
ShadowDB: A Replicated Database on a Synthesized
Consensus Core

Nicolas Schiper, Vincent Rahli, Robbert Van Renesse, Mark Bickford, and Robert L. Constable

Cornell University

Abstract
This paper describes ShadowDB, a replicated version
of the BerkeleyDB database. ShadowDB is a primary-
backup based replication protocol where failure han-
dling, the critical part of the protocol, is taken care of by
a synthesized consensus service that is correct by con-
struction. The service has been proven correct semi-
automatically by the Nuprl proof assistant. We describe
the design and process to prove the consensus proto-
col correct and present the database replication protocol.
The performance of ShadowDB is good in the normal
case and recovering from a failure only takes seconds.
Our approach offers simplified means to diversify the
code in a way that preserves correctness.

1 Introduction
Building high-assurance distributed systems is a notori-
ously difficult task. A small bug in the code can some-
times impact millions of users. In April 2011, Ama-
zon’s storage service suffered a major outage caused by a
router misconfiguration and an improperly handled race
condition. It took more than 12 hours for the engineers
to contain the problem. Examples in replication software
also exist. One of Google’s implementation of Paxos [8],
a protocol to make services highly-available using state
machine replication, broke one of the protocol’s invari-
ants leading to potential diverging replicas, in the hope
of allowing servers with corrupted disks to recover.

A natural question to ask is how can we build reliable
distributed systems that are less prone to bugs and incor-
rect optimizations. One possible answer is to resort to
model checking to ensure the correctness of a protocol.
This strategy has been used to model check Paxos as well
as other consensus algorithms [16, 22]. However, this ap-
proach has two main limitations. The state space of the
protocol is often trimmed by checking only a subset of
the possible process interleavings and only a subset of
the variable states is considered. Second, it is rarely the
actual code that is model checked but rather a high-level

specification of the protocol. One must be careful not to
introduce bugs in the protocol implementation, a difficult
task when the software is complex and distributed.

To remedy these shortcomings, we propose to iden-
tify the critical components of a distributed system and
synthesize correct-by-construction code for these com-
ponents. In distributed protocols, the code handling nor-
mal case operations is usually easy to debug and well-
tested. The code handling failures is more complex and
much harder to test however. This paper is a progress
report of the implementation of a replicated version of
BerkeleyDB where failure handling is taken care of by a
synthesized consensus protocol. In ShadowDB, replica-
tion is done in a primary-backup fashion: one database
is designated the primary and defines the order in which
transaction updates are applied to the backup databases.
When failures occur, consensus is used to agree on a new
replica configuration.

The consensus protocol was specified, proven correct,
and executable code synthesized in the Nuprl proof as-
sistant [11, 2]. Nuprl allows distributed protocols to be
specified in the EventML functional language [6, 21].
Proving theorems about the protocol, such as agreement
on the decided value in the case of consensus, is semi-
automatic: some theorems are proven manually while
others are generated and proved automatically. Given an
EventML specification, Nuprl can also synthesize code
that is guaranteed to satisfy the specification. The code is
synthesized as a Nuprl term, and runs inside an evaluator.
Once the correctness proofs are complete, the synthe-
sized code is correct-by-construction and thus bug-free
w.r.t. its specification and the correctness criteria.

Nuprl implements constructive type theory [2] in
which programs can be extracted from proofs, thereby
creating programs that satisfy the specifications given by
theorems. Given a specification, the code synthesized by
Nuprl is extracted from a proof that the specification is
implementable by a collection of distributed processes.

1

Several other systems that are based on constructive
logic also feature program extraction. A prominent ex-
ample of such a system is Coq [3, 1, 18]. Using Coq,
Leroy [17] has developed and certified a compiler for a
C-like language. The compiler was obtained using Coq’s
extraction mechanism to Caml code.

Formal program synthesis from formal specifications
is a robust and flexible approach to build correct and
easy to maintain software. For example, Kestrel Insti-
tute synthesizes concurrent garbage collectors by refine-
ments from specifications [20, 19]; Bickford et al. [10, 7]
synthesize correct-by-construction distributed programs
from specifications written in a theory of events.

