
Second Year Report:

Syntactic and Semantic properties of useful

λ-calculi: Church-Rosser, reducibility, realisability

Supervisors : Professor Fairouz Kamareddine

Doctor Joe B. Wells

Student : Vincent Rahli

August 6, 2008

1

Contents

1 Introduction 3

2 General background 5

3 The λ-Calculus, its extensions and their properties 5
3.1 Background on the λ-calculi . 5

3.1.1 Sets of terms . 6
3.1.2 Reduction relations . 6
3.1.3 λ-calculi and λ-theories . 7
3.1.4 Residuals, developments and normalisation 7

3.2 The Church-Rosser property . 7
3.2.1 Consistency . 8
3.2.2 1936: Church and Rosser [13] 8
3.2.3 1972: Tait and Martin-Löf [55, 3, 63] 9
3.2.4 1978: Hindley [35] . 9
3.2.5 1985: Koletsos [49] . 10
3.2.6 1988: Shankar [61] . 11
3.2.7 1989: Takahashi [63] . 11
3.2.8 2001: Ghilezan and Kunčak [25] 11
3.2.9 2007: Koletsos and Stavrinos [50] 12
3.2.10 2007: Kamareddine, Rahli and Wells [44, 45] 12
3.2.11 2008: Kamareddine and Rahli [42] 13
3.2.12 Summary of the proof methods of the Church-Rosser property 13

4 Semantics of intersection typed λ-calculi with expansion 13

5 Type error slicing 17
5.1 introduction . 17
5.2 Background . 18
5.3 The steps of Type Error Slicing . 19

6 Plan of the thesis 21

7 Conclusion 22

2

1 Introduction

In the nineteenth century, due to the lack of precision of natural languages and the
apparition of some controversial results in analysis [37], mathematicians and logi-
cians became interested in a more precise formalisation of Mathematics. Frege [66,
37] was the first to set the solid foundations for logic. He, among other things,
presented a formalisation of the concept of function. The development of formal
systems by Frege and his contemporaries led to the discovery of some paradoxes.
The paradox in the work of Frege, found by Russell [60], was due to the problem
of self-reflexiveness. This problem is inherent in the fact that any function can be
applied to any function (in particular to itself). In order to solve this problem, Rus-
sell [60] defined a theory of types where types are used to restrict the application
of functions.

One of the great improvement in the movement aiming at the formalisation of
Mathematics has been the design of the λ-calculus by Church [10]. He designed a
formal system for logic and functions which turned out to be inconsistent. Nev-
ertheless, the subsystem dealing only with functions appeared to a be a successful
model for computation. It led to the actual λ-calculus. In the early 1940s, Church
added simple typing to the λ-calculus in a system with logical axioms to deal with
logic and functions. In this model for computation, functions are studied as com-
putational rules rather than as sets of pairs.

The introduction of type systems in which proofs are introduced as part of the
defined theory was also a great improvement. It led to the discovery that types
in a type system can be associated to formulae in a logical system and that the
proofs of formulae can be associated to typable terms. This association is known as
the Curry-Howard or the Curry-De Bruijn-Howard isomorphism. Brouwer, Heyt-
ing and Kolmogorov already suggested this isomorphism in their BHK-semantics
[1, 64, 65] which interprets formulae of intuitionistic logic by proofs, which are con-
structive methods based on functions. Kleene [46] also proposed an interpretation,
called realisability, which stresses the connection between recursive functions and
intuitionism.

Many applications have been found to realisability. Initially, realisability has
been designed as a method to interpret formulae, i.e. in the semantic domain. This
semantics enables to stress the constructivity of systems. Based on realisability, Tait
[62] developed a method called reducibility to prove properties (for example normal-
isation properties) of the λ-calculus. Since then, this method has been improved by
Girard [26, 27], Koletsos [49] and Gallier [21, 24, 22, 23] amongst others.

So far we have discussed the λ-calculus, type systems and the proof methods
known as realisability/reducibility. A system of λ-calculus with types allows dif-
ferent expressive power depending on the interactions that exist between λ-terms
and types. Eight representative λ-calculi with types have been generalised in the
well known λ-cube of Barendregt [4]. The simplest of the system in the λ-cube is
the type system known as the Simply Typed Lambda Calculus [12, 4] first intro-
duced by Church. This λ-cube enables to express different kinds of abstraction,
allowing to express among other things, polymorphism. The most popular way to
express polymorphism is to use the quantifier ∀ as is the case in the system F of
Girard. Coppo and Dezani [14] introduced another way to express polymorphism
using intersection types. These intersection types are lists of usages. Because of the
ramified structure of these types, Coppo, Dezani and Venneri introduced in [15] an
operation called expansion in order to restore the principal typing property in such
systems (more precisely, in order to be able to calculate any typing from a principal
one). Since then, this operation has been extensively improved [9, 7].

During the first two years of the author of this report, three main topics have

3

been studied:

• The λ-calculus, its variants and their properties (e.g., Church Rosser, Strong
Normalisation and Standardisation) [42, 44, 45]

• The semantics of intersection type systems with expansion using realisability
semantics establishing soundness and completeness [39, 40, 41].

• Type error slicing [31] generating a set of type constraints, enumerating min-
imal errors and displaying the corresponding error slices [43].

These three themes are a logical follow up of the well-rounded study of a calculus,
its semantics/models and its usages/applications. In short, the untyped λ-calculus is
a computational model used for the formalisation of the foundations of Mathematics.
Based on the untyped λ-calculus (typed version) some type systems were developed
to formalise the foundations of Mathematics. Such type systems are syntactical
constructs. Developing a semantics for such systems helps in their understanding
(such as the Curry-Howard isomorphism). Following these lines we were interested
in providing a realisability semantics for an intersection type system with expansion
in order to get some light on the expansion concept. Finally, the development and
study of a type error slicer such as the one developed by Haack and Wells [31]
provides an example of a “real” application of a type system out of the study of the
foundations of Mathematics.

In Section 2, we will introduce a few common and general concepts used through-
out this report. In Section 3, we introduce the untyped λ-calculus, some of its exten-
sions and properties. We first recall some common definitions on the λ-calculus in
Section 3.1. And in Section 3.2, we concentrate on the first theme and in particular,
the Church-Rosser property. We recall some of its proofs since its first statement
and briefly present our contribution in the domain. In Section 4, we provide an
introduction to the work we have carried out in the past two years on the second
theme which is finding a semantics of intersection type systems with expansion. In
section 5, we present our third and last theme of interest which is type error slicing.
The aim of this project is to accurately identify and report the location of a type
error of a piece of code (for a SML-based programming language), by providing a
set of minimal and necessary collection of points in the piece of code (a slice). In
Section 6, we give a short outline of our proposal of work for the third year of the
thesis. Finally, we conclude in section 7.

We would like to draw the attention of the reader to the fact that this report is
a short summary of what has been achieved during the second year of the author.
Due to accuracy, only articles that have been accepted or officially submitted to
international journals/conferences are attached to this report. Other work and
results have been carried out (for example in [43]), but are not included. The
attachments to this report include:

• Article [44] accepted at ITRS’08.

• Article [41] accepted at ITRS’08.

• Article [45] submitted to fundamenta informaticae (short and long versions).

• Article [39] submitted to fundamenta informaticae (short and long versions).

• Article [42] accepted at LSFA’08.

• Article [40] accepted at ICTAC’08.

It is important to emphasise that this report is only a short survey of the above
mentioned articles. It should be read with all the above attached articles. These
articles are always available on the web page of the author.

4

2 General background

We let N = {0, 1, 2, . . .} be the set of natural numbers over which the metavariables
n, m range. We take as convention that if a metavariable v ranges over a set s then
the metavariables vi such that i ≥ 0 and the metavariables v′, v′′, etc. also range
over s.

A binary relation is a set of pairs. Let rel range over binary relations. If
〈x, y〉 ∈ rel then we sometimes write it x rel y. Let dom(rel) = {x | 〈x, y〉 ∈ rel}
and ran(rel) = {y | 〈x, y〉 ∈ rel}. We write rel∗ for the reflexive and transitive
closure of the relation rel (see the first line of Figure 1). A function is a binary
relation fun such that if {〈x, y〉, 〈x, z〉} ⊆ fun then y = z. Let fun range over
functions. Let s → s′ = {fun | dom(fun) ⊆ s ∧ ran(fun) ⊆ s′}.

