
Formal Program Optimization in Nuprl Using

Computational Equivalence and Partial Types

Vincent Rahli, Mark Bickford, and Abhishek Anand

Cornell University, Ithaca, NY, USA

Abstract. This paper extends the proof methods used by the Nuprl

proof assistant to reason about the computational behavior of its untyped
programs. We have implemented new methods to prove non-trivial bisim-
ulations between programs and have successfully applied these methods
to formally optimize distributed programs such as our synthesized and
verified version of Paxos, a widely used protocol to achieve software based
replication. We prove new results about the basic computational equality
relation on terms, and we extend the theory of partial types as the ba-
sis for stating internal results about the computation system that were
previously treated only in the meta theory of Nuprl. All the lemmas
presented in this paper have been formally proved in Nuprl.

1 Introduction

This paper presents proof techniques implemented in the Nuprl proof assis-
tant [16,27,4] to reason about its own computation system and programming
language, an applied lazy (call-by-name) λ-calculus. Since the computation sys-
tem is universal (Turing complete), we need to reason using partial types in-
troduced by Constable and Smith [35,17] and extended by Crary [18].1 The
bisimulation relation defined by Howe turned out to form a contextual equiva-
lence relation [23,24], and is therefore the basic computational equality on Nuprl
terms. Internally it becomes the equality on the partial type Base of all untyped
Nuprl terms, both programs and data. The canonical values of this type are the
terminating terms, the values of the type system.

Nuprl’s logic is defined on top of this computation system. It is an extensional
Constructive Type Theory (CTT) [16] which relies on ternary partial equivalence
relations that express when two terms are equal in a type. For example, the type
1+1 =N 2 expresses that 1+1 and 2 are equal natural numbers (we write x ∈ T ,
for x =T x ). Each type is defined by such a relation.

Over the past two decades much progress has been made to enrich Nuprl and
make it a practical programming language as well as a logical system in which
one can verify properties of Nuprl programs [35,17,18,21,25,26]. During that pe-
riod, Nuprl’s theory was extended with, e.g., intersection types, union types,
partial types, a call-by-value operator, rules to reason about computation, and
in particular rules about the fixpoint operator. Recently, we have extended Nuprl

1 Crary gave a denotational semantics for an ML dialect using partial types.
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with new operators called canonical form tests (similar to Lisp and Scheme’s type
predicates) so that programs can distinguish between primitive canonical oper-
ators such as the pair or lambda constructors, and we have developed new ways
to reason about these new constructs. This gives us more tools to program in
Nuprl and reason about these programs.

Nuprl’s intersection and partial types add expressive power. They allow us
to reason about a larger class of practical programs and express more program
properties. However, using typed equivalences to transform programs can be
unnecessarily complex because programs are not annotated with types and both
type checking and type inference are undecidable in Nuprl. Instead, we can reason
about untyped program equivalences (e.g., between partial functions), which are
easier to use because they only require trivial type reasoning. Such equivalences
are highly useful for program transformation such as program optimization.

Using untyped reasoning, we have proved many bisimulations involving data
structures such as lists. We have also used these techniques in our work on
process synthesis [11,33], where processes are defined as recursive functions of a
co-recursive type. Our synthesized processes were initially too slow to be used in
industrial strength systems. In response to that issue, we have developed a proof
methodology to simplify and optimize them. We have applied that methodology
to various synthesized consensus protocols such as 2/3-consensus [14] or Multi-
Paxos [28], and observed a significant speed-up. These synthesized consensus
protocols have successfully been used in a replicated database [34]. This paper
illustrates these proof techniques using a simple running example: appending
the empty list to a term. It then illustrates their use to optimize distributed
processes synthesized from protocol specifications.

Finally, being able to reason about Nuprl’s programming language directly
in Nuprl is another step towards a longstanding goal of building a correct-by-
construction, workable logical programming environment [22]. An obvious ques-
tion is then, could we build a verified compiler for Nuprl in Nuprl that generates
reasonably fast code? Modern proof assistants that implement constructive type
theories such as Coq [9,1], Isabelle [8,7], or Nuprl rely on unverified compilers.
Even though the programs they generate, e.g., by extraction from proofs, are
correct-by-construction, one could argue whether the machine code obtained af-
ter compilation is still correct. Thus, we would like these proof assistants to be
expressive enough to program and verify optimized compilers for their underlying
programming languages, and to program these proof assistants in themselves.

The contributions of this paper are as follows: (1) we introduce new formal
untyped reasoning techniques for proving bisimulations, which expose more of
the computation system to formal reasoning; and (2) we apply these techniques
to optimize distributed processes.