Our approach offers an important feature: it allows
synthesizing diversified versions of the replicas. For in-
stance, the synthesized code can use different container
data structures (e.g., hash tables or binary trees), and the
code evaluator can be written in different languages. We
currently have evaluators in OCaml and SML. In doing
so, the various replicas interact with their respective soft-
ware and hardware environments in different ways and
are more likely to fail independently.

The rest of this paper is organized as follows. We
present the system model and some definitions in Sec-
tion 2. Nuprl and the synthesized consensus protocol
are presented in Section 3. We describe ShadowDB and
how it integrates the consensus core in Section 4. Perfor-
mance results of ShadowDB are reported in Section 5.
We conclude the paper in Section 6.

2 Model and Definitions
We assume an asynchronous message-passing system
consisting of processes, some of which may crash. When
a process crashes, it stops its execution permanently. A
process that never crashes is said to be correct.

There is no bound on the time it takes for a process
to execute the next step of its code nor on messages to
be received. The system is fair however: given enough
time, any process running on a correct machine takes at
least one step and if a message is repeatedly sent by a
correct process to a correct process, then that message is
eventually received.

Consensus allows processes to propose a value and en-
sures that a single proposal is eventually selected [12].
Consensus is defined by three properties: (i) if a process
decides on v, then v was proposed by one of the processes
(validity), (ii) all processes that decide, decide the same
value (agreement), (iii) all correct processes eventually
decide (termination). By iteratively running instances of
consensus, one can build a total order of decisions.

No consensus protocol can be live in a purely asyn-
chronous system with crash failures [13], we thus make
extra assumptions about the system’s synchrony. We
suppose that the network goes through good and bad pe-

Figure 1: Synthesis and verification workflow in Nuprl.

riods. In bad periods, messages may experience large
delays, be lost, and processes may be slow. In good peri-
ods, correct processes communicate in a timely fashion.
There are infinitely many long enough good periods for
consensus to decide on a value and for ShadowDB to ex-
ecute a transaction.

ShadowDB offers a transactional key-value store inter-
face and ensures that the execution is linearizable [15]:
transactions appear to have been executed sequentially
on one database at a single point in time between the
start of the transaction at the client and the reception of
the transaction’s response. Clients issue multiple put and
get operations per transaction by which they respectively
retrieve and update the value of a given key. Both keys
and values are arbitrarily long byte strings.

3 Formal Synthesis of Consensus

3.1 Methodology. Figure. 1 illustrates our workflow
to obtain correct-by-construction code from high-level
specifications. Given a protocol specification (e.g.,
pseudo-code), we generate by hand a corresponding
EventML specification (see markers a© and b© in Fig-
ure 1). EventML is an ML [14] dialect targeted to
develop networks of distributed processes that react to
events. An event is an abstract object corresponding to a
point in space/time that has information associated to it.
Concretely, an event can be seen as the receipt of a mes-
sage by a process. Using EventML, programmers define
distributed systems by specifying their information flow,
and the tool automatically synthesizes code from such
specifications. EventML features a small set of logical
combinators allowing one to build systems by combining
together smaller pieces, i.e., small processes in charge of
achieving simple tasks.

Even though EventML can synthesize highly reliable
code without having to interact with Nuprl, this code is
not formally guaranteed to be correct (see marker c© in
Figure 1). This untrusted code can be used for testing
and debugging purposes before starting the formal veri-
fication of the specified protocol’s correctness. In order
to obtain correct-by-construction code, one has to inter-
face with Nuprl. EventML facilitates this interaction by
generating the formal semantic meaning of specifications
(see marker d© in Figure 1), i.e., predicates expressed in

