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Nuprl Environment

Distributed

Runs in the cloud

Structure editor

Tactic language: Classic ML

Shared library

Database based
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Nuprl & Friends

Getting access to Nuprl:
http://www.nuprl.org/html/NuprlSystem.html

Virtual Machines: http://www.nuprl.org/vms/

MetaPRL: http://metaprl.org (dead?)

JonPRL: http://www.jonprl.org/
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Nuprl Stack
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Howe’s Computational Equality

4 is a simulation relation

Greatest fixpoint of the following relation: t [R] u if whenever
t computes to a value θ(b), then u also computes to a value
θ(b′) such that b R b′.

∼ is a bisimulation relation (a ∼ b = a 4 b ∧ b 4 a)

Purely by computation:

map(f ,map(g,l)) ∼ map(f ◦ g,l)
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Howe’s Computational Equality

Used for automated program optimization

4 and ∼ are congruences

Restricts the computation system
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Howe’s Computational Equality

Type checking and type inference are undecidable

Proving that terms are well-formed can sometimes be
cumbersome

Howe’s untyped equality saves us from having to prove
well-formedness

It turned out that many equalities could be stated using
Howe’s untyped equality
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Constructive Domain Theory

Let ⊥ be fix(λx .x).
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Constructive Domain Theory

Let ⊥ be fix(λx .x).

Least element

∀t.⊥ 4 t
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Constructive Domain Theory

Let ⊥ be fix(λx .x).

Least element

∀t.⊥ 4 t

Least upper bound principle

G (fix(f )) is the lub of the 4 chain G (f n(⊥)) for n ∈ N
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Constructive Domain Theory

Let ⊥ be fix(λx .x).

Least element

∀t.⊥ 4 t

Least upper bound principle

G (fix(f )) is the lub of the 4 chain G (f n(⊥)) for n ∈ N

Compactness

if G (fix(f )) converges, then there exists a natural number n
such that G (f n(⊥)) converges
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Nuprl Types

Based on Martin-Löf’s extensional type theory

Equality: a = b ∈ T

Dependent product: a:A → B[a]

Dependent sum: a:A× B[a]

Universe: Ui
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Nuprl Types

Less “conventional types”

Partial: A

Disjoint union: A+B

Intersection: ∩a:A.B[a]

Union: ∪a:A.B[a]

Subset: {a : A | B[a]}

Quotient: T//E

Domain: Base

Simulation: t1 4 t2

Bisimulation: t1 ∼ t2

Image: Img(A, f )

PER: per(R)
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Nuprl Types

Image type (Nogin & Kopylov)

Subset: {a : A | B[a]} , Img(a:A× B[a], π1)

Union: ∪a:A.B[a] , Img(a:A× B[a], π2)
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Nuprl Types

PER type

Void = per(λ , .1 4 0)

Top = per(λ , .0 4 0)
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Nuprl Types

PER type

Void = per(λ , .1 4 0)

Top = per(λ , .0 4 0)

halts(t) = Ax 4 (let x := t in Ax)

A ⊓ B = ∩x :Base. ∩ y :halts(x).isaxiom(x ,A,B)

T//E = per(λx , y .(x ∈ T ) ⊓ (y ∈ T ) ⊓ (E x y ))
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Nuprl Refinements

Nuprl’s proof engine is called a refiner (TB)

A generic goal directed reasoner:

{ a rule interpreter

{ a proof manager

Example of a rule

H ⊢ a:A → B[a] ⌊ext λx .b⌋
BY [lambdaFormation]

H, x : A ⊢ B[x ] ⌊ext b⌋
H ⊢ A ∈ Ui ⌊ext Ax⌋
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Nuprl PER Semantics Implemented in Coq

Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.
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Intuitionistic Type Theory

We’ve proved these rules correct using our Coq model:

Bar induction

{ On free choice sequences of closed terms without atoms

{ We can build indexed W types

Brouwer’s Continuity Principle for numbers

ΠF :B → N.Πf :B.↓Σn:N.Πg :B.f =NNn g → F (f ) =N F (g)
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Verification of Distributed Systems
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Verification of Distributed Systems

A logic of events (LoE) and a general process model
(GPM) implemented in Nuprl.