2 Nuprl’s Programming Language

2.1 Syntax

Nuprl is defined on top of an applied lazy untyped λ-calculus. Fig. 1 introduces
a subset of this language, where n ranges over integers. Because this language
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v ::= n (integer) | λx .t (lambda)
| 〈t1, t2〉 (pair) | inl(t) (left injection)
| inr(t) (right injection) | Ax (axiom)

t ::= x (variable) | isaxiom( t1 , t2, t3) (isaxiom)
| v (value) | ispair( t1 , t2, t3) (ispair)
| t1 t2 (application) | islambda( t1 , t2, t3) (islambda)
| fix( t ) (fixpoint) | isinl( t1 , t2, t3) (isinl)
| let x := t1 in t2 (call-by-value) | isinr( t1 , t2, t3) (isinr)
| let x ::= t1 in t2 (call-by-valueall) | isint( t1 , t2, t3) (isint)
| let x , y = t1 in t2 (spread)
| case t1 of inl(x) ⇒ t2 | inr(y) ⇒ t3 (decide)
| if t1 = t2 then t3 else t4 (integer equality)

Fig. 1: Syntax of Nuprl’s programming language

is lazy, its values2 (or canonical forms) are either integers, lambda abstractions,
pairs, injections, or Ax. The canonical form Ax (sometimes written as ⋆) is the
unique canonical inhabitant of true propositions that do not have any nontrivial
computational meaning in CTT, such as 0 =N 0 which is an axiom of the logic.
Non-canonical terms (non-values) have arguments that are said to be principal.
These principal arguments indicate which subterms of a non-canonical term
have to be evaluated before checking whether the term itself is a redex or not.
Principal arguments of terms are marked with boxes in the above table. In the
rest of this paper, variables will be obvious from the context (we often use x and
y such as in Fig. 1), we use v for values, and the other letters can be any term.
When it is more readable we write t1(t2) instead of t1 t2.

As mentioned above, we have recently added new primitive operators to
Nuprl: the canonical form tests such as ispair. Adding these primitive forms
was a design decision we made to distinguish between canonical forms (e.g.,
see list ind’s definition below) and therefore exploit Howe’s bisimulation even
further. Our experiments with them have proven to be very fruitful.

Let us now define a few useful abstractions: let ⊥ (bottom) be fix(λx .x ), let
π1(t) be (let x , y = t in x ), and let π2(t) be (let x , y = t in y).

Free and bound variables are defined as usual. We write t [x\u] (and more
generally t [x1\u1; · · · ; xn\un]) for the term t in which all the free occurrences of
x have been replaced by u. Terms are identified up to alpha-equivalence.

Let Top be the following type: for all closed terms t1 and t2, t1 =Top t2.
Top’s equality is trivial because it identifies all elements. This type is especially
useful to assign types to terms in contexts where their structure or behavior is
irrelevant. When discussing types it is important to remember that a type is an
equivalence relation on a set of terms and not simply a set of terms. Type A is
a subtype of type B (written A ⊑ B) if x =A y implies x =B y. This means not
only that every term in A is also in B , but that equality in A refines equality
in B . Hence, T ⊑ Top for every type T . Sec. 3.1 discusses the type Base, which

2 The only other values currently in Nuprl are tokens, atoms, and types, but more values can
be added because the system is open-ended.
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Core calculus:

(λx .F ) a → F [x\a]
let x , y = 〈t1, t2〉 in F → F [x\t1; y\t2]
case inl(t) of inl(x) ⇒ F | inr(y) ⇒ G → F [x\t ]
case inr(t) of inl(x) ⇒ F | inr(y) ⇒ G → G[y\t ]
if n1 = n2 then t1 else t2 → t1, if n1 = n2

if n1 = n2 then t1 else t2 → t2, if n1 6= n2

fix(t) → t fix(t)
let x := t1 in t2 → t2[x\t1], if t1 is a value

Canonical form tests:

ispair(〈t , t ′〉, t1, t2) → t1 ispair(v , t1, t2) → t2, if v is not a pair
isaxiom(Ax, t1, t2) → t1 isaxiom(v , t1, t2) → t2, if v is not axiom
islambda(λx .t , t1, t2) → t1 islambda(v , t1, t2) → t2, if v is not a lambda
isinl(inl(t), t1, t2) → t1 isinl(v , t1, t2) → t2, if v is not a left injection
isinr(inr(t), t1, t2) → t1 isinr(v , t1, t2) → t2, if v is not a right injection
isint(n, t1, t2) → t1 isint(v , t1, t2) → t2, if v is not an integer

Fig. 2: Nuprl’s operational semantics

contains all Nuprl terms, but does not have this property (i.e. not every type T
is a subtype of Base3) because equality on Base is Howe’s bisimulation relation.

2.2 Operational Semantics

Fig. 2 presents some of Nuprl’s reduction rules. This figure does not show the
reduction rule for the call-by-valueall operator because it is slightly more com-
plicated. This operator is like call-by-value but continues recursively evaluating
subterms of pairs and injections.4

At any point in a computation, either a value is produced, or the computation
is stuck, or we can take another step. For example, (let x , y = Ax in F ) is a
meaningless term that cannot evaluate further. It is stuck on the wrong kind of
principal argument: Ax instead of a pair. Using the proof techniques presented
below, in Sec. 4.3 we prove that this term is computationally equivalent to ⊥.
We can prove such results using ispair and isaxiom, and do not know of any
other way discussed in the literature to accomplish this. Intuitively, we prove this
lemma using the fact that isaxiom can compute to different values depending on
whether its first argument computes to Ax or not. For example, isaxiom(t , 0, 1)
reduces to 0 if t is Ax and to 1 if t is, e.g., a pair. Note that even though
they are computationally equal, (let x , y = Ax in F ) and ⊥ are fundamentally
different in the sense that one could potentially detect whether a term is stuck
(by slightly modifying our destructors such as spread or decide), but one cannot
detect whether a term diverges or not.