2

process round (rep l i cas , f , s l o t , val , i)
var vo te rs = ∅ , va ls = [] ;
∀ r ∈ r e p l i c a s :

send (r , 〈 ‘ ‘ vote ‘ ‘ , (((s l o t , i) , va l) , s e l f ()) 〉) ;
for ever

switch rece ive ()
case 〈 ‘ ‘ vote ‘ ‘ , (((s l o t , i) , c) , sender) 〉 :

i f sender 6∈ vo te rs then
vo te rs := vo te rs ∪ {sender } ;
va ls := c . va ls ;

end i f ;
i f l eng th va ls = 2 ∗ f + 1 then

l e t (k , x) = possmaj va ls c in
i f k = 2 ∗ f + 1 then

send (s e l f () , 〈 ‘ ‘ decided ‘ ‘ , (s l o t , x) 〉) ;
else

send (s e l f () , 〈 ‘ ‘ r e t r y ‘ ‘ , ((s l o t , i +1) , x) 〉)
end i f ;
e x i t () ;

end i f ;
end case

end switch
end for

end process

(∗ −− s ta te update −− ∗)
l e t add to quorum s i loc ((s i ’ , v) , sender) (vals , locs) =

i f s i = s i ’ & ! (deq−member (op =) sender locs)
then (v . vals , sender . locs)
e lse (vals , locs) ; ;

(∗ −− s ta te −− ∗)
c lass QuorumState s i =

State1 (\ l oc . ([] , [])) (add to quorum s i) vote ’base ; ;
(∗ −− output −− ∗)
l e t when quorum s i loc (((s , i) , v) , sender) (vals , locs) =

i f s i = (s , i) & ! (deq−member (op =) sender locs)
then i f l eng th va ls = 2 ∗ f + 1

then l e t (k , x) = possmaj valeq va ls v i n
i f k = 2 ∗ f + 1
then { decided’send loc (s , x) }
else { r e t r y ’ s e n d loc ((s , i +1) , x) }

else {}
else {} ; ;

(∗ −− Quorum and Round −− ∗)
c lass Quorum s i =

(when quorum s i) o (vote’base , QuorumState s i) ; ;
c lass Round (s i , c) =

Output (\ l oc . vo te ’b roadcas t reps ((s i , c) , l oc))
| | Once (Quorum s i) ; ;

Figure 2: A round of 2/3 consensus in pseudo-code (left) and EventML (right).

the Logic of Events [4, 5] which is a logical framework
implemented in Nuprl to reason about and synthesize dis-
tributed systems. EventML can be seen as a program-
ming interface to the Logic of Events.

Once the formal semantic meaning of a specification
is loaded in Nuprl, we have designed a tactic that auto-
matically proves that the specification is implementable,
i.e., that there exists a collection of distributed processes
that produce exactly the information flow defined by the
specification. That tactic works by recursively prov-
ing that each component of the specification is imple-
mentable. Because EventML specifications only use a
small number of combinators, which we have proved to
be implementable, proving that a specification is imple-
mentable is fairly straightforward. One can then extract
from such a proof the above mentioned collection of pro-
cesses that is provably correct w.r.t. the specification (see
marker e© in Figure 1). The synthesized code is a col-
lection of Nuprl terms that can be evaluated using any
of the term evaluators available in EventML. Because
processes react to and produce messages, EventML also
features a message system. Finally, the last step of our
methodology (see marker f© in Figure 1) consists in
proving that the specified protocol satisfies some correct-
ness criteria, such as the consensus properties. Our log-
ical framework allows to do that reasoning at the speci-
fication level rather than at the code level. Event though
Logic of Events and EventML specifications might look
like programs more than high-level specifications, the
level of abstraction of the Logic of Events allow us to
easily perform both synthesis and verification. For that
reason we refer to Logic of Events and EventML pieces
of code as either specifications or programs.
3.2 Synthesis and Verification of Consensus. We il-
lustrate our approach using the round process, a key
component of the consensus protocol we have synthe-

sized, denoted 2/3 consensus [9]. This protocol toler-
ates up to f crash failures, by using at least 3 f +1 repli-
cas. Using this protocol, decisions can be reached in one
round, compared to protocols that use 2 f +1 replicas and
need at least two rounds to decide.