Specified, verified, and generated consensus protocols
(e.g., 2/3-Consensus & Paxos) using EventML.

Aneris: a total ordered broadcast service.

ShadowDB: a replicated database with 2 parametrizable
replication protocols (PBR & SMR) built on top of Aneris.

Improved performance without introducing bugs.
We get decent performance.
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Our Methodology
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Combinators
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Combinators

EventML for Paxos Synod:

. . .
agent Leade r = SpawnF i r s tScout

| | ( ( Leade rPropose | | Leade rAdopted ) >>= Commander )
| | ( Leade rPreempted >>= Scout ) ; ;

main Leade r @ l d r s | | Acceptor @ ac cpt s
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Inductive Logical Forms

We use causal induction + inductive logical forms (ILFs) +
state machine invariants
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Inductive Logical Forms
E.g., logical explanation of why decisions are made by Paxos:

∀[Cmd:{T:Type| valueall-type(T)} ]. ∀[accpts,ldrs:bag(Id)]. ∀[ldrs_uid:Id → Z]. ∀[reps:bag(Id)].

∀[es:EO’]. ∀[e:E]. ∀[i:Id]. ∀[p:Proposal].

(decision’send(Cmd) i p ∈ pax_mb_main(Cmd;accpts;ldrs;ldrs_uid;reps)(e)

⇐⇒ loc(e) ↓∈ ldrs

∧ (header(e) = ‘‘pax_mb p2b‘‘)

∧ (msgtype(e) = P2b)

∧ i ↓∈ reps

∧ (↓∃e’:{e’:E| e’ ≤loc e }

∃z:PValue

((((header(e’) = [propose])

∧ (msgtype(e’) = Proposal)

∧ ((↑ (proposal_slot (proposal_cmd LeaderStateFun(e’))))

∧ (¬↑ (in_domain (proposal_slot msgval(e’)) (proposal_cmd (proposal_cmd LeaderStateFun(e’))))))

∧ (z = (mk_pvalue (proposal_slot LeaderStateFun(e’)) msgval(e’))))

∨ ((header(e’) = ‘‘pax_mb adopted‘‘)

∧ (msgtype(e’) = pax_mb_AState(Cmd))

∧ ((astate_ballot msgval(e’)) = (proposal_slot LeaderStateFun(e’)))

∧ z ↓∈ map(λsp.(mk_pvalue (astate_ballot msgval(e’)) sp);

update_proposals (proposal_cmd (proposal_cmd LeaderStateFun(e’)))

(pmax(ldrs_uid) (astate_pvals msgval(e’))))))

∧ (no commander_output(accpts;reps) z@Loc

o (Loc,p2b’base(), CommanderState(accpts) (pval_ballot z) (proposal_slot (pval_proposal z)))

between e’ and e)

∧ ((pval_ballot z) = (bl_ballot (p2b_bl msgval(e))))

∧ ((proposal_slot (pval_proposal z)) = (p2b_slot msgval(e)))

∧ ((pval_ballot z) = (p2b_ballot msgval(e)))

∧ (#(CommanderStateFun(pval_ballot z;proposal_slot (pval_proposal z);es.e’;e)) < threshold(accpts))

∧ (p = (pval_proposal z)))))

decision of p sent to i at e

e happens at a leader location

the decision is triggered by a p2b message

the recipient of the decision message is a replica

proposal p is extracted from a pvalue z

either pvalue z is made from a proposal and current ballot

or either pvalue z received in an adopted message or in leader state

this decision is the first output of the commander

the acceptor that sent the p2b message has accepted pvalue z

the commander has received a p2b messages from a majority of acceptors
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Inductive Logical Forms

We found bugs using our ILFS

Could be used for blame tracking

Translate to English explanations?
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