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A bit of History
formalisation of Mathematics (and functions)

I First formalisation of the concept of function by Frege (1879,
premises of the formalisation of Mathematics)

I Discovery of some paradoxes in Mathematics (around 1900).

I Functions can be applied to any function: reflexiveness.

I Formalisation of the concept of type by Russell to restrict
application of functions (1908).

I Formalisation of Mathematics: design of logical systems
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A bit of History
Improvement of the formalisation of the concept of function

I Design of the λ-calculus by Church as part of a formal system for
logic and functions (1932).

I The full system was inconsistent:
I Church uses the type free λ-calculus to investigate functions

(successful model for computation);
I Church adds simple types (int, int → int) to λ-calculus in a system

with logical axioms to deal with logic and function.

I Functions are studied as computational rules rather than as sets of
pairs.
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A bit of History
Improvement of the type systems

I Definition of typed programming languages such as ML: a statically
typed functional programming language based on a polymorphic
type system.

I Discovery that types in a type system can be associated to formulae
in a logical system and that the proofs of formulae can be associated
to typable terms: Curry-Howard isomorphism.

I Realisability semantics: connection between recursive functions and
intuitionism.

I Reducibility: semantic method based on realisability to prove
properties of calculi.
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Outline

I The λ-calculus, its variants and their properties.

I Semantics of typed λ-calculi using realisability.

I Application of the extension of a typed λ-calculus.

I Plan of the thesis.
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The λ-calculus, its variants and their properties
The λ-calculus

Let Var be a countably infinite set of variables and x , y , z , f ∈ Var.

M,N ∈ Λ ::= x | (λx .M) | (MN)

Evaluation:
the β-reduction is the compatible closure† of the following rule:

(λx .M1)M2 →β M1[x := M2]

Extensionality:
The η-reduction is the compatible closure of the rule:

λx .Mx →η M, if x 6∈ fv(M)

†if M1 →β M2 then λx .M1 →β λx .M2 and M1N →β M2N and NM1 →β NM2
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The λ-calculus, its variants and their properties
The properties of the λ-calculus

For example: the Church-Rosser property.

for all M, if M reduces to M1 and
M2 then there exists M3 such that
M1 and M2 both reduce to M3.
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Usual steps of a proof of the Church-Rosser property of a λ-calculus:

I Introduction of a new relation (developments).

I Proof of the confluence of this new relation.

I Equivalence between:
I the transitive closure of the new relation
I the reflexive and transitive closure of the reduction relation of the

considered calculus.
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The λ-calculus, its variants and their properties
The Church-Rosser property

The proofs of the Church-Rosser property can be divided as follows:

I First division:
I Encoding the development using a reduction relation: Tait and

Martin-Löf (1972), Takahashi (1989).
I Encoding the development using a set of terms: Barendregt et al.

(1972), Ghilezan and Kunčak (2001), Koletsos and Stavrinos (2007).

I Second division:
I Using a semantic method: Koletsos and Stavrinos.
I Using a syntactic method: Barendregt et al., Tait and Martin-Löf,

Takahashi.
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The λ-calculus, its variants and their properties
The Church-Rosser property - our contribution

Our contribution:

I We extended Koletsos and Stavrinos’s semantic proof to the
βη-case: [KRW08].

I We simplified and extended Koletsos and Stavrinos’s proof as well as
that of Ghilezan and Kunčak to obtain a syntactic proof: [KR08].

Our second method is a syntactic proof based on the encoding of
developments using sets of terms rather than a reduction relation.

Advantages of our second method:

I We do not deal with types as Koletsos and Stavrinos (or Ghilezan
and Kunčak) and our proof is simpler than similar syntactic proofs
such as the one of Barendregt et al.

I Our proof of the confluence of developments is parametric (we can
easily prove the finiteness of developments).