Figure 2 shows pseudo-code for a round, a sub-process
spawned by a replica, running at the same location as
the replica. A round tries to decide on a value for a
given consensus instance, also called a slot. Once it is
done, it sends a report back to its parent process (either a
‘‘ decided‘‘ or a ‘‘ retry ‘‘ message) and exits.

A round process takes five parameters: replicas is the
collection of replicas trying to reach consensus; f is the
number of tolerated failures; slot is the slot number that
round is trying to fill with value val; finally, because a
round might not succeed, replicas allow arbitrarily many
do-over polls: successive polls for a given slot number
are assigned consecutive integers called innings. A round
process is in charge of a single inning.

A round R proceeds as follows: First, R sends votes
for (((slot , i), val), self ()) to each of the replicas, where
self () is R’s identifier. Then, R waits for (2∗f)+1 votes
for slot number slot and inning i from the collection
of replicas. If the (2∗f)+1 votes are unanimous (this is
computed by possmaj), R send a ‘‘ decided‘‘ message
to its parent process (i.e., to itself), otherwise it sends
a ‘‘ retry ‘‘ message to its parent process.

From the pseudo-code displayed in Figure 2, we have
generated by hand the corresponding EventML speci-
fication presented on the right of the same figure (our
EventML tutorial [6] presents the complete specifica-
tion). A Round broadcasts a vote to the replicas and runs
what we call a Quorum process. Once that process has
produced an output it exits, as specified by the keyword
Once. A Quorum reacts to ‘‘ vote ‘‘ events and maintains
a state where it stores the votes it has received.

3

Once our specification was loaded in Nuprl, we have
synthesized code that provably implements it, and we
proved that the safety properties of 2/3 consensus hold,
namely agreement and validity. Agreement implies that
notifications (notifications are sent by replicas upon re-
ceipt of ‘‘ decided‘‘ messages) never contradict one an-
other. We proved in Nuprl the following Logic of Events
statement saying that if at two events e1 and e2, two pro-
cesses receive two notifications that values v1 and v2 both
have to fill slot number n, then v1 = v2:

∀e1,e2 : E. ∀n : Z. ∀v1,v2 : Value.(
〈n,v1〉 ∈ notify′base(e1)

∧ 〈n,v2〉 ∈ notify′base(e2)

)
⇒ v1 = v2

For validity, we proved that the following Logic of
Events statement is true, i.e., if at event e a process re-
ceives a notification that value v has to fill slot number n,
then the pair 〈n,v〉 has been proposed causally before e:

∀e : E. ∀n : Z. ∀v : Value.
〈n,v〉 ∈ notify′base(e)
⇒ ↓∃e′ : E. e′ < e ∧ 〈n,v〉 ∈ propose′base(e′)

Proving these two safety properties involved automat-
ically generating and proving thirteen lemmas, and prov-
ing by hand eight other lemmas (three of them being triv-
ial, and therefore candidates for future automation).

Termination of 2/3 consensus holds when, in a round,
correct replicas receive votes for the same value from a
quorum, an assumption likely to hold in a LAN where
messages are often spontaneously ordered (proving that
property is left for future work).

4 ShadowDB
ShadowDB is a primary-backup replication protocol: a
designated primary executes client transactions, sends
the transaction updates to the backups, and answers the
client with the transaction’s outcome once all backups
have acknowledged reception of the transaction. Shad-
owDB relies on the synthesized 2/3 consensus protocol
to reconfigure the set of replicas when failures occur. We
first explain ShadowDB when there are no failures and
then explain how failures are handled.

4.1 The Normal Case. Figure 3 illustrates the Shad-
owDB protocol. To tolerate f failures among the
database servers, we use one primary and f backups.
Processing a transaction T sent by a client happens in
eight steps as follows:
1. The client sends T to the database it believes to be the

primary. If the contacted database is not primary, it
redirects the client to the current primary. If the client
does not receive any answer after some time, the client
contacts another database.

Correct'by'construc-on.consensus.in.eventML.
.

.

.

(1).Transac-on.T. (2).Execute.T. (4).Store.T.

(6).Commit.T.(5).Answer. (8).Commit.T.