Given n sets s1, . . . , sn, where n ≥ 2, s1 × . . . × sn stands for the set of all the
tuples built on the sets s1, . . . , sn. If x ∈ s1 × . . . × sn, then x = 〈x1, . . . , xn〉 such
that xi ∈ si for all i ∈ {1, . . . , n}.

3 The λ-Calculus, its extensions and their proper-

ties

For an introduction to the λ-calculus see for example Barendregt [3] or Rosser [59].
Following the work done by Frege, Russell, Curry, etc., Church [10], introduced

a system for “the foundation of formal logic”. The set of terms of this system was
defined as a superset of the so-called λI-calculus. In addition, Church introduced
two sets of postulates. The first one called “rules of procedure” which allows one,
among other things, to deal with conversion of λ-terms (these rules are presented
in Section 3.2.1). The second set contains the “formal postulates” which are log-
ical axioms. However, this system and some of its subsystems turned out to be
inconsistent as shown by Kleene and Rosser in [47]. Nevertheless, the subsystem
dealing only with functions (in fact, the generalization of which is the λ-calculus)
appears to be a “successful model for computable functions” [3]. As stressed in the
introduction of Barendregt’s book, this theory presents functions as rules, and not
as sets of pairs, in order to deal with their computational aspects. This λ-calculus
appears to be a generalization of the definition of functions given, for example, by
Russell (“propositional functions”) as explained in [37].

We recall in a first section some common definitions of the λ-calculus (as defined
for example by Barendregt [3]). One important property of the λ-calculus is the
Church-Rosser property. In a later section, we present this property and the main
lines of some of its proofs. During the second year, one of our interests has been
the proofs of some of the properties of the λ-calculus (and mainly the proof of
the Church-Rosser property) using a semantic argument (the reducibility method).
Hence, we present the main lines of our proofs and restate them in the long story
of the proofs of the Church-Rosser property.

3.1 Background on the λ-calculi

The λ-calculus and its variants are defined on set of terms and reduction relations.
We first present different set of terms and reduction relations. Then we present
different λ-calculi of interest. We finish by presenting different properties of the
λ-calculus discussed in this report.

5

3.1.1 Sets of terms

Let x, y, z range over Var, a countable infinite set of term variables (or just variables).
The set of terms of the λ-calculus is defined as follows:

M ∈ Λ ::= x | (λx.M) | (M1M2)

We let M, N range over Λ. We assume the usual convention for parenthesis and
omit these when no confusion arises. In particular, we write MM0 · · ·Mn instead
of (· · · ((MM0)M1) · · ·Mn−1)Mn. We also assume the usual definition of subterms
and write N ⊆ M if N is a subterm of M (M ⊆ M). We call a term of the
form λx.M , a λ-abstraction (or just abstraction) and a term of the form M1M2 an
application.

The α-conversion is the symmetric, reflexive, transitive and compatible (see
Figure 1) closure of the following rule:

λx.M =α λy.M [x := y], where y does not occur in M

We take terms modulo α-conversion and use the Barendregt convention (BC)
where the names of bound variables differ from the free ones. When two terms M

and N are equal (modulo α), we write M = N . We write fv(M) for the set of the
free variables of term M .

We define as usual the substitution M [x := N] of N for all free occurrences of
x in M . We let M [x1 := N1, . . . , xn := Nn] be the simultaneous substitution of Ni

for all free occurrences of xi in M for 1 ≤ i ≤ n.
Then the set of terms ΛI (⊂ Λ) is defined as follows: each x is in ΛI , if x ∈ fv(M)

and M ∈ ΛI then λx.M is in ΛI and if M1, M2 ∈ ΛI then M1M2 is in ΛI .

3.1.2 Reduction relations

β-reduction is the main evaluation process of the λ-calculus. It is defined as the
compatible closure (see the last line of Figure 1) of the following rule:

(β) : (λx.M)N →β M [x := N]

βI-reduction is a restriction of the β-reduction defined as the compatible closure
of the following rule:

(βI) : (λx.M)N →βI M [x := N], where x ∈ fv(M)

η-reduction is defined as the compatible closure of the following rule:

(η) : λx.Mx →η M , where x 6∈ fv(M)

This reduction allows the expression of the concept of extensionality in the λ-
calculus (see Barendregt’s book [3])

For r ∈ {(β), (βI), (η)}, the term on the left-hand-side of the rule r is called a
r-redex (or just redex when no ambiguity arises) and the one on the right-hand-side
is called r-contractum (or just contractum when no ambiguity arises). A βη-redex
(resp. βη-contractum) is either a β-redex (resp. β-contractum) or an η-redex (resp.
η-contractum).

The βη-reduction is defined as: →β ∪ →η.
For r ∈ {β, η, βη}, we define the equivalence relation =r as the symmetric,

reflexive and transitive closure of the following rule:

M =r N if M →r N

6

let R be a binary relation on Λ.

M R M
(refl)

M1 R M2 M2 R M3

M1 R M3

(tr)

P R Q

λx.P R λx.Q
(abs)

Q R Q′

PQ R PQ′
(app1) P R P ′

PQ R P ′Q
(app2)

Figure 1: Closure rules

3.1.3 λ-calculi and λ-theories

The λ-calculus is defined on the set of terms Λ and the reduction relation →β . The
corresponding theory is called λ.

The λI-calculus is defined in different ways in the literature. It is defined by
Church [10] (“if x is a variable and M is well-formed then λx[M] is well-formed”)
on the set of terms Λ and the reduction relation →βI . It is defined by Barendregt [3]
on the set of terms ΛI and the reduction →βI (“The theory λI (“the λI-calculus”)
consists of equations between λI-terms provable by the axioms and rules of λ re-
stricted to ΛI .”). We could also consider the set of terms ΛI and the reduction →β .
The three corresponding theories are equivalent.

The λη-calculus is defined on the set of term Λ and the reduction relation →βη.
The corresponding theory is called λη. When the βη-reduction is the considered
reduction without ambiguity, we sometimes write λ-calculus instead of λη-calculus.

3.1.4 Residuals, developments and normalisation

A β-residual of a β-redex is an occurrence of the propagation of the redex through
a β-reduction (it is defined for example by Barendregt [3], Definition 11.2.4). For
instance the two occurrences of (λx.x)y in ((λx.x)y)((λx.x)y) are residuals of the
redex (λx.x)((λx.x)y) in (λx.xx)((λx.x)((λx.x)y)) w.r.t. the reduction:
(λx.xx)((λx.x)((λx.x)y)) →β (λx.xx)((λx.x)y) →β ((λx.x)y)((λx.x)y).

Although, as far as we know the definition of β-residuals is a set concept, it does
not seem to be the case for βη-residuals. Different definitions may be found in the
literature: the βη-residuals as defined by Curry and Feys [17] or the λ-residuals as
defined by Klop [48].

A development is the reduction of an initial set of redexes in a term and its
residuals w.r.t. the reduction. A development is said to be complete if all the
redexes of the initial set of redexes and their residuals have been reduced.

A term is a normal form if it cannot be reduced further. We say that a term
M is weakly normalisable if there exists a reduction from M to a normal form. We
say that a term M is strongly normalisable if each reduction starting from M ends.

3.2 The Church-Rosser property

The Church-Rosser (or confluence) property is a property satisfied by the λ-calculus
stating that if M1 =β M2 then there exists M3 such that M1 →∗

β M3 and M2 →∗

β

M3 (this property can be more generally defined in the term rewriting systems
setting [6]). (We also say that M1 satisfies the Church-Rosser property.) It can
equivalently be defined as follows: if M1 →∗

β M2 and M1 →∗

β M3 then there exists
M4 such that M2 →∗

β M4 and M3 →∗

β M4.
This property is also satisfied when, for example, one considers βη-reduction

instead of β-reduction.

7

This property has first been proved by Church and Rosser [13]. It is among other
things used to prove the consistency of the λ-calculus as first proved by Church [11].
This property has been extensively studied in the literature since its first proof. We
recall in this section some of its proofs. First, we show how it allows to prove the
consistency of the λ-calculus.

3.2.1 Consistency

As far as we can tell, the first one to give a proof of the consistency of the λ-calculus
has been Church in 1935 [11]. Church considers the λI-calculus augmented with
a special symbol δ which is used in his paper as a conditional (the rule for δ is
the same for variables). Church considers a rule for α-conversion, two rules for
β-conversion and four rules related to the conditional. These seven rules are stated
as follows:

I To replace any part λxR by λySx
yR, where y is any variable which does not

occur in R.

II To replace any part {λxM}(N) of a formula by Sx
NM , provided that the

bound variables in M are distinct both from x and from the free variables in
N .