3 Being extentional, function types are in general not subtypes of Base.
4 The call-by-valueall operator is similar to a restricted form of Haskell’s deepseq operator. It
can be defined using the other primitive operators (see the expanded version of this article
at http://www.nuprl.org/Publications/), but for simplicity reasons we introduce it as a
primitive in this paper.

4
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2.3 Datatypes

Booleans As usual, we define Booleans using the disjoint union type as follows:
B = Unit + Unit. The Unit type is defined as 0 =Z 0 and therefore Ax is its only
inhabitant (up to computation). We define the Boolean true tt as inl(Ax), and
the Boolean false ff as inr(Ax). Using the decide operator we define a conditional
operator as follows: if t1 then t2 else t3 = case t1 of inl(x ) ⇒ t2 | inr(x ) ⇒ t3.

Lists We define lists as follows using Nuprl’s union type [26] and recursive
type [32] that allows one to build inductive types:5 List(T ) = rec(L.Unit ∪ T×
L). The type constructor ∪ creates the union of two types, not the disjoint union.
The members of A ∪ B are members of A or B, not injections of them. A list
is either a member of Unit, i.e., Ax, or a pair. The empty list nil is defined
as Ax, and the cons operation, denoted by •, as the pair constructor. We can
distinguish an empty list and a non empty list because Unit and the product
type are disjoint. Using fix, we define the following “list induction” operator:

list ind(L, b, f ) =
fix(λF .λL.ispair(L, let h, t = L in f h t (F t), isaxiom(L, b,⊥))) L

To define such a function that takes a list as input, we need to be able to test
whether it is a pair or Ax. If we were to use the spread operator, we could destruct
pairs, but computations would get stuck on Ax which we use to represent the
empty list. Therefore, we need an operator such as the ispair canonical form test
which allows us to perform two different computations depending on whether its
first argument computes to a pair or not. Note that if list ind’s first argument
does not compute to a pair or to Ax, then the term diverges as opposed to
returning an arbitrary value. This is necessary to prove untyped equivalences
between list operations. We define the append and map operations as follows:

t1 @ t2 = list ind(t1 , t2 , λh.λt .λr .h • r)
map(f , t) = list ind(t , nil, λh.λt .λr .(f h) • r)

3 Computational Equivalence

3.1 Simulations and Bisimulations

Howe [23,24] defined the simulation or approximation relation ≤ using the fol-
lowing co-inductive rule: t1 ≤ t2 if and only if (if t1 computes to a canonical
form Θ(u1, . . . , un) of the language defined in Sec. 2.1, then t2 computes to a
canonical form Θ(u ′

1, . . . , u
′

n) such that for all i ∈ {1, . . . , n}, ui ≤ u ′

i). We say
that t1 approximates t2 or that t2 simulates t1. This relation is reflexive (w.r.t.
the terms defined in Sec. 2.1) and transitive. Howe then defined the bisimulation
relation ∼ as the symmetric closure of ≤ (i.e., t1 ∼ t2 iff t1 ≤ t2 and t2 ≤ t1),
and proved that ≤ and ∼ are congruences w.r.t. Nuprl’s computation system.6

5 This new definition of lists replaces the one from Nuprl’s book [16] where lists are considered
as primitive objects. Using Nuprl’s replay functionality, we were able to successfully replay
the entire Nuprl library using this new definition of lists.

6 Howe proved that ∼ is a congruence w.r.t. a lazy computation system by proving that all
the operators of the system satisfy a property called extensionality. The expanded version
of this article proves that the new operators introduced in this paper satisfy that property.
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The following context property follows from the fact that ∼ is a congruence:

∀i : {1, . . . , n}. ti ≤ ui ⇒ G[x1\t1; · · · ; xn\tn] ≤ G[x1\u1; · · · ; xn\un]

Howe’s bisimulation relation respects computation, i.e., if t1 ∼ t2 then (1) t1
computes to a value iff t2 computes to a value, and (2) if t1 computes to a value
v1 then t2 computes to a value v2 with same outer operator such that v1 ∼ v2.

Because ⊥ does not compute to a canonical form, by definition ⊥ ≤ t is
true for any term t ; hence for example 〈Ax,⊥〉 ≤ 〈Ax, Ax〉. Similarly, because
Ax is not a pair, (let x , y = Ax in x ) does not compute to a canonical form,
and by definition, let x , y = Ax in x ≤ t is true for any term t (we prove
let x , y = Ax in F ∼ ⊥ in Sec. 4.3). However, Ax ≤ ⊥ is not true because ⊥
diverges while Ax is a value; hence 〈Ax, Ax〉 ≤ 〈Ax,⊥〉 is not true either.