(3)..(g,.seq,.Tid,..updates).

(5).(g,.Tid,.ack).

(7)..(g,.Tid,.commit).

Figure 3: The ShadowDB protocol with f = 1.

2. The primary executes T upon first reception. If T
has been executed already, the result is communicated
back to the client (not shown in Figure 3). Otherwise,
T is executed, its updates are extracted, and T is as-
signed a sequence number—the index of T in the total
order of transaction updates. Committing T at the pri-
mary is delayed until all backups have replied.

3. The group incarnation number, identifying the replica
group’s membership (explained below), T ’s sequence
number, unique identifier, and updates are sent to all
backups.

4. Once a backup receives T , it checks whether its group
incarnation number is identical to the one received
and T ’s sequence number corresponds to the next se-
quence number the backup must handle—this ensures
that updates are applied in the same order at backups.
If this is the case, the received message is stored lo-
cally, and the backup acknowledges reception of the
transaction to the primary.

5. The primary waits to receives an acknowledgement
from all f backups. When this is the case, the primary
knowns the transaction cannot be lost and the primary
thus commits T locally.

6. An answer is transmitted to the client. This answer
contains the transaction’s result, if any, and notifies
the client of the transaction’s commit.

7. The primary notifies backups that T can commit.
8. Upon receiving such a message, backups apply T ’s

updates and commit T . If T is read-only, this is
a no-op—read-only transaction must nevertheless go
through steps 1-7 of the protocol to ensure they read
up-to-date state.

In our current implementation of ShadowDB, the pri-
mary and backups execute the above protocol for batches
of transactions. This greatly improves throughput as
transactions can be committed and persisted to disk in
groups. A second optimization is to piggyback the com-
mit message sent to the backups on the next transaction
updates the primary sends. This is another form of batch-
ing at the message level.

4.2 Handling Failures. In the case of failures, the pre-
sented protocol is not live. A failing primary prevents
clients from submitting transactions; failing backups pre-

4

2

4

6

8

0 2000 4000 6000 8000 10000

L
at

en
cy

(m
s)

Transactions per second

4B –•– 10KB –◦–◦ ◦ ◦ ◦◦
◦ ◦
◦ ◦ ◦

◦
◦

• • • • •
• • • •• • • • • • ••

••

20
40
60
80

100

0 100 200 300 400 500 600
Transactions per second

4B –•– 10KB –◦–
◦◦◦◦◦

◦ ◦◦
◦◦◦
◦◦

• • • •• • • • •
• • • • •

•
•

Figure 4: The performance of ShadowDB with read-only (left graph) and update transactions (right graph).

vent the primary from collecting sufficiently many ac-
knowledgments. To remedy this situation, the group of
replicas is reconfigured.

When the primary suspects one of the backups to have
crashed, or similarly, when a backup suspects the pri-
mary to have crashed, the corresponding process pro-
poses its identifier, a new group configuration for which
it is the primary, and the last sequence number to con-
sider for the current configuration, to the next instance
of consensus that has not decided on a value yet. The
proposing process stops processing transactions in the
current configuration, ensuring that no more transac-
tions can commit before the reconfiguration is complete.
Transactions that were executing at the primary are lo-
cally aborted—these transactions will either be retrans-
mitted by the clients, if the current primary is replaced
by a new one, or they will be re-executed by the same
primary. Consensus ensures that databases agree on the
sequence of group reconfigurations, and avoids situations
where two distinct replica groups would be formed due to
network partitions, leading to diverging database states.

Once consensus decides on the next group configura-
tion, the new primary commits all transactions that it has
acknowledged but not committed yet (the new primary
may have been a backup in the previous configuration).
This ensures that we consider all transactions whose an-
swer has been communicated to the client, and perhaps
more. The primary then sends a snapshot of its database
to all backups along with the sequence number consen-
sus decided on incremented by one, and the next group
incarnation number. This snapshot is handled as a trans-
action would be in the normal case.

If crashes or failure suspicions happen during the re-
configuration, the replica group is reconfigured again.
The procedure will succeed once the system is in a good
period for long enough and no crashes occur.

