=t
′

i+1∈Ti+1[t(i)/x(i)]

⇒

(

(halts(a) ∈ P)[t(n)/x(n)]=(halts(a) ∈ P)[t ′(n)/x(n)]
∧ Ax∈(halts(a) ∈ P)[t(n)/x(n)]

)

(33)

Let us prove 31, i.e., we have to prove that (a ≤ b)[t(n)/x(n)] is true. By
definition of ≤ we can assume that a[t(n)/x(n)] has a value. Therefore the first
hypothesis of 32 is true. Its second hypothesis is also true because it is implied
by 33. Therefore, we obtain 31 which is the second conclusion of 32.

Let us now prove 30. Because 31 is true, it remains to prove that (a ≤
b)[t ′(n)/x(n)] is also true. By definition of ≤ we can assume that a[t ′(n)/x(n)] has
a value. Using 33, we obtain (halts(a) ∈ P)[t(n)/x(n)]=(halts(a) ∈ P)[t ′(n)/x(n)]
which implies that halts(a)[t(n)/x(n)]=halts(a)[t

′

(n)/x(n)] is true. By definition
of halts, and given that a[t ′(n)/x(n)] has a value, we get that halts(a)[t(n)/x(n)]
is also true. Finally, we conclude as above.

Lemma 30. [halt-spread] is valid

Proof. Let us assume that H ⊢ halts(let x , y = p in F ) is true. Let us
now prove that H ⊢ p ∈ Top × Top is true. Let H be x1 : T1, . . . , xn : Tn.
Let t1, . . . , tn, t

′

1, . . . , t
′

n be closed terms. Let us assume that x1 : T1, . . . , xn :
Tn @ t(n) and ∀i < n. ti+1=t

′

i+1∈Ti+1[t(i)/x(i)] then we have to prove:

(p ∈ Top× Top)[t(n)/x(n)]=(p ∈ Top× Top)[t ′(n)/x(n)] (34)

and
Ax=Ax∈(p ∈ Top× Top)[t(n)/x(n)] (35)

Using our first assumption, we obtain:

(halts(let x , y = p in F ))[t(n)/x(n)]
=(halts(let x , y = p in F ))[t ′(n)/x(n)]

(36)
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Ax=Ax∈(halts(let x , y = p in F ))[t(n)/x(n)] (37)

Because 37 is true and by definition of halts, we know that p[t(n)/x(n)] must
compute to a pair. We obtain that 35 is true. Because 36 is true, and be-
cause (halts(let x , y = p in F ))[t(n)/x(n)] is true, then (halts(let x , y =
p in F ))[t ′(n)/x(n)] must also be true, i.e., p[t ′(n)/x(n)] must compute to a pair.
Knowing that both p[t(n)/x(n)] and p[t ′(n)/x(n)] compute to pairs is enough to
prove 34.

The proofs that the other rules presented in Fig. 8 are valid are similar to
the one above.

F Nuprl Proofs

This section contains our Nuprl proofs of the lemmas presented in this paper. In
these Nuprl statements and proofs, (t)↓ is our way of displaying halts(t). As
mentioned above the tactic SqReasoning implements part of the reasoning used
in this paper to prove bisimulations. The tactics HVimplies and HVimpliesRec

instantiate the lemmas such as Lemma 2. The tactic OneFixpointLeast calls
on the [least-upper-bound] rule. This section does not include the proofs of
Lemma 10, Lemma 11, and lemma 12 because, given our formal definition of
the process function and given the format of this paper, they would not be
readable. We are planing on exporting these lemmas and their proofs to html.