Let us write halts(t) if t reduces to a value—we say that t converges. We
can define convergence using call-by-value because the call-by-value operator
(let x := t1 in t2) first evaluates t1. The term t1 converges if and only if the
term (let x := t1 in Ax) evaluates to Ax. So we simply define halts(t) to be
the simulation Ax ≤ (let x := t in Ax). Because Ax is a canonical value then
Ax ≤ (let x := t in Ax) is true if and only if (let x := t in Ax) computes to
Ax, i.e., if and only if t computes to a value.

Constable and Smith [35,17] introduced partial types to reason about com-
putations that might not halt. For any type T , the partial type T contains all
members of T as well as all divergent terms, and has the following equality: two
terms are equal in T if they have the same convergence behavior (i.e., either
neither computes to a value or both compute to a value), and when they con-
verge, they are equal in T . An important partial type is Base = Value where
Value is the type of all closed canonical terms of the computation system with
∼ as its equality. Because Base is a partial type, it contains converging as well
as diverging terms, and equal terms have the same convergence behavior.

3.2 Simple Facts About Lists

Sec. 4 proves that for all terms f and t in Top, map(f , t) @ nil ∼ map(f , t).
If t is a list, the first expression (map(f , t) @ nil) requires two passes over

the list t while the second expression (map(f , t)) requires only one. This simple
bisimulation will be our running example to illustrate the techniques we use to
optimize our distributed processes (discussed in Sec. 5).

Note that this lemma would be easy to prove by induction on the list t if we
were using the list type instead of Top. However, we might need to instantiate t
with a term for which it would be non-trivial to prove that it is a list because
Nuprl is based on an extension of the untyped λ-calculus and type inference and
type checking are undecidable. In addition, if we were to use a typed equality
(instead of ∼) for substitution in some context, then we would also have to prove
that the context is functional over the type of the equality. That is, to rewrite in
the term C[t] of type B using t =A u, we have to prove that λz.C[z] is of type
A → B. Moreover, the above equivalence is indeed true for any term t , e.g., it
is true when t is a stream.

6
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Note that it is not true that for all terms t , t @ nil ∼ t . For example, by
definition of @, (λx .x ) @ nil ∼ ⊥. However, the bisimulation λx .x ∼ ⊥ is not
true because the simulation λx .x ≤ ⊥ is not true. This shows that there are some
terms t for which t ≤ t @ nil does not hold.7 However, Sec. 4 proves that for all
terms t , t @ nil ≤ t . A corollary of that lemma is that map(f , t) @ nil ≤ map(f , t).

4 Proof Techniques

This section presents three proof techniques we use to prove bisimulations:
Crary’s least upper bound property [18], patterns of reasoning regarding our
new canonical form tests, and patterns of reasoning regarding our halts opera-
tor. It also presents three derived proof techniques called lifting, normalization,
and strictness. Using these techniques, we prove map(f , t) @ nil ∼ map(f , t), and
in Sec. 5, we optimize distributed processes.

4.1 Least Upper Bound Property

Using the properties of ≤ and that fix(f ) = f fix(f ), it is easy to prove by
induction on n that ∀n : N. f n(⊥) ≤ fix(f ) [18]. So fix(f ) is an upper bound
of its approximations. The least upper bound property [18, Theorem 5.9] is:

Rule [least-upper-bound]. ∀n : N. G(f n(⊥)) ≤ t ⇒ G(fix(f )) ≤ t .

4.2 Canonical Form Tests

In order to reason about its programs, we gave Nuprl the ability to reason about
the canonical form tests such as ispair, isaxiom, etc.8 These effective oper-
ations on Base allow us to reason in the programming language, where in the
past we resorted to reflection in the logic [6].

Membership Rules

Rule [ispair-member]. To prove that ispair(t1, t2, t3) ∈ T, it is enough to
prove halts(t1), and that both t2 and t3 are members of T.

We introduce similar rules for the other canonical form tests. Using this rule
we can trivially prove the following fact:

Lemma 1. For all terms t in Base, if halts(t) then ispair(t , tt, ff) ∈ B.

The same is true for the other tests. Using these facts, we can, e.g., decide
whether a converging term is a pair or not.

Semi-decision Rules Depending on how ispair computes we can deduce
various pieces of information. If we know that ispair(t1, t2, t3) always computes
to t2 and cannot compute to t3 then we know that t1 is a pair. If we know that
ispair(t1, t2, t3) always computes to t3 and cannot compute to t2 then we know
that t1 is not a pair. These properties are captured by the following two rules:

7 The expanded version of this article provides a characterization of the terms that satisfy
that property.

8 The proofs that the rules introduced in this section are valid w.r.t. Allen’s PER (Partial
Equivalence Relations) semantics [2,3] are presented in the expanded version of this article.
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⊢ ∀F:Top. (let x,y = Ax in F[x;y] ∼ bottom())

|

BY (SqReasoning

THEN Assert ⌈(if Ax is a pair then 0 otherwise 1) = 1⌉·

THEN (Reduce 0 THEN Auto THEN AutoPairEta [2;1] (-1)))

Fig. 3: Computational equivalence between ⊥ and a stuck term

Rule [ispair]. To prove t ∈ Top× Top (i.e., t is a pair), it is enough to prove
ispair(t , inl(a), inr(b)) ∼ inl(a) for some terms a and b.