5 Evaluation
The implementation of ShadowDB consists of two parts:
the consensus synthesized code, interpreted by an SML
program, and the database replication protocol, written in
Java. The two components communicate using sockets.
Each database node runs a local copy of BerkeleyDB. In
the current prototype of ShadowDB, the primary does not

extract updates and transactions are simply re-executed
at the backups. The primary database monitors back-
ups and backups monitor the primary by periodically ex-
changing heartbeat messages at a configurable rate. If
some database a has not received any heartbeat or ap-
plication messages from some database b within some
user-specified amount of time, database a suspects b to
have crashed.

We evaluated ShadowDB on a cluster of 8 Linux ma-
chines connected by a gigabit switch. The consensus
service ran on 4 quad-core 3.6 Ghz Intel Xeons, the
databases and clients ran on dual-core 2.8 Ghz AMD
Opterons. The machines were equipped with 4GB of
RAM. We set f = 1, and ShadowDB consisted of two
databases. We used a third database in experiments
where we crashed the primary. Clients were running on
a separate machine.

We considered two workloads consisting of read-only
transactions and two consisting of update transactions.
Read-only transactions read either 4 bytes (B) or 10 kilo-
bytes (KB) of data, and update transactions read and
wrote 4B or 10KB of data. In all cases, database keys
were integers. BerkeleyDB was configured to commit
transactions to disk synchronously.

5.1 Normal Case. Figure 4 presents the average la-
tency to commit a transaction as a function of the aver-
age number of committed transactions per second. Each
experiment comprised between 2 and 42 clients.

The left graph considers read-only transactions that re-
spectively read 4B and 10KB, the right graph considers
the same value sizes for update transactions. Not sur-
prisingly, ShadowDB scales better when accessing less
data. The latency of update transactions is mainly gov-
erned by the time taken to commit a transaction to disk:
before answering the client, the primary must send the
transaction’s update to the backups, the backups commit
the previous transaction to disk (recall that commit mes-
sages are piggybacked on the next transaction sent to the
backups), and the primary commits the transaction af-
ter receiving acknowledgments from all backups. Since
committing a transaction to disk took about 20 millisec-
onds, this leads to a minimum latency of 40 milliseconds.

5

5.2 Recovery. In Figure 5, we illustrate an execution
of ShadowDB with a crash of the primary, and measure
the execution speed of the consensus service. We con-
sider update transactions that access 10KB values and
5 clients. The execution started with two databases in
the replica group, the third database remained idle until
the group was reconfigured. After 21 seconds of exe-
cution, we simulated a crash of the primary by stopping
the corresponding process. We set the heartbeat time-
out to 5 seconds, and detected the crash of the primary
4.5 seconds after its actual crash. The backup database
proposed a new group configuration that included itself
as the new primary and the third database as the new
backup. It took 3.5 seconds for the consensus service to
decide on the proposed configuration. After the new pri-
mary transmited its database snapshot to the new backup,
clients connected to the new primary and resumed their
execution at time 36 seconds.

0

50

100

150

0 10 20 30 40 50 60

Tr
an

sa
ct

io
ns

pe
rs

ec
on

d

Seconds elapsed

a b

Clients resume their execution

-� -�
W

Figure 5: An execution with a crash of the primary (a: crash
detection time of 4.5 sec, b: reconfiguration time of 3.5 sec).

6 Conclusion
This paper presented ShadowDB, a replicated database
that relies on a synthesized consensus service to handle
failures. ShadowDB offers good performance in the nor-
mal case and took about 3.5 seconds to reconfigure the
replica group. We are currently working on applying
standard compilation optimization techniques to render
the synthesized code faster.

One could argue that our approach does not result in
more reliable code as there might be bugs in Nuprl. Al-
though we recognize that this could be an issue, Nuprl
is based on the LCF tactic mechanisms [14], and is
especially safe because Nuprl’s primitive proofs were
checked by an independent prover, ACL2. The extrac-
tor and evaluator are simple code, and we could write
separate verifications for those, but in 20 years of using
the code, we have not found a problem.