III To replace any part Sx
NM (not immediately following λ) of a formula by

{λxM}(N), provided that the bound variables in M are distinct both from x

and from the free variables in N .

IV To replace any part δ(M, N) of a formula by λfx.f(f(x)), where M and N are
in normal form and contain no free variables and M conv-I N .

V To replace any part δ(M, N) of a formula by λfx.f(x), where M and N are in
normal form and contain no free variables and it is not true that M conv-I N .

VI To replace any part λfx.f(f(x)) of a formula by δ(M, N), where M and N are
in normal form and contain no free variables and M conv-I N .

VII To replace any part λfx.f(x) of a formula by δ(M, N), where M and N are in
normal form and contain no free variables and it is not true that M conv-I N .

Where Sx
NM stands for the result of substituting N for x throughout M .

Then Church gives an encoding of the natural numbers (except 0, because
Church considers a variant of the λI-calculus) into the λ-calculus. He chose λfx.f(x)
to stand for 1, λfx.f(f(x)) for 2, etc. In fact, those are defined as abbreviations for
the corresponding λ-terms.

The negation is then encoded by the term: λx.6− [δ(x, 1)+2× δ(x, 1)], denoted
by ∼ and where −, +, × are the usual encodings of addition, subtraction and
multiplication. He also defines an encoding of conjunction.

Church then proves that “There is no formula P such that both P and ∼ P are
provable” (Therorem VI).

3.2.2 1936: Church and Rosser [13]

Church and Rosser set out to prove the following result of the λ-calculus (Theo-
rem 1):

if M =βIα N then there exists P such that M →∗

βIα P and N →∗

βIα P

where =βIα is =βI ∪ =α and M →βIα N iff M =α M ′, N =α N ′ and M ′ →βI N ′

The main lines of the proof are as follows:

8

• The definition of residuals, developments and complete developments.

• The first results proved in [13] are the termination of the developments and of
the confluence of the complete developments (Lemma 1). These two results
are the basis to prove the Church-Rosser theorem.

• One of the main results that is useful to prove the Church-Rosser theorem is
Lemma 2. It states among other things that if B1 is the result of the reduction
of a redex r in A1 and A1 →βIα A2 →βIα A3 →βIα · · · and for all k, Bk is
the result of a terminating sequence of contractions on the residuals in Ak of
r then for all k, Bk →∗

βIα Bk+1.

• The proof of Theorem 1 consists in replacing the reductions A1 →βIα · · · →βIα

An and A1 →βIα B (“a peak with a single reduction”) by the reductions
An →∗

βIα C and B →∗

βIα C (“a valley”).

• Based on their first theorem, Church and Rosser obtained another important
result about normal forms: the uniqueness of the normal forms modulo α-
conversion, which is their Corollary 2.

• The last paragraph of [13] is devoted to the untyped λ-calculus (not only λ-
calculus). The same results are claimed to be true as well but no proof is
given.

3.2.3 1972: Tait and Martin-Löf [55, 3, 63]

The famous method developed by Tait and Martin-Löf is based on the parallel
reduction. It is a new reduction relation based on the β-reduction defined as follows:

• x ⇒β x

• λx.M ⇒β λx.M ′ if M ⇒β M ′

• MN ⇒β M ′N ′ if M ⇒β M ′ and N ⇒β N ′

• (λx.M)N ⇒β M ′[x := N ′] is M ⇒β M ′ and N ⇒β N ′

This parallel reduction also provides a definition of developments: M ⇒β M ′ is
a development.

The Church-Rosser property is then proved to be satisfied w.r.t. this new re-
duction. This can be proved by a simple induction on terms or using the complete
developments (i.e. a complete parallel reduction: where the last rule of the defi-
nition of the parallel reduction is used as much as possible). Finally, by proving
the equivalence between →∗

β and the transitive closure of ⇒β they prove that the
untyped λ-calculus satisfies the Church-Rosser property (w.r.t. the β-reduction).

3.2.4 1978: Hindley [35]

As far as we know Hindley was one of the first to give the proof of the finiteness
of developments w.r.t. βη-reduction (see the introduction in [35]). In [35], Hindley
first starts by giving a proof for the β-reduction (not only βI as in [13]). His proof
tends to be more precise than the former ones.

At that time, as claimed by Hindley, “all the proofs of the Church-Rosser the-
orem for λ-calculi, slick or clumsy, turn out to be based on reductions of residuals,
and the finiteness property is one of the two main underlying facts which make all
such proofs work”. It is not the case anymore that the finiteness result is required
to prove the Church-Rosser property [25, 50, 42].

9

In his introduction, Hindley claims that his proof of the finiteness of devel-
opments uses the confluence property of the developments when others need the
finiteness property to prove confluence. To prove the finiteness result, Hindley
provides a method to transform any development of a term into another “equiva-
lent” one such that the length of the latter one provides a bound of the length of
the former one.

Though very similar to the proof provided by Church and Rosser, Hindley’s proof
is much more detailed. For example, the replacement of a sequence of reductions
by another one (the “equivalence” of two sequences of reductions) is left unproved
by Church and Rosser.

3.2.5 1985: Koletsos [49]

Koletsos proved the Church-Rosser property of the terms typable in the Simply
Typed Lambda Calculus using the reducibility method. Koletsos provides an inter-
pretation of types based on a predicate called “monovaluedness”. (In this section,
we consider → and CR as →β and the set of terms satisfying the Church-Rosser
property but on the set of typed terms of the Simply Typed Lambda Calculus
recalled below.)

As usual [4], the set of types is defined as follows (with the constant 0 as ground
type instead of a set of type variables): σ, τ, ρ ∈ Ty ::= 0 | σ → τ .

Koletsos’s definition of typable terms does not clearly match the usual one [4],
because, for example, sometimes variables are considered as objects of the form xσ,
sometimes as objects of the form x, where x is not explicitly defined (usually, x is
defined as a metavariable ranging over a countably infinite set of variables).

However, we can easily understand that Koletsos meant to define the set of
typed terms of the Simply Typed Lambda Calculus, as defined below for example.
Let us recall that x is a metavariable ranging over the countably infinite set of term
variables Var. Then, let xσ be a term of type σ, if a is a term of type τ then let
(λxσ .a) be a term of type σ → τ , and if a is a term of type σ → τ and b is a term
of type σ then let (ab) be a term of type τ (note that if σ 6= τ then xσ and xτ are
two different terms).

For each type ρ and term a of type ρ, the monovaluedness predicate is defined
by induction on ρ as follows: MON0 (a) iff a is in CR, and MONσ→τ (a) iff a is in
CR and for every term b of type σ, MONσ(b) implies MONτ (a(b)).

Koletsos’s method is equivalent to the one consisting in defining a type interpre-
tation as a function which associates to each type σ a set of terms JσK, such that
MONσ(a) iff a ∈ JσK, as is done in many other works following Koletsos’s [50, 42].

Then, Koletsos proves two important results:

• If a ∈ CR and for each λxσ .b such that a →∗ λxσ .b, MONρ(λxσ .b) then
MONρ(a). (This result allows to prove among other things that for each x,
MONσ(xσ).)

• If a is a term of type σ and for every term b, MONτ (b) implies MONσ(axτ [b])
then MONτ→σ(λxτ .a), where axτ [b] is defined as the replacing of all the free
occurrences of xτ in a by b. (This result proves the saturation [52] of the type
interpretation based on the monovaluedness predicate.)

Finally, using these results, Koletsos obtains the confluence of the set of terms
typable in the Simply Typed Lambda Calculus by a simple induction on the struc-
ture of a term.

10

3.2.6 1988: Shankar [61]

This is a notable paper because of the formalisation and proof of the Church-Rosser
property in the Boyer-Moore theorem prover (based on a first order, quantifier free
logic of recursive functions). Shankar’s proof is similar to Tait and Martin-Löf’s
one. In order not to have to deal with α-conversion, the proof is done using the
de Bruijn [19] notation for λ-calculus (as is usually the case when using a theorem
prover). The proof is then carried out into the usual notation. Using the Boyer-
Moore theorem prover some of the proofs were proved automatically.

