
Nuprl’s Inductive Logical Forms

Mark Bickford, Robert L. Constable, Rich Eaton, and
Vincent Rahli

http://www.nuprl.org

October 7, 2015

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 1/27

http://www.nuprl.org

Nuprl Environment

Distributed

Runs in the cloud

Structure editor

Tactic language: Classic ML

Shared library

Database based

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 2/27

Nuprl & Friends

Getting access to Nuprl:
http://www.nuprl.org/html/NuprlSystem.html

Virtual Machines: http://www.nuprl.org/vms/

MetaPRL: http://metaprl.org (dead?)

JonPRL: http://www.jonprl.org/

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 3/27

http://www.nuprl.org/html/NuprlSystem.html
http://www.nuprl.org/vms/
http://metaprl.org
http://www.jonprl.org/

Nuprl Stack

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 4/27

Howe’s Computational Equality

4 is a simulation relation

Greatest fixpoint of the following relation: t [R] u if whenever
t computes to a value θ(b), then u also computes to a value
θ(b′) such that b R b′.

∼ is a bisimulation relation (a ∼ b = a 4 b ∧ b 4 a)

Purely by computation:

map(f ,map(g,l)) ∼ map(f ◦ g,l)

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 5/27

Howe’s Computational Equality

Used for automated program optimization

4 and ∼ are congruences

Restricts the computation system

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 6/27

Howe’s Computational Equality

Type checking and type inference are undecidable

Proving that terms are well-formed can sometimes be
cumbersome

Howe’s untyped equality saves us from having to prove
well-formedness

It turned out that many equalities could be stated using
Howe’s untyped equality

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 7/27

Constructive Domain Theory

Let ⊥ be fix(λx .x).

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 8/27

Constructive Domain Theory

Let ⊥ be fix(λx .x).

Least element

∀t.⊥ 4 t

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 9/27

Constructive Domain Theory

Let ⊥ be fix(λx .x).

Least element

∀t.⊥ 4 t

Least upper bound principle

G (fix(f)) is the lub of the 4 chain G (f n(⊥)) for n ∈ N

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 10/27

Constructive Domain Theory

Let ⊥ be fix(λx .x).

Least element

∀t.⊥ 4 t

Least upper bound principle