Our future plans are to introduce diversity in the con-
sensus service by periodically changing the consensus
protocol, one of which will be Paxos, and to synthesize
parts of the normal case protocol of ShadowDB.

References
[1] The Coq Proof Assistant. http://coq.inria.fr/.

[2] S. F. Allen, M. Bickford, R. L. Constable, R. Eaton, C. Kreitz,
L. Lorigo, and E. Moran. Innovations in computational type theory
using Nuprl. J. Applied Logic, 4(4):428–469, 2006.
[3] Y. Bertot and P. Casteran. Interactive Theorem Proving and Pro-
gram Development. SpringerVerlag, 2004.
[4] M. Bickford. Component specification using event classes. In
Component-Based Software Engineering, 12th Int’l Symp., volume
5582 of Lecture Notes on Computer Science, pages 140–155. Springer,
2009.
[5] M. Bickford and R. L. Constable. Formal foundations of com-
puter security. In NATO Science for Peace and Security Series, D:
Information and Communication Security, volume 14, pages 29–52.
2008.
[6] M. Bickford, R. L. Constable, R. Eaton, D. Guaspari, and
V. Rahli. Introduction to EventML, 2012. www.nuprl.org/
software/eventml/IntroductionToEventML.pdf.
[7] M. Bickford, R. L. Constable, J. Y. Halpern, and S. Petride.
Knowledge-based synthesis of distributed systems using event struc-
tures. Logical Methods in Computer Science, 7(2), 2011.
[8] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live:
an engineering perspective. In Proc. of the 26th ACM Symp. on Prin-
ciples of Distributed Computing, pages 398–407, Portland, OR, May
2007. ACM.
[9] B. Charron-Bost and A. Schiper. The heard-of model: comput-
ing in distributed systems with benign faults. Distributed Computing,
22(1):49–71, 2009.
[10] R. Constable, M. Bickford, and R. van Renesse. Investigating
correct-by-construction attack-tolerant systems. Technical report, De-
partment of Computer Science, Cornell University, 2010.
[11] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland,
J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing mathematics
with the Nuprl proof development system. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1986.
[12] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the pres-
ence of partial synchrony. J. ACM, 35(2):288–323, April 1988.
[13] M. J. Fischer, N. A. Lynch, and M. S. Patterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382,
April 1985.
[14] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh
LCF: A Mechanised Logic of Computation., volume 78 of Lecture
Notes in Computer Science. Springer-Verlag, 1979.
[15] M. P. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects. Trans. on Programming Languages
and Systems, 12(3):463–492, July 1990.
[16] L. Lamport. Fast Paxos. Distributed Computing, 19(2):79–103,
2006.
[17] X. Leroy. Formal certification of a compiler back-end or: pro-
gramming a compiler with a proof assistant. In 33rd ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, pages 42–
54. ACM, 2006.
[18] P. Letouzey. Extraction in Coq: An overview. In Logic and The-
ory of Algorithms, 4th Conf. on Computability in Europe, CiE 2008,
volume 5028 of Lecture Notes on Computer Science, pages 359–369.
Springer, 2008.
[19] D. Pavlovic, P. Pepper, and D. R. Smith. Formal derivation of
concurrent garbage collectors. In Mathematics of Program Construc-
tion, 10th Int’l Conf., MPC 2010, volume 6120 of Lecture Notes on
Computer Science, pages 353–376. Springer, 2010.
[20] D. Pavlovic and D. R. Smith. Software development by refine-
ment. In Formal Methods at the Crossroads. From Panacea to Foun-
dational Support, 10th Anniversary Colloquium of UNU/IIST, volume
2757 of Lecture Notes on Computer Science, pages 267–286. Springer,
2002.
[21] V. Rahli. Interfacing with proof assistants for domain specific
programming using EventML. Accepted to UITP 2012.
[22] T. Tsuchiya and A. Schiper. Using bounded model checking to
verify consensus algorithms. In DISC, pages 466–480, 2008.

6