3.2.7 1989: Takahashi [63]

Takahashi’s method is based on Tait and Martin-Löf’s parallel method. He proves
that the method extends easily to the βη-case. Even if different from the devel-
opments defined for example by Curry and Feys [17]1, Takahashi’s method (as for
Tait and Martin-Löf’s method) consists in defining a new parallel reduction (non
overlapping reductions) which allows to develop a term without defining residuals.
The usual βη-reduction is then trivially proved to be the transitive closure of the
parallel βη-reduction. Then, proving the Church-Rosser property of the untyped
λ-calculus w.r.t. the parallel βη-reduction enables to prove the Church-Rosser prop-
erty of the untyped λ-calculus w.r.t. βη-reduction. The Church-Rosser property of
the untyped λ-calculus w.r.t. the parallel βη-reduction is obtained using complete
developments (or complete parallel βη-reduction, i.e. all the parallel redexes are re-
duced): if M reduces to N by a parallel βη-reduction then N reduces to P where P

is the unique term (modulo α-conversion) obtained from M by a complete parallel
βη-reduction.

3.2.8 2001: Ghilezan and Kunčak [25]

Ghilezan and Kunčak’s proof can be depicted by the diagram in Figure 2. This
method is well explained by Ghilezan and Kunčak [25] and Kamareddine and
Rahli [42]. The method consists of the following steps:

• The formalisation of a development: →I (I in Figure 2). A development is
defined as follows: all the redexes in a terms are blocked using two “differ-
entiable” term variables; some of the blocked redexes are unblocked; some of
these unblocked redexes are reduced; all the redexes are unblocked (removal
of the “differentiable” variables).

• The proof of the confluence of the developments using a simple embedding
of the developments into the Simply Typed Lambda Calculus (The blocked
terms are proved to be typable in the Simply Typed Lambda Calculus). The
confluence of the typable terms in the Simply Typed Lambda Calculus is a
well know result (see for example Koletsos’s proof recalled Section 3.2.5) and
provides the confluence of the developments.

• As usual, β-reduction is proved to be the transitive closure of developments.
This provides the confluence of the untyped λ-calculus.

This method provides an embedding of developments into the well known Simply
Typed Lambda Calculus for which many properties have already been proved (such
as confluence or strong normalisation). The defined developments can easily be

1For example, if x 6∈ fv(λy.M) then λx.(λy.M)x reduces by the parallel βη-reduction to λy.M

by reducing the η-redex λx.(λy.M)x. Hence, (λx.(λy.M)x)N reduces by the parallel βη-reduction
to M [y := N]. There is no corresponding development as defined by Curry and Feys, because
(λy.M)N is not a residual of (λx.(λy.M)x)N after reduction of the η-redex λx.(λy.M)x.

11

M

Ψ(M)

M1 M2

M3

P2 Q2

P1 Q1P QΨ(P) Ψ(Q)

R

Ψ(R)

R2

?
Ψ

��	o @@Ro

@@R
o ��	

o

�
�

��	

β
@

@
@@R

β

HHHHjβ

����� β

�
�

��	
β

@
@

@@R
β

@@Ro ��	o

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�+

I

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Qs

I

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Qs

I

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�+

I

-
Ψ

�
Ψ

-
o

�
o

6Ψ

6o

Figure 2: The method of Ghilezan and Kunčak for the confluence of →I

proved to be equivalent to the usual ones [3]. The advantages of this method over
the similar method of Barendregt [3] (Section 11.2) using a labelled calculus is
that it does not make use of the finiteness of developments, does not introduce
new symbols (the labelled λ) and is based on an already well known background
(the Simply Typed Lambda Calculus). We do not recall Barendregt’s proof [3]
(Section 11.2) of the confluence of his untyped λ-calculus using a labelled calculus
because even if the proof is older than that of Ghilezan and Kunčak, the two proofs
share the same steps (proof schemes). Moreover, we concentrate on Ghilezan and
Kunčak’s proof and not on Barendregt’s proof (see [42]). Let us just recall that
Barendregt’s proof is based on the definition of a new calculus where a new labelled
λ is introduced. To prove the confluence of developments, the redexes where the
head λ (the head λ of (λx.M)N is the λ displayed on the left of the term) is labelled
are the only ones allowed to be reduced.

3.2.9 2007: Koletsos and Stavrinos [50]

Koletsos and Stavrinos’s proof is similar to Ghilezan and Kunčak’s proof. They
share the same proof scheme. However, their result is based on the embedding of
the developments into Krivine’s type system D [52] instead of the Simply Typed
Lambda Calculus. Their formalisation of developments is more complicated (and
sophisticated) than that of Ghilezan and Kunčak in the sense that they handle
occurrences explicitly (even if not fully formalised) when Ghilezan and Kunčak
handle them implicitly (without explicitly naming them). But their definition of
developments is also more simple than that of Ghilezan and Kunčak in the sense that
the calculus on which developments are based, is simpler: Koletsos and Stavrinos
use one term variable to block the redexes when Ghilezan and Kunčak use two.

3.2.10 2007: Kamareddine, Rahli and Wells [44, 45]

In [44, 45], among other things, we adapt, extend and formalise the work done by
Koletsos and Stavrinos. We adapt it to the case of the λI-calculus and extend it
to the case of the λη-calculus, using a formal definition of occurrences of redexes
(we do not deal with them intuitively as Koletsos and Stavrinos do [50]). In this
work we tried to use a definition of developments based on residuals which are as
much close as possible to Klop’s λ-residuals. We failed in formalising the concept
of λ-residuals as defined by Klop and came up with a new definition that we believe
can be regarded as less restrictive than the “common” one [17] and more restrictive
than Klop’s one.

12

3.2.11 2008: Kamareddine and Rahli [42]

The aim of this article was first to simplify a previous work based on Koletsos and
Stavrinos’s work [50] by using the Simply Typed Lambda Calculus (instead of the
much more complicated intersection type system D). We came up with a method
very similar to the method designed by Ghilezan and Kunčak [25]. The observation
that not all the types of the Simply Typed Lambda Calculus where needed in the
method led us to the complete removal of the type system from the method. The
side effect of the obtained method is that it is not based anymore on the well
known framework of the Simply Typed Lambda Calculus. But since the power
of this framework appeared to be not needed, the advantage is that we removed
from the method the burden of the syntax coming along with the definition of
the Simply Typed Lambda Calculus. The obtained method can then be compared
to Barendregt’s method [3] (Section 11.2). However, we believe our proof to be
simpler for the same reasons that Ghilezan and Kunčak’s method is simpler than
Barendregt’s one (listed in Section 3.2.8).

3.2.12 Summary of the proof methods of the Church-Rosser property

In the literature, most of the proof methods to establish the Church-Rosser property
of the λ-calculus or its variants use the following scheme already detailed in the
previous sections:

• Definition of the developments.

• Proof of the confluence of the developments.

• Proof of the confluence of the considered calculus (using the fact that the
transitive closure of a confluent reduction relation is confluent).

The simplest method is the one designed by Tait and Martin-Löf (see Section 3.2.3).
This proof is based on a new reduction called parallel reduction. The only disad-
vantage that we can observe in this method is that the concept of residuals is not
as clear as with, for example, our formalisation of developments [42]. However, as
far as we know this concept of residuals is interesting only in the context of proving
the Church-Rosser property of λ-calculi.

The main point in the proof of the confluence of the λ-calculus (or one of its
variants) is the proof of the confluence of the developments. Earlier works [25, 50]
proved interesting embedding of developments into well known frameworks such as
the Simply Typed Lambda Calculus from which, one can extract useful properties
(such as the Church-Rosser property). During this second year we studied the
connections between these different proofs and how they can be extended to handle
η-reduction [44, 45, 42].

4 Semantics of intersection typed λ-calculi with

expansion

In this section we merely recall the introduction of one of our paper [39] which is
the recollection of the work we have done on the subject so far [41, 40, 39].

Intersection types were developed in the late 1970s to type λ-terms that are
untypable with simple types; they do this by providing a kind of finitary type
polymorphism where the usage of types is listed rather than quantified over. They
have been useful in reasoning about the semantics of the λ-calculus, and have been
investigated for use in static program analysis. Expansion was introduced at the

13

end of the 1970s as a crucial procedure for calculating principal typings for λ-terms
in type systems with intersection types, enabling support for compositional type
inference. Coppo, Dezani, and Venneri [15] introduced the operation of expansion
on typings (pairs of a type environment and a result type) for calculating the possible
typings of a term when using intersection types. As a simple example, the λ-term
M = (λx.x(λy.yz)) can be assigned the typing Φ1 = 〈(z : a) ⊢ (((a→b)→b)→c)→c〉,
which happens to be its principal typing. The term M can also be assigned the
typing Φ2 = 〈(z : a1 ⊓ a2) ⊢ (((a1 → b1) → b1) ⊓ ((a2 → b2)→ b2)→ c) → c〉, and an
expansion operation can obtain Φ2 from Φ1.