I Our proof can be seen as a bridge between semantic proofs and
syntactic proofs
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The λ-calculus, its variants and their properties
The Church-Rosser property - our contribution

Our proof of this property is as follows:
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confluence of the simple calculus

x̄ ∈ Var \ {c}
M̄ ∈ Λβη

cd ::= x̄ | λx̄ .M̄ | (λx̄ .M̄1)M̄2 | cM̄1M̄2 | cM̄

(using the simplification of a reducibility method)

����
development
(special reduction)

Confluence of developments:

→∗
β=→∗

1 and →∗
βη=→∗

2

(Simulation of a reduction by a some developments)
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Semantics of typed λ-calculi using realisability

Different ways to cast some lights on a calculus:

I Denotational semantics
ä Answer to the question: What terms denote?

I Operational semantics
ä Answer to the question: How terms compute?

I Realisability semantics
ä Highlight the computational content of a syntactic object.

I · · ·
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Semantics of typed λ-calculi using realisability
Our contribution - semantics of an intersection type system with expansion

Definition of some concepts:

Principal typing property: A type system satisfies the principal typing
property if for each typable term, there is a typing from which all other
typings are obtained via some set of operations

Intersection type system: As the ∀ quantifier, intersection types allow
to express polymorphism but in a finite way. Intersection types are lists of
usages (int → int ∩ real → real).

Expansion: Introduced by Coppo, Dezani and Venneri (1980) in order to
restore the principal typing property in such systems (extensively
improved by Carlier and Wells (2008))
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Semantics of typed λ-calculi using realisability
Expansion - example

The λ-term: M = (λx .x(λy .yz))

can be assigned the two following typings:

Φ1 = 〈(z : a) ` (((a → b) → b) → c) → c〉 (principal)

Φ2 = 〈(z : a1 u a2) ` (((a1 → b1) → b1) u ((a2 → b2) → b2) → c) → c〉

An expansion operation can obtain Φ2 from Φ1

In System E (Carlier et al. (2004)), the typing Φ1 is replaced by:

Φ3 = 〈(z : ea) ` (e((a → b) → b) → c) → c〉

Φ2 can be obtained from Φ3 by substituting for e the expansion term:

E = (a := a1, b := b1) u (a := a2, b := b2)
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Semantics of typed λ-calculi using realisability
Our contribution - semantics of an intersection type system with expansion

Two steps so far:

I [KNRW08c, KNRW08a]: We provided a complete realisability
semantics for an intersection type system with one expansion
variable and no expansion mechanism.

I [KNRW08b, KNRW08a]: We provided a complete realisability
semantics for an intersection type system with an infinite set of
expansion variables and no expansion mechanism.
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Semantics of typed λ-calculi using realisability
Our contribution - semantics of an intersection type system with expansion

How do we do that:

I Design of a calculus aiming at the capture of the meaning of an
expansion variable: encapsulation of a type.

ä λ-calculus indexed with natural numbers/list of natural numbers

I Design of a suitable type interpretation.

ä An expansion variable make the realisers change level.

I Proof of the soundness and completeness of the semantics w.r.t. a
given type system.
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Application of the extension of a typed λ-calculus
Type Error Slicing [HW04]

I The aim: accurately identify and report the location of some type
errors of a piece of code (for a SML-based programming language),
by providing a set of minimal and necessary collection of points in
the piece of code (a slice).

I How does it do that?
I From a piece of code, type error slicing first generates a set of type

constraints.
I Then, from this set of type constraints, it runs the enumeration of

the set of minimal errors of the piece of code.
I Finally, for each minimal error found, it displays the corresponding

slice (parts of the piece of code corresponding to the minimal error).

The current implementation of Type Error slicing is for a larger language
than the theory.
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Application of the extension of a typed λ-calculus
Type Error Slicing [HW04]

Our contribution so far:

I Extraction of the different modules of the implementation of Type
Error Slicing:

I Constraint generation
I Unification
I Minimisation
I Enumeration
I Slicing

ä Largely been achieved.

I Proof of the properties of these modules: Correctness and
Termination.

ä Partially achieved.
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Plan of the thesis

During the third year I will focus on the two following subjects:

I Type error slicing:
I Finishing the proofs relative to the current implementation of type

error slicing.
I Extending the Type Error Slicing framework for a rich and

sophisticated programming language.
I Implementing the type error slicer we will develop for the rich

language so that we can make our development more practical and
can have more impact.

I Semantics of expansion: providing a semantics of a typed
λ-calculus with expansion which takes into consideration the
expansion mechanism.
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