Rule [not-ispair]. To prove ispair(t1, t2, t3) ∼ t3, it is enough to prove that
ispair(t1, inl(a), inr(b)) ∼ inr(b) for some terms a and b.

We introduce similar rules for the other canonical form tests. Using these
rules we can prove such results as (similar results are true for the other tests):

Lemma 2. For all terms t, a, b in Base, if halts(t) then t ∼ 〈π1(t), π2(t)〉 ∨
ispair(t , a, b) ∼ b.

Proof. By Lemma 1, ispair(t , tt, ff) ∈ B. Therefore, either ispair(t , tt, ff) ∼
tt or ispair(t , tt, ff) ∼ ff (this is true for any Boolean). If ispair(t , tt, ff) ∼
tt then using rule [ispair] we obtain that t is a pair and therefore t ∼
〈π1(t), π2(t)〉. If ispair(t , tt, ff) ∼ ff then using rule [not-ispair] we obtain
that ispair(t , a, b) ∼ b.

4.3 Convergence

Rule [convergence]. To prove t1 ≤ t2, one can assume halts(t1).

This rule follows directly from≤’s definition. For example, to prove let x , y =
p in F ≤ let x , y = q in G, one can assume that halts(let x , y = p in F ).

Nuprl also has rules to reason about halts(t). If a non-canonical term con-
verges, then its principal arguments have to converge to the appropriate canon-
ical forms as presented in Fig 2. For example the following two rules follow from
the operational semantics of spread and ispair (we have similar rules for the
other non-canonical operators):

Rule [halt-spread]. If halts(let x , y = p in F ) then p computes to a pair.

Rule [halt-ispair]. If halts(ispair(t1, t2, t3)) then halts(t1).

Let us go back to the example presented in Sec. 2.2. We now have enough
tools to prove the following lemma:

Lemma 3. For all terms F in Top, let x , y = Ax in F ∼ ⊥

Proof. Fig 3 presents our Nuprl proof of that fact. That proof goes as fol-
lows: By definition of ∼, we have to prove let x , y = Ax in F ≤ ⊥ and
⊥ ≤ let x , y = Ax in F . The second simulation is trivial. Let us prove the first
one. Using [convergence], we can assume halts(let x , y = Ax in F ) and using
[halt-spread], that Ax is a pair. This reasoning is done by our SqReasoning tac-
tic. Finally, the term ispair(Ax, 0, 1) computes to 1, and because we deduced
that Ax is a pair, it also reduces to 0, and we have an absurdity.

8
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4.4 Lifting

Now we describe the following derived proof techniques: lifting, normalization
(see Sec. 4.5 below), and strictness (see Sec. 4.6 below) which are used in Sec. 4.7
below. Lifting transforms a term t into t ′ such that t ∼ t ′ and such that t ′ has
a smaller path to the principal argument of a subterm of t . Let us now provide
a few examples. The following bisimulation specifies a lifting operation, where
the path to p is shorter in the second term than in the first term:

Lemma 4. For all terms F and G in Top:

let c, d = (let a, b = p in F ) in G ∼ let a, b = p in (let c, d = F in G)

Proof. To prove that bisimulation, we have to prove that the first term simulates
the second one and vice versa. Let us prove that the second one simulates the first
one (the other direction is similar), i.e., let c, d = (let a, b = p in F ) in G ≤
let a, b = p in (let c, d = F in G). Using [convergence], we can assume
halts(let c, d = (let a, b = p in F ) in G), from which, using [halt-spread]

twice, we obtain that p is a pair. More precisely, we can prove that p is the
pair 〈π1(p), π2(p)〉. By replacing p by 〈π1(p), π2(p)〉 in the above simulation,
and by reducing both sides, we obtain let c, d = F [a\π1(p); b\π2(p)] in G ≤
let c, d = F [a\π1(p); b\π2(p)] in G, which is true by reflexivity of ≤.

Using this lemma, one can, e.g., derive the following chain of rewrites:

let a, b = (let c, d = p in 〈c, d〉) in F
∼ let c, d = p in (let a, b = 〈c, d〉 in F )

∼ let c, d = p in F [a\c; b\d ]

The following bisimulation specifies another lifting operation where the path
to t1 is shorter in the second term than in the first one:

Lemma 5. For all terms t1, t2, t3, t4, and t5 in Top:

ispair(ispair(t1, t2, t3), t4, t5)
∼ ispair(t1, ispair(t2, t4, t5), ispair(t3, t4, t5))

The proof of this is similar to the proof of Lemma 4. Because lifting does not
always result in a smaller term it must therefore be used in a controlled way.

4.5 Normalization

Normalization allows one to make use of the information given by destructors
such as spread or decide, i.e., that some terms are forced to be pairs or injec-
tions by the computation system. Normalization achieves some kind of common
subexpression elimination, which is a standard optimization technique. For ex-
ample, the next lemma says that the expression on left-hand-side has a value if
and only if p (which can be an arbitrary large term) is a pair, and more precisely
in F it has to be the pair 〈a, b〉:

Lemma 6. For all terms p and F in Top:

let x , y = p in F [z\p] ∼ let x , y = p in F [z\〈x , y〉]

The proof of this is similar to the proof of Lemma 4.