Because the early definitions of expansion were complicated, E-variables were
introduced in order to make the calculations easier to mechanise and reason about.
For example, in System E [8], the typing Φ1 from above is replaced by Φ3 = 〈(z :
ea) ⊢ (e((a → b) → b) → c) → c〉, which differs from Φ1 by the insertion of the E-
variable e at two places, and Φ2 can be obtained from Φ3 by substituting for e the
expansion term E = (a := a1, b := b1) ⊓ (a := a2, b := b2). Carlier and Wells [9]
have surveyed the history of expansion and also E-variables.

In many kinds of semantics, the meaning of a type T is calculated by an expres-
sion [T]ν that takes two parameters, the type T and also a valuation ν that assigns
to type variables the same kind of meanings that are assigned to types. To extend
this idea to types with E-variables, we would need to devise some space of possible
meanings for E-variables. Given that a type e T can be turned by expansion into a
new type S1(T) ⊓ S2(T), where S1 and S2 are arbitrary substitutions (they can be
arbitrary further expansions), and that this can introduce an unbounded number of
new variables (both E-variables and regular type variables), the situation is compli-
cated. Because it is unclear how to devise a space of meanings for expansions and
E-variables, we instead develop a space of meanings for types that is hierarchical in
the sense of having many degrees. We specifically avoid trying to give a semantics
to the operation of expansion, and instead treat only the E-variables. Although this
idea is not perfect, it seems to go quite far in giving an intuition for E-variables,
namely that each E-variable acts as a kind of capsule that isolates parts of the
λ-term being analysed by the typing.

In the open problems published in the proceedings of the Lecture Notes in Com-
puter Science symposium held in 1975 [28], it is suggested that an arrow type
expresses functionality. Following this idea, a type’s semantics is given as a set of
closed λ-terms with behaviour related to the specification given by the type. Hence,
the semantic approach we use is realisability semantics. Atomic types (e.g., type
variables) are interpreted as sets of λ-terms that are saturated, meaning that they
are closed under β-expansion (i.e., β-reduction in reverse). Arrow and intersection
types are interpreted naturally by function spaces and set intersection. Realisability
allows showing soundness in the sense that the meaning of a type T contains all
closed λ-terms that can be assigned T as their result type. This has been shown
useful for characterising the behaviour of typed λ-terms [51]. One also wants to
show the converse of soundness which is called completeness, i.e., that every closed
λ-term in the meaning of T can be assigned T as its result type.

Hindley [36, 33, 34] was the first to study this notion of completeness for a
simple type system and he showed that all the types of that system have the com-
pleteness property. Then, he generalised his completeness proof for an intersection
type system [32]. Using his completeness theorem for the realisability semantics
based on the sets of λ-terms saturated by βη-equivalence, Hindley has shown that
simple types are uniquely realised by the λ-terms which are typable by these types.
However, Hindley’s result does not hold for his intersection type system and the
completeness theorems were established with the sets of λ-terms saturated by βη-
equivalence. In our paper [39], our completeness result depends only on the weaker
requirement of β-equivalence, and we have managed to make simpler proofs that

14

avoid needing η-reduction, Church-Rosser (a.k.a. confluence), or strong normalisa-
tion (SN) (although we do establish both confluence and SN for both β and βη).

Other work on realisability we have consulted includes that by Labib-Sami [53],
Farkh and Nour [20], and Coquand [16], although none of this work deals with inter-
section types or E-variables. Related work on realisability that deals with intersec-
tion types includes that by Kamareddine and Nour [38], which gives a realisability
semantics with soundness and completeness for an intersection type system. This
system is quite different from the three hierarchical systems we present in this our
paper [39]. The main difference being the hierarchies which did not exist in [38].

Initially, we aimed to give a realisability semantics for the system of expansions
proposed by Carlier and Wells in [9]. In order to simplify our study, we considered
the system with the expansion variables but without the expansion rewriting rules.
In essence, this meant that the syntax of terms is: M ::= x | (M N) | (λx.M)
where x ranges over a countably infinite set of variables V , that the syntax of types
is: T ::= a | ω | T1 → T2 | T1 ⊓ T2 | eT where a is a basic type ranging over
a countably infinite set of type variables A and e is an expansion variable ranging
over a countably infinite set of expansion variables E , and that the typing rules are:

x : 〈(x : T) ⊢ T 〉
var

M : 〈() ⊢ ω〉
ω

M : 〈Γ, (x : T1) ⊢ T2〉

λx.M : 〈Γ ⊢ T1 → T2〉
abs

M1 : 〈Γ1 ⊢ T1 → T2〉 M2 : 〈Γ2 ⊢ T1〉

M1 M2 : 〈Γ1 ⊓ Γ2 ⊢ T2〉
app

M : 〈Γ1 ⊢ T1〉 M : 〈Γ2 ⊢ T2〉

M : 〈Γ1 ⊓ Γ2 ⊢ T1 ⊓ T2〉
⊓

M : 〈Γ ⊢ T 〉

M : 〈eΓ ⊢ eT 〉
e-app

In order to give a realisability semantics for this system, we needed to define the
interpretation of a type to be a set of terms having this type. We were obviously
forced to distinguish between the interpretation of T and eT . However, in the typing
rule e-app, the term M is unchanged and this poses difficulties. For this reason,
we modified slightly the above type system by indexing the terms of the λ-calculus
giving us the syntax of terms as: M ::= xi | (M N) | (λxi.M) (where i are natural
numbers and where M and N need to satisfy a certain condition before (M N) is
allowed as a term) and by slightly changing our type rules and in particular the
rule e-app:

M : 〈Γ ⊢i U〉

M+ : 〈eΓ ⊢i eU〉
(exp)

In this rule, M+ is M where all the indices are increased by 1. Obviously these
indices needed a revision of the β-reduction and of the typing rules in order to
preserve the desirable properties of the type system and the realisability semantics.
For this, we defined the good terms and the good types and showed that these
notions go hand in hand (e.g., a good type contains only good terms). We developed
a realisability semantics where each use of an E-variable in a type corresponds to an

15

index at which evaluation occurs in the λ-term that is assigned the type. This is an
elegant solution that captures the intuition behind E-variables. However, in order
for this new type system to function well, it was necessary to consider λI-terms only
(removing a subterm from M also removes important information about M) and to
drop ω completely. This led us to the introduction of λIN-calculus and our first type
system ⊢1 for which we developed a sound realisability semantics for E-variables.
However, although the first type system ⊢1 is crucial to understand the intuition
behind the indexing we propose, the realisability semantics for ⊢1 does not satisfy
completeness (and neither subject reduction). For this reason, we modified our
system ⊢1 by considering a smaller set of types (where intersections and expansions
cannot occur directly to the right of an arrow), and by adding subtyping rules. This
new system ⊢2 has both soundness and subject reduction. As for completeness, we
needed to limit the list of expansion variables to a single element list. This problem
of completeness for ⊢2 comes from the fact that the indexes (the natural numbers)
do not permit us to differentiate between the types e1T and e2T for two different
expansion variables e1 and e2. So, again, we were forced to revise our type system.
For this, we decided to limit our λ-terms by indexing them by lists of natural
numbers (where the natural number i represents the expansion variable ei). This
way the rule exp above will allow us to distinguish the interpretations of the types
eiT and ejT when ei 6= ej . Furthermore, this way, our λ-terms are constructed in
such a way that K-reductions do not limit the information on the starting terms (in
fact, β-reduction is not always allowed). In order to obtain completeness with the
ω-rule, we should also consider ω indexed by lists. This means that the new calculus
becomes rather heavy but this is unavoidable. It is needed to obtain a complete
realisability semantics where an arbitrary (possibly infinite) number of expansion
variables is allowed and where the universal type ω is present. The use of lists
complicates matters and hence, needs to be understood in the context of the first
semantics where indices are natural numbers rather than lists of natural numbers.
In addition to the above, we have considered three notions of saturations (in line
with the literature) illustrating that these notions behave well in our complete
realisability semantics.

The paper [39] is articulated as follows:

• We give the syntax of the indexed calculi we consider in our paper [39]: the
λIN-calculus, which is the λI-calculus with each variable marked by a nat-
ural number degree, and the full λ-calculus λLN-calculus indexed with finite
sequences of natural numbers. We show the confluence of β, βη and weak
head reduction h on our indexed λ-calculi.

• We introduce the syntax and terminology for types used in both indexed
calculi.