F.1 Lemma 1

⊢ ∀[t:Base]. ispair(t) ∈ B supposing (t)↓
|

BY (Auto THEN IspairMember THEN Auto)

F.2 Lemma 2

⊢ ∀t,a,b:Base. ((t)↓ ⇒ ((t ∼ <fst(t), snd(t)>)

∨ (if t is a pair then a otherwise b ∼ b)))

|

BY (Auto

| THEN (FLemma ‘ispair-bool-if-has-value‘ [-1] THENA Auto)

| THEN (InstLemma ‘bool_cases_sqequal‘ [⌈ispair(t)⌉]· THENA Auto)

| THEN D (-1))

|\
| 1. t: Base

| 2. a: Base

| 3. b: Base

| 4. (t)↓
| 5. ispair(t) ∈ B

| 6. ispair(t) ∼ tt

| ⊢ (t ∼ <fst(t), snd(t)>) ∨ (if t is a pair then a otherwise b ∼ b)

| |
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1 BY ((OrLeft THENA Auto) THEN IsPair (-1) THEN AutoPairEta [1] 0)

\
1. t: Base

2. a: Base

3. b: Base

4. (t)↓
5. ispair(t) ∈ B

6. ispair(t) ∼ ff

⊢ (t ∼ <fst(t), snd(t)>) ∨ (if t is a pair then a otherwise b ∼ b)

|

BY ((OrRight THENA Auto)

THEN NotIsPairAux ⌈·⌉ ⌈·⌉·
THEN Folds ‘‘btrue bfalse‘‘ 0

THEN Auto)

F.3 Lemma 4

⊢ ∀[p,F,G:Top].
| (let c,d = let a,b = p

| in F[a;b]

| in G[c;d] ∼ let a,b = p

| in let c,d = F[a;b]

| in G[c;d])

|

BY (SqReasoning

THEN (Assert ⌈(let a,b = p in F[a;b])↓⌉· THENA ProveHasValue)

THEN HasValueD (-1)

THEN AutoPairEta [2;1] (-4)

THEN Repeat (AutoPairEta [2;1] 0))

F.4 Lemma 5

⊢ ∀[a,b,c,d,e:Top].
| (if (if a is a pair then b otherwise c) is a pair then d otherwise e

| ∼ if a is a pair then (if b is a pair then d otherwise e)

| otherwise (if c is a pair then d otherwise e))

|

BY (SqReasoning

THEN HVimpliesRec 0 [1]

THEN HVimpliesRec 0 [2]

THEN HypSubstAll (-2)

THEN Try (Complete ((HVimpliesRec (-2) [1] THEN HypSubstAll (-3))))

THEN HVimpliesRec (-2) [1]

THEN HVimpliesRec (-1) [1]

THEN HypSubstAll (-2)

THEN HypSubstAll (-4)

THEN Try (Complete ((HVimpliesRec (-1) [1;1] THEN HypSubstAll (-2))))

THEN Try (Complete ((HVimpliesRec (-1) [1] THEN HypSubstAll (-2)))))
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F.5 Lemma 6

⊢ ∀[p,F:Top]. (let a,b = p in F[p] ∼ let a,b = p in F[<a, b>])

|

BY SqReasoning

F.6 Lemma 7

⊢ ∀[F:Top]. (let a,b = bottom() in F[a;b] ∼ bottom())

|

BY (SqReasoning THEN Assert ⌈(bottom())↓⌉· THEN BotDiv THEN ProveHasValue)

F.7 Lemma 8

⊢ ∀[t:Top]. (t @ [] ≤ t)

|

BY (Auto

THEN RepUR ‘‘append list_ind nil it cons‘‘ 0

THEN OneFixpointLeast

THEN MoveToConcl (-2)

THEN NatInd (-1)

THEN (UnivCD THENA Auto)

THEN Try (Complete ((Reduce 0 THEN Strictness THEN Auto)))

THEN (RWO "fun_exp_unroll_1" 0 THENA Auto)

THEN Reduce 0

THEN SqReasoning

THEN Repeat (HVimplies 0 [1]))

F.8 Lemma 9

To prove that lemma, we follow the proof depicted in Sec. A instead of following
the proof depicted in Sec. 4.7.

⊢ ∀[f,b:Top]. (map(f;b) @ [] ∼ map(f;b))

|

BY (SqReasoning

THEN Try (Complete ((BLemma ‘append-nil-sqle‘ THEN Auto)))

THEN (BLemma ‘sqle-append-nil-if-has-value3‘ THENA Auto)

THEN BLemma ‘is-list-if-has-value-rec-map‘

THEN Auto)
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