9
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4.6 Strictness

Strictness says that if ⊥ is one of the principal arguments of a term then this
term is computationally equal to ⊥. For example we proved the following lemma:

Lemma 7. For all terms F in Top, (let x , y = ⊥ in F ) ∼ ⊥.

The proof of this is similar to the proof of Lemma 4. Intuitively, such lemmas
are true because to evaluate a non-canonical term, one has to evaluate its prin-
cipal arguments. If one of these principal arguments is ⊥, then the computation
diverges. Therefore, the entire term is computationally equal to ⊥.

4.7 Back To Our List Example

As explained in Sec. 3.2, to prove map(f , t) @ nil ∼ map(f , t), we first prove the
following lemma:

Lemma 8. For all terms t in Top, t @ nil ≤ t .

Proof. Because @ is defined using fix (see Sec. 2.3), we prove that lemma us-
ing the [least-upper-bound] rule (see Sec.4.1). We now have to prove that any
approximation of the fixpoint is simulated by t . Let

F = λF .λL.ispair(L, let x , y = L in x • (F y), isaxiom(L, nil,⊥))

We have (t @ nil) = (fix(F ) t) by definition of append and beta-reduction. We
have to prove that for all natural numbers n, and for all terms t ,

Fn ⊥ t ≤ t

which we prove by induction on n. The base case boils down to proving that
⊥ t ≤ t which is true using strictness. In the interesting induction case, assuming
that for all terms t , Fn−1 ⊥ t ≤ t , we have to prove F (Fn−1 ⊥) t ≤ t , i.e.,

ispair(t , let x , y = t in x • ((Fn−1 ⊥) y), isaxiom(t , nil,⊥)) ≤ t (1)

Let P be ispair(t , let x , y = t in x • ((Fn−1 ⊥) y), isaxiom(t , nil,⊥)). Us-
ing [convergence], we can assume halts(P). Using [halt-ispair], we obtain
halts(t). By Lemma 2, we get t ∼ 〈π1(t), π2(t)〉 or P ∼ isaxiom(t , nil,⊥).

If t ∼ 〈π1(t), π2(t)〉, we have to prove the following simulation obtained from
simulation 1 by replacing t by 〈π1(t), π2(t)〉 and by reducing:

π1(t) • ((F
n−1 ⊥) π2(t)) ≤ 〈π1(t), π2(t)〉

Because the cons operator is defined as the pair constructor, by the context
property it remains to prove the following simulation, which is true by induction
hypothesis: ((Fn−1 ⊥) π2(t)) ≤ π2(t).

If P ∼ isaxiom(t , nil,⊥), we have to prove isaxiom(t , nil,⊥) ≤ t . Using
the version of Lemma 2 for isaxiom, we obtain t ∼ Ax or isaxiom(t , nil,⊥) ∼
⊥. Both cases are trivial: in the first case we have to prove Ax ≤ Ax and in the
second we have to prove ⊥ ≤ t .
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Let us now prove the lemma we set out to prove in Sec. 3.2:

Lemma 9. For all terms t and f in Top, map(f , t) @ nil ∼ map(f , t).

Proof. By definition of ∼, we have to prove map(f , t) @ nil ≤ map(f , t) (which
is true by Lemma 8), and map(f , t) ≤ map(f , t) @ nil. Because map is a fixpoint,
we can prove the latter using the [least-upper-bound] rule. Let

F = λF .λL.ispair(L, let x , y = L in (f x ) • (F y), isaxiom(L, nil,⊥))

We then have to prove that for all natural numbers n and for all terms f and t ,

Fn ⊥ t ≤ map(f , t) @ nil

which we prove by induction on n. Once again, the base case is trivial. As-
sume that for all terms t , Fn−1 ⊥ t ≤ map(f , t) @ nil, we have to prove that
F (Fn−1 ⊥) t ≤ map(f , t) @ nil, i.e., we have to prove the following simulation:

ispair(t , let x , y = t in (f x ) • ((Fn−1 ⊥) y), isaxiom(t , nil,⊥))
≤ map(f , t) @ nil

(2)

Let P = ispair(t , let x , y = t in (f x ) • map(f , y), isaxiom(t , nil,⊥)), which
is map(f , t) unfolded once. We obtain the following sequence of bisimulations by
unfolding the definitions of map and @ in (map(f , t) @ nil):

map(f , t) @ nil ∼ P @ nil

∼ ispair(P , let x , y = t in x • (y @ nil), isaxiom(P , nil,⊥))

Using lifting (Lemma 5) and normalization, we obtain the following bisimulation:

map(f , t) @ nil

∼ ispair(t , let x , y = t in (f x ) • (map(f , y) @ nil), isaxiom(t , nil,⊥))

Therefore, given that we have to prove simulation 2, it means that we have to
prove the following simulation:

ispair(t , let x , y = t in (f x ) • ((Fn−1 ⊥) y), isaxiom(t , nil,⊥))
≤ ispair(t , let x , y = t in (f x ) • (map(f , y) @ nil), isaxiom(t , nil,⊥))

which is true by induction hypothesis and the context property.