• We introduce our three intersection type systems with E-variables ⊢i for i ∈
{1, 2, 3}, where in one, the syntax of types is not restricted (and hence subject
reduction fails) but in the other two it is restricted but then extended with a
subtyping relation.

• We study the type theoretical properties of our three type systems includ-
ing subject reduction and expansion with respect to our various reduction
relations (β, βη, h).

• We introduce our realisability semantics and show its soundness for all the
three type systems we consider (and for all the reduction relations).

• We establish the challenges of showing completeness for the realisability se-
mantics of the first two systems. We show that completeness does not hold for

16

the first system and that it also does not hold for the second system if more
than one expansion variable is used, but does hold for a restriction of this
system to one single E-variable. This is an important study in the semantics
of intersection type systems with expansion variables since a unique expansion
variable can be used many times and can occur nested.

• We establish the completeness of ⊢3 by introducing a special interpretation
and we conclude.

5 Type error slicing

In this section we explain our efforts so far at an in-depth formalisation of an existing
implementation of a type error slicer by Haack and Wells [31] and at how far we
have reached in studying its theoretical properties. This in-depth study prepares
the stage for the design of a type error slicer for a rich programming language.

5.1 introduction

SML2 is a higher-order function-oriented imperative programming language. One
of the features of SML (like its predecessor ML) is that it has polymorphic types
which permit considerable flexibility.

A language can be defined at different level: syntactic and semantic (static and
dynamic). At the syntactic level, the syntax used by the language is defined. The
syntax of a language is often given by a set of grammatical rules. At the semantic
level, the meaning (static/abstract and dynamic) of the syntactic forms is given.
A particular static meaning can be denoted by a type. The static meanings of
the syntactic forms of a language are often given by a set of type inference rules.
When writing a piece of code in such a programming language, a first step consists in
checking that it is written in the syntax of the language. A second one consists often
in checking that this piece of code possesses a static meaning w.r.t. the language.
This is achieved by checking if the piece of code possesses a type w.r.t. the type
inference rules.

In the literature, for some languages, many type inference algorithms may be
found. Given an expression and sometimes some other parameters, these algorithms
output among other things a type of the expression w.r.t. a given type system and
a type environment. When the expression is not typable in the given type system,
these algorithms may reject the expression and output an error message. These
algorithms have sometimes as a secondary goal the efficiency and/or the accuracy
of the location of these type errors. The concern of this section is on the latter
point.

The algorithm W of Damas and Milner [18] is the original type-checking al-
gorithm of the purely applicative part (variables, abstractions, applications and
polymorphic let expressions) of the ML language. From a type environment and
an expression, W outputs a type of the expression and a substitution (such that
the outputted type is the principal type of the expression w.r.t. the application of
the substitution to the type environment). Since then many algorithms have been
developed, intending sometimes to give better locations for errors. As an example,
the folklore-algorithm M [54] (the algorithm carries some constraints on the type of
the expression down to the expression) is a variant of the W algorithm (the type is
built bottom up). As for W , M is proved sound and complete. Moreover Lee and

2ML is a higher-order functional programming language designed, as part of a proof system
called LCF (Logic for Computable Functions), to perform proofs of facts within PPλ (Polymorphic
Predicate λ-calculus), a formal logical system [29, 30]. As explained by Milner et al., Standard
ML (SML)[57, 58] is the result of the re-design and extension of ML.

17

Yi proved that this algorithm finds errors “earlier” (this measure is based on the
count of recursive calls of the algorithm) than W and claimed that the combination
of these two algorithms “can generate strictly-more informative type-error messages
than either of the two algorithms alone can”. Notice that these two algorithms do
not necessarily report the same error locations for the same piece of code. Vari-
ants of these algorithms are W ′ [56] or UAE [68]. McAdam claims that W suffers
a left-to-right bias and proposes to eliminate the bias by the replacement of the
unification algorithm used in the application case of W by another one called “uni-
fication of substitutions”. Yang claims that the primary advantage of UAE is that
it also eliminates the left-to-right bias. As explained by McAdam the left-to-right
bias in W arises because in the case of an application, the substitution computed
for the first component of the application is applied to the type environment when
type-checking the second component.

As explained by Yang et al. [69], there exist different approaches toward the
improving error reporting: error explanation systems [5] and error reporting systems
[67].

Our contribution in the domain is the study and extension of the type error
slicing framework developed by Haack and Wells [31]. More precisely, we have
extracted the theory from the current implementation of the framework, we are
formalising its properties and proofs and we are in parallel extending the framework
to a richer language.

5.2 Background

Type error slicing (TES for short) considers a sub-language of SML. It is defined
as follows:

• Syntax: a set of terms.

• A set of types/type environments.

• Static semantics: a type system.

The language we consider is the one used in the current implementation of TES
which is larger than the one considered by Haack and Wells [31]. The language
considered in the implementation adds nice features to the language considered by
Haack and Wells [31], such as the possibility of defining recursive functions.

Throughout this report we heavily use the notation of Haack and Wells [31].
Furthermore, we call term or piece of code an object of the defined syntax and we
call program a well typed term w.r.t. the given type system. The subterm notion is
the usual one. We call term point an occurrence of a subterm in a term. In TES,
these term points are represented by labels associated to terms (in a term, to each
occurrence of a subterm is associated a unique label).

A type constraint is an object of the form τ1

l
= τ2, where τ1 and τ2 are types and

l is a label. As we will see below, a type constraint is associated to a term point
so it is annotated by the label corresponding to the term point. Such a constraint
is said to be solvable (or satisfiable) if there exists a substitution sub (a function
which associate types to type variables) such that the application of sub to τ1 is
equal to the application of sub to τ2. The substitution sub is then a solution (or

unifier) of the constraint τ1

l
= τ2. A set of type constraints is satisfiable if there

exists a substitution sub, which is a solution to each type constraint in the set.
The substitution sub is then a solution (or unifier) of the set of constraints. The
substitution sub is a most general unifier (mgu) of a set of type constraints if it
is a solution of the set such that for any solution sub′ of the set, there exists a

18

substitution such that the application of this substitution to sub is equal to sub′.
Such common concepts are defined for example by Baader and Nipkow [2].

We sometimes call error (or type error) the set of term points associated to an
unsolvable set of type constraints.

5.3 The steps of Type Error Slicing

Even if the language of the current theory of TES [31] and the one of its imple-
mentation are different, the steps of TES are the same in the theory and in its
implementation. The language of the implementation being more complicated than
the one of the theory, most of the different algorithms used through these steps are
more complicated in the implementation (and so are the proofs of their properties).
In this section we describe the different steps (the algorithms used for these steps
and their properties) of TES extracted from its current implementation and explain
what we have achieved for each of them.

The different steps of TES and what we achieved are as follows:

• The assignment of a set of type constraints to a piece of code. This
is done using a constraint generator. Given a piece of code, the constraint
generator outputs a type environment, a type and a set of constraints. The
constraints are type constraints corresponding to term points (each type con-
straint is generated because of a term point).

We aim to prove the correspondence between the type system and the con-
straint generator, i.e.:

– If a piece of code is typable in the given type system then the constraint
generator generates a satisfiable set of type constraints.

– If given a piece of code, the constraint generator generates a satisfiable
set of type constraints then the piece of code is typable in the given type
system.

Roughly speaking, this correspondence allows us to prove that the constraint
generator “accepts” the same set of terms than the type system.

This goal has largely been achieved and we hope that a complete version will
be submitted soon.

We are also interested in proving that the defined language is a subset of SML.

This is left for the near future.

• The unification of a set of type constraints. This is done using a uni-
fication algorithm based on the Martelli-Montanari algorithm [6]. Given a
set of type constraints, the algorithm outputs either an error if the set is not
satisfiable (we say that the algorithm fails) or a unifier if the set is satisfiable
(we say that the algorithm succeeds). If the set of constraints is satisfiable,
from the outputted unifier it is then possible to compute a most general unifier
of the set. When the algorithm outputs an error it outputs the term points
responsible for the type error.

The aim of TES being to provide a “good” representation of a type error of a
piece of code, we are interested in the case when the unification fails.

We aim to prove the termination and the correctness of the algorithm. Given
an input (a set of type constraints), the correctness of the unification algorithm
states that:

– if the algorithm succeeds then it outputs a substitution from which it is
possible to obtain a most general unifier of the set of type constraints.

19

– if the algorithm fails then it outputs a set of term points such that the
corresponding set of type constraints is unsolvable.

This goal has been completed.

• The minimisation of an error. Given a set of term points corresponding
to an unsolvable set of type constraints, the minimisation algorithm outputs
a minimal (w.r.t. the set inclusion) subset of this set of term points. The type
constraints are associated to term points but it might happen that not all the
term points involved in the set of type constraints are necessary to generate
an error. Hence, the minimisation algorithm, making use of the unification
algorithm, tries to build recursively a set of term points necessary and minimal
to obtain an error (the corresponding set of type constraints is unsolvable).
This is done using a property of the unification algorithm which is that when
failing, along with a set of term points responsible for the error, it returns
the last point checked during the unification process which led to the error.
This point has the property of being in all the sets of term points subsets of
the returned set of points and corresponding to an error (an unsolvable set of
type constraints).

We aim to prove the termination and the correctness of the minimisation
process. The correctness of the minimisation process states that given an
unsolvable set of type constraints and a set of term points responsible for an
error and involved in the set of type constraints, if the algorithm outputs a
set of term points then this set is a minimal error of the set of constraints,
included in the given set of term points.

We extracted the algorithm from the implementation but all the proofs of
their properties have to be provided.

• The enumeration of type errors. The enumeration algorithm consists in
the enumeration of the set of errors of an unsolvable set of type constraints.
It aims to enumerate all the set of term points corresponding to an error in
the unsolvable set of type constraints. This is done using a filter on the term
points already considered during the process and making an extensive use of
the unification algorithm. As explained by Haack and Wells [31], in few cases
this process can behave badly. In order to avoid the unpleasantness of these
cases, the implementation of TES stops the process after a short period and
returns the found set of errors. This is done using a timer. If the set of type
constraints is unsolvable, the timer starts only after that one error has been
found.

We aim to prove the termination and the correctness of the enumeration
process. The correctness of the enumeration process states that if it returns
a set of errors then this set is the set of minimal errors of the unsatisfiable set
of type constraints (in practice we can only ensure that it is a subset of the
set of minimal errors of the unsatisfiable set of type constraints).

We extracted the algorithm from the implementation but all the proofs of
their properties have to be provided.

• Slicing the piece of code. This part consists in the displaying of the parts
of the piece of code corresponding to a minimal error.

This part is still at initial developments.

To summarise, from a piece of code, TES first generates a set of type constraints.
Then, from this set of type constraints, it runs the enumeration of the set of minimal
errors of the piece of code (as we explained above, for some time reasons, maybe not

20

all of them will be enumerated). Finally, for each minimal error found, it displays
the corresponding slice (parts of the piece of code corresponding to the minimal
error).

6 Plan of the thesis

During the third year I will focus on the two following subjects:

• Type error slicing:

– Finishing the proofs relative to the current implementation of type error
slicing so that for the first time, a full and precise connection is given
between the theory and implementation of a type error slicer. Although
doing the formal foundation from scratch as explained in section 5.3 has
been time consuming, the work so far, has only been carried our for a kind
of the implemented toy language (without real application). The aim is
to build the work for a rich and sophisticated programming language
(closer to SML).

– Extending the work outlined in section 5.3 for a rich and sophisticated
programming language.

– Implementing the type error slicer we will develop for the rich language
so that we can make our development more practical and can have more
impact.

• Semantics of expansion. The aim of this project is to provide the semantics
of an intersection type system with expansion (to provide information on
expansion). The idea was to use a realisability semantics to interpret types
of an intersection type systems with expansion. The whole expansion being
complicated, the project started with the study of expansion variables (instead
of the whole expansion). The untyped λ-calculus was not suitable to give the
semantics of such a system. So a new calculus based on the untyped λ-
calculus augmented with levels have been developed. It seems that we are
trying to give a semantics of expansion using some variants of the untyped
λ-calculus (the calculi of the considered intersection type systems). However,
expansion does not act on terms, only on proofs (Carlier’s skeletons [9, 7]). It
might be why the considered calculi are getting more and more complicated
when trying to give a semantics of expansion. This complication leads to the
question whether a suitable calculus exists. We should maybe consider giving
a semantics of expansion using skeletons instead of terms. In any case, our
study for expansions has only dealt with expansion variables and we urgently
need to start the work on the rewriting operations of expansions. We will
consider using skeletons in our further semantics.

Timetable:

• August 2008: Finish the part of type error slicing on the toy language.

• September 2008 to January 2009: Develop in parallel the type error slicer for
a rich language and the semantics of expansion.

• February 2009 to March 2009: Submit papers based on these works.

• April 2009 to August 2009: write my PhD thesis.

21

7 Conclusion

In summary, the second year concentrated on:

• Simplifying and generalising/non trivially extending proofs of important prop-
erties of the λ-calculus and its variants.

• Proving semantics for intersection typed λ-calculi with expansion. We de-
veloped more and more complicated realisers to provide such semantics. Al-
though we made some progress on this subject, we still have to provide a
semantics of the mechanism of expansion.

• Extracting the theory behind the implementation of type error slicing. This
theory is an extension of the theory presented by Haack and Wells [31]. We
started in parallel the development of an extension of the current type error
slicing framework. We plan to have this extension as the main topic of research
during the third year. We hope to have ready in one year time the full theory
of this extension as well as a working implementation of the theory. We
believe that the extraction of the theory of the implementation was of real
importance for a deep understanding of the tools used by type error slicing.
We also believe that it will appear to be useful as a basis for the theory of the
extension.

References

[1] S. N. Artemov. Explicit provability and constructive semantics. The Bulletin
of Symbolic Logic, 7(1), 2001.

[2] F. Baader, T. Nipkow. Term rewriting and all that. Cambridge University
Press, New York, NY, USA, 1998.

[3] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, revised edition, 1984.

[4] H. P. Barendregt. Lambda calculi with types. In Handbook of Logic in Com-
puter Science, Volumes 1 (Background: Mathematical Structures) and 2 (Back-
ground: Computational Structures), Abramsky & Gabbay & Maibaum (Eds.),
Clarendon, vol. 2. Oxford University Press, Inc., New York, NY, USA, 1992.

[5] M. Beaven, R. Stansifer. Explaining type errors in polymorphic languages.
ACM Letters on Programming Languages and Systems, 2(1-4), 1993.

[6] M. Bezem, J. W. Klop, R. de Vrijer, E. Barendsen, I. Bethke, J. Heering,
R. Kennaway, P. Klint, V. van Oostrom, F. van Raamsdonk, F.-J. de Vries,
H. Zantema. Term Rewriting Systems. Cambridge University Press, 2003.

[7] S. Carlier. Expansion Algebra: a Foundational Theory with Applications to
Type Systems and Type-Based Program Analysis. PhD thesis, Heriot Watt
University, School of Mathematical and Computing Sciences, 2008.

[8] S. Carlier, J. Polakow, J. B. Wells, A. J. Kfoury. System E: Expansion variables
for flexible typing with linear and non-linear types and intersection types. In
Programming Languages & Systems, 13th European Symp. Programming, vol.
2986 of LNCS. Springer-Verlag, 2004.

22

[9] S. Carlier, J. B. Wells. Expansion: the crucial mechanism for type inference
with intersection types: A survey and explanation. In Proc. 3rd Int’l Work-
shop Intersection Types & Related Systems (ITRS 2004), 2005. The ITRS ’04
proceedings appears as vol. 136 (2005-07-19) of Elec. Notes in Theoret. Comp.
Sci.

[10] A. Church. A set of postulates for the foundations of logic. The Annals of
Mathematics, 33(2), 1932.

[11] A. Church. A proof of freedom from contradiction. Proceedings of the National
Academy of Sciences of the United States of America, 21(5), 1935.

[12] A. Church. A formulation of the simple theory of types. The Journal of
Symbolic Logic, 5(2), 1940.

[13] A. Church, J. B. Rosser. Some properties of conversion. Transactions of the
American Mathematical Society, 39(3), 1936.

[14] M. Coppo, M. Dezani-Ciancaglini. A new type assignment for λ-terms. Archive
for Mathematical Logic, 19(1), 1978.

[15] M. Coppo, M. Dezani-Ciancaglini, B. Venneri. Principal type schemes and
λ-calculus semantic. In J. R. Hindley, J. P. Seldin, eds., To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalism. Academic
Press, 1980.

[16] T. Coquand. Completeness theorems and lambda-calculus. In P. Urzyczyn,
ed., TLCA, vol. 3461 of Lecture Notes in Computer Science. Springer, 2005.

[17] H. B. Curry, R. Feys. Combinatory Logic I. Studies in Logic and the Founda-
tions of Mathematics. North-Holland, Amsterdam, 1958.