5 Process Optimization

Nuprl implements a Logic of Events (LoE) [10,12,13] to specify and reason about
distributed programs, as well as a General Process Model (GPM) [11] to imple-
ment them. We have proved a direct relationship between some LoE combinators
and some GPM combinators. This allows us to automatically generate processes
that are guaranteed to satisfy the logical specifications of LoE.

Using the proof techniques presented in the above section, we were able to
optimize many automatically generated GPM processes. For example, we opti-
mized our synthesized version of Paxos, which is used by the ShadowDB repli-
cated database [34]. Because our synthesized Paxos was initially too slow, it was
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only used to handle database failures, which are critical to handle correctly but
are not frequent. When a failure occurs, Paxos ensures that the replicas agree
on the next set of replicas. We can now also use Paxos to consistently order the
transactions of the replicated databases. Initially, our synthesized code could
only handle one transaction every few seconds. Thanks to our automatic opti-
mizer, the code we synthesize is now about an order of magnitude faster. Our
goal is to be able to handle several thousands of transactions per second. Even
though we have not yet reached that goal, this work is already an encouraging
first step towards generating fast correct-by-construction code.

A GPM process is modeled as a function that takes inputs and computes
a new process as well as outputs. For distributed programs based on message
passing, these inputs and outputs are messages. Formally, a process that takes
inputs of type A, and outputs elements of type B , is an element of (a variant
of) the following co-recursive type:

corec(λP .A → P × Bag(B))

where corec is defined as follows:

corec(G) = ∩n : N.fix(λP .λn.if n = 0 then Top else G (P (n − 1))) n

Note the use of bags, also called multisets, formally defined as quotiented
lists. The reason for using that type is outside the scope of this paper. However,
let us mention that processes can output more than one element and these
elements need not be ordered. In the rest of this paper, we use curly braces
to denote specific bag instances. Lists and bags have many similar operations
such as: bmap the map operation on bags, bnull the null operation, bconcat
the concat operation which flattens bags of bags, and >>= the bind operation
of the bag monad, defined as b >>= f = bconcat(bmap(f , b)). For example,
({1; 2; 2; 4} >>= λx .{x ; x + 1}) = {1; 2; 2; 3; 2; 3; 4; 5}= {1; 2; 2; 2; 3; 3; 4; 5}.

Many of the GPM combinators are defined using fix. Because processes are
typically defined using several combinators, fixpoints end up being deeply nested
which affects the computational complexity of the processes. Using, among other
things, the least upper bound property, we can often reduce the number of
fixpoints occurring in processes. This is our main process optimization technique.

Let us now present some GPM combinators. Processes often need to maintain
an internal state. Therefore, the combinators defined below will all be of the
form fix(λF .λs .λm.G) init , where init is an initial state, and G is a transition
function that takes the current state of the process (s) and an input (m), and
generates a new process and some output.

5.1 Combinators

Base Combinator It builds a process that applies a function to its inputs:

base(f ) = fix(λF .λs.λm.〈F s, f m〉) Ax

Base processes are stateless, which is modeled using the term Ax as the state of
the base combinator.

12
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Composition Combinator It builds a process that applies a function f to the
outputs of its sub-component X :

f o X = fix(λF .λX .λm.





let X ′, out = X m in

let out ′ ::= bmap(f , out) in
〈F X ′, out ′〉



) X

The state maintained by f o X is the state maintained by X . Note that for
efficiency issues, we use the call-by-valueall operator ::= in order to generate the
outputs out ′.

Buffer Combinator From an initial buffer init and a process X producing
transition functions, this combinator builds a process that buffers its outputs:

buffer(X , init) =

fix(λF .λs.λm.









let X , buf = s in

let X ′, b = X m in

let b′ ::= b >>= λf .(buf >>= f ) in
〈F 〈X ′, if bnull(b′) then buf else b′〉, b′〉









) 〈X , init〉

The state maintained by buffer(X , init) is the pair of the state maintained by
X and its previous outputs (initially init).

5.2 Example

The following process uses the three combinators presented above:

P = buffer((λn.λbuf .{n + buf }) o base(λm.{m}), {0})

This process maintains a state constituted of a single integer, initialized to 0.
Its inputs are integers. At any point in time, its state is the sum of all the inputs
it has received in the past. Because the combinators used in P are defined as
fixpoints, P contains three nested occurrences of fix. We will now show that P
is computationally equivalent to the following even simpler process:

P
′ = fix(λF .λs.λm.let x ::= m + s in 〈F x , {x}〉) 0

Using Nuprl’s powerful tactic mechanism we automatically generate P ′ from
P , and we automatically prove that P ∼ P ′. Our experiments showed that it
takes between 100 and 200 computation steps for P to process a single input
while it takes less than 10 computation steps for P ′ to process a single input.

Standard Form To optimize our processes we take advantage of the fact that
many of them are of the following form:

process(n,L,S ,R, I ) =

fix(λF .λs.λm.









let x1 ::= L s m 1 in

. . .

let xn ::= L s m n x1 · · · xn−1 in

〈F (S s m x1 · · · xn ),R s m x1 · · · xn 〉









) I

where L is a sequence of instructions defined as a function, n is the number of
instructions that the process executes on each input, S computes the next state
of the process, R computes the outputs, and I is its initial state.
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Transformations We prove the next three lemmas using the same proof tech-
nique as in Sec. 4.7. These lemmas show that if processes are built using the
base, composition, and buffer combinators (and many other primitive combina-
tors of the GPM not presented in this paper), then they are guaranteed to be of
the standard form process(n,L, S ,R, I ).

Lemma 10. Given a term f of type Top, the following bisimulation is true:

base(f ) ∼ process(0, λx .⊥, λs.λm.Ax, λs.λm.f m, Ax)

Lemma 11. Given f , L, S , R, and I terms of type Top, and n a natural number,
the following bisimulation is true:

f o process(n,L,S ,R, I )
∼ process( n + 1,

λs.λm.λi . if i = n + 1 then λx1 . . . . λxn . bmap(f ,R s m x1 · · · xn )
else L s m

,

λs.λm.λx1 . . . . λxn . λxn+1 .S s m x1 · · · xn ,

λs.λm.λx1 . . . . λxn . λxn+1 .xn+1 ,

I )

Lemma 12. Given L, S , R, I , and I ′ terms of type Top, and n a natural
number, the following bisimulation is true:

buffer(process(n,L, S ,R, I ), I ′)
∼ process(n + 1,

λs.λm.λi . if i = n + 1
then λx1 . . . . λxn . (R π1(s) m x1 · · · xn ) >>= λf .(π2(s) >>= f )
else L π1(s) m

,

λs.λm.λx1 . . . . λxn . λxn+1 . 〈 S π1(s) m x1 · · · xn
, if bnull(xn+1 ) then s else xn+1 〉

,

λs.λm.λx1 . . . . λxn . λxn+1 .xn+1 ,

〈I , I ′〉)

Transformation of P into P
′ Using the bisimulations presented above, we

automatically rewrite P into P ′, and because our bisimulations are untyped,
proving that P is computationally equivalent to P ′ is also trivial: it only requires
us to prove that some terms are in Top, and all closed terms are trivially in Top.

6 Related Work and Conclusion

This paper describes computational proof techniques based on bisimulations
which we use in the Nuprl proof assistant in order to optimize distributed pro-
cesses (programs in general). McCarthy [31] recognized the value of type free
reasoning, and we took that to heart in the design of CTT by providing type
free rules about computation, called “direct computation rules”. Now we know
that this kind of reasoning can be made even richer.

Gordon [20] characterizes contextual equivalence as some form of co-inductively
defined bisimulation. Using co-inductive reasoning, Gordon can easily prove, e.g.,
various bisimulations between streams. For example, he proves that iterate(f , f x )
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and map(f , iterate(f , x )) are bisimilar, where iterate(f , x ) is defined in Nuprl
as fix(λF .λx .〈x ,F (f x )〉) x . Nuprl’s corresponding method to prove such results
is the least upper bound property. Gordon proves this result using a co-inductive
reasoning, while we prove it by induction on the natural number we obtain by
approximating the two fixpoints used to define map and iterate. Apart from
that difference, the resulting proofs are similar in spirit.

Note that we have not yet formally proved that the processes returned by our
optimizer have a better complexity than the processes it takes as inputs. Using
Isabelle/HOL, Aspinall, Beringer, and Momigliano [5] developed an optimization
validation technique, based on a proof-carrying code approach, to prove that op-
timized programs use less resources than the non-optimized versions. Currently,
we cannot measure the complexity of programs inside Nuprl because if t1 reduces
to t2 then t1 ∼ t2, and hence we cannot distinguish between them in any context.

We hope to solve this issue by either using some kind of reflection, or intro-
ducing a subtype of Base where equality would be alpha-equality. Also, in order
to enhance the usability of our processes in industrial strength systems, we need
to identify and verify other optimizations. As mentioned in Sec. 1, we view this
work as a step towards making Nuprl a usable programming framework. In the
meantime, we have built a Lisp translator for our processes.

In the last two decades, much work has been done on compiler verification.
See Dave [19] for earlier references. To name a few: Using Coq, Leroy has de-
veloped and certified a compiler for a C-like language [29]. He generated the
compiler using Coq’s extraction mechanism to Caml code. The compiler is cer-
tified thanks to “a machine-checked proof of semantic preservation” [29]. Also
using Coq, Chlipala [15] developed a verified compiler for an impure functional
programming language with references and exceptions that produces code in an
idealized assembly language. He proved the correctness of the compiler using
a big-step operational semantics. Li [30] designed a verified compiler in HOL,
from an high-level ML-like programming language implemented in HOL to ARM
assembly code. Each transformation of the compiler generates a correctness ar-
gument along with a piece of code.

Following this line of work, we now would like to tackle the task of building
a verified compiler for Nuprl in Nuprl.
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