[18] L. Damas, R. Milner. Principal type-schemes for functional programs. In POPL
’82: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, New York, NY, USA, 1982. ACM.

[19] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theo-
rem. Indagationes Mathematicae, 5(34), 1972.

[20] S. Farkh, K. Nour. Résultats de complétude pour des classes de types du
système AF2. Theoretical Informatics and Applications, 31(6), 1998.

[21] J. Gallier. On the correspondance between proofs and λ-terms. Cahiers du cen-
tre de logique, 1997. Available at http://www.cis.upenn.edu/~jean/gbooks/
logic.html (last visited 2007–05–15).

[22] J. Gallier. Proving properties of typed λ-terms using realisability, covers, and
sheaves. Theoretical Computer Science, 142(2), 2003. Available at http://

www.cis.upenn.edu/~jean/gbooks/logic.html (last visited 2007–05–15).

[23] J. Gallier. Typing untyped λ-terms, or realisability strikes again!. Annals of
Pure and Applied Logic, 91, 2003. Available at http://www.cis.upenn.edu/
~jean/gbooks/logic.html (last visited 2007–05–15).

[24] J. H. Gallier. On girard’s ”candidats de reductibilité”. 2002. Available at http:
//www.cis.upenn.edu/~jean/gbooks/logic.html (last visited 2007–05–15).

[25] S. Ghilezan, V. Kunčak. Confluence of untyped lambda calculus via simple
types. Lecture Notes in Computer Science, 2202, 2001.

23

[26] J.-Y. Girard. Une extension de l’interpretation de godel a l’analyse, et son
application a l’elimination des coupures dans l’analyse et la theorie des types.
1971.

[27] J.-Y. Girard. Interpretation Fonctionnelle et Elimination des Coupures de
l’Arithmetique d’Ordre Superieur. PhD thesis, Universite de Paris VII, 1972.

[28] G. Goos, J. Hartmanis, eds. λ-Calculus and Computer Science Theory, Pro-
ceedings of the Symposium Held in Rome, March 15-27, 1975, vol. 37 of Lecture
Notes in Computer Science. Springer-Verlag, 1975.

[29] M. Gordon, R. Milner, L. Morris, M. Newey, C. Wadsworth. A metalanguage
for interactive proof in lcf. In POPL ’78: Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, New York, NY,
USA, 1978. ACM.

[30] M. J. C. Gordon, R. Milner, C. P. Wadsworth. Edinburgh LCF: A Mechanised
Logic of Computation., vol. 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

[31] C. Haack, J. B. Wells. Type error slicing in implicitly typed higher-order
languages. Science of Computer Programming, 50(1-3), 2004.

[32] J. R. Hindley. The simple semantics for Coppo-Dezani-Sallé types. In
M. Dezani-Ciancaglini, U. Montanari, eds., International Symposium on Pro-
gramming, 5th Colloquium, vol. 137 of LNCS, Turin, 1982. Springer-Verlag.

[33] J. R. Hindley. Curry’s types are complete with respect to F-semantics too.
Theoretical Computer Science, 22, 1983.

[34] J. R. Hindley. Basic Simple Type Theory, vol. 42 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1997.

[35] R. Hindley. Reductions of residuals are finite. Transaction of the American
Mathematical Society, 240, 1978.

[36] R. Hindley. The completeness theorem for typing lambda-terms. Theoretical
Compututer Science, 22, 1983.

[37] F. Kamareddine, T. Laan, R. Nederpelt. A modern Perspective on Type The-
ory. From its Origins until Today., vol. 29. Applied Logic Series, 2004.

[38] F. Kamareddine, K. Nour. A completeness result for a realisability semantics
for an intersection type system. Annals of Pure and Applied Logic, 146, 2007.

[39] F. Kamareddine, K. Nour, V. Rahli, J. B. Wells. Challenges and solutions to re-
alisability semantics for intersection types with expansion variables. Submitted
to Fundamenta Informaticae, 2008.

[40] F. Kamareddine, K. Nour, V. Rahli, J. B. Wells. A complete realisability se-
mantics for intersection types and arbitrary expansion variables. In ICTAC’08:
5th International Colloquium on Theoretical Aspects of Computing, The Mar-
mara, Istanbul, Turkey, 1-3 September 2008, vol. 5160 of Lecture Notes in
Computer Science, 2008.

[41] F. Kamareddine, K. Nour, V. Rahli, J. B. Wells. Developing realisability se-
mantics for intersection types and expansion variables. Presented to ITRS’08,
4th Workshop on Intersection Types and Related Systems, Turin, Italy, 25
March 2008, 2008.

24

[42] F. Kamareddine, V. Rahli. Simplified reducibility proofs of church-rosser for
β- and βη-reduction. Accepted at LSFA’08, Third Workshop on Logical and
Semantic Frameworks, with Applications, Salvador, Bahia, Brasil, 26 August
2008, 2008.

[43] F. Kamareddine, V. Rahli, J. B. Wells. The foundation of the implemented
type error slicer and its extension to a rich subset of SML. In preparation,
2008.

[44] F. Kamareddine, V. Rahli, J. B. Wells. Reducibility proofs in the λ-calculus.
Presented to ITRS’08, 4th Workshop on Intersection Types and Related Sys-
tems, Turin, Italy, 25 March 2008, 2008.

[45] F. Kamareddine, V. Rahli, J. B. Wells. Reducibility proofs in the λ-calculus.
Submitted to Fundamenta Informaticae, 2008.

[46] S. C. Kleene. On the interpretation of intuitionistic number theory. The Journal
of Symbolic Logic, 10(4), 1945.

[47] S. C. Kleene, J. B. Rosser. The inconsistency of certain foraml logics. The
Annals of Mathematics, 36(3), 1935.

[48] J. W. Klop. Combinatory Reductions Systems. PhD thesis, Mathematisch
Centrum, Amsterdam, 1980.

[49] G. Koletsos. Church-rosser theorem for typed functional systems. Journal of
Symbolic Logic, 50(3), 1985.

[50] G. Koletsos, G. Stavrinos. Church-rosser property and intersection types. Aus-
tralasian Journal of Logic, 2007.

[51] J. Krivine. Lambda-Calcul : Types et Modèles. Etudes et Recherches en Infor-
matique. Masson, 1990.

[52] J. L. Krivine. Lambda-calcul, types et modèles. Dunod, 1990.

[53] R. Labib-Sami. Typer avec (ou sans) types auxilières.

[54] O. Lee, K. Yi. Proofs about a folklore let-polymorphic type inference algorithm.
ACM Transanctions on Programming Languages and Systems, 20(4), 1998.

[55] J.-J. Lévy. An algebraic interpretation of the lambda beta k-calculus; and an
application of a labelled lambda -calculus. Theoretical Compututer Science,
2(1), 1976.

[56] B. J. McAdam. On the unification of substitutions in type inference. Lecture
Notes in Computer Science, 1595, 1999.

[57] R. Milner, M. Tofte, R. Harper. The Definition of Standard ML. MIT Press,
1990.

[58] R. Milner, M. Tofte, R. Harper, D. Macqueen. The Definition of Standard ML
(Revised). MIT Press, Cambridge, MA, USA, 1997.

[59] J. B. Rosser. Highlights of the history of the lambda-calculus. In LFP ’82:
Proceedings of the 1982 ACM symposium on LISP and functional programming,
New York, NY, USA, 1982. ACM Press.

[60] B. Russell. Mathematical logic as based on the theory of types. American
Journal of Mathematics, 30(3), 1908.

25

[61] N. Shankar. A mechanical proof of the church-rosser theorem. Journal of the
ACM, 35(3), 1988.

[62] W. W. Tait. Intensional interpretations of functionals of finite type I. The
Journal of Symbolic Logic, 32(2), 1967.

[63] M. Takahashi. Parallel reductions in lambda-calculus. Journal of Symbolic
Computation, 7(2), 1989.

[64] A. S. Troelstra. History of constructivism in the 20th century. Available at
http://staff.science.uva.nl/~anne/ (last visited 2007–05–15).

[65] A. S. Troelstra, D. van Dalen. Constructivism in Mathematics. 1988.

[66] J. van Heijenoort, ed. From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931. Harvard University Press, Cambridge, Massachusetts, 1967.

[67] M. Wand. Finding the source of type errors. In POPL ’86: Proceedings of
the 13th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, New York, NY, USA, 1986. ACM.

[68] J. Yang. Explaining type errors by finding the source of a type conflict., 2000.

[69] J. Yang, J. Wells, P. Trinder, G. Michaelson. Improved type error reporting.,
2000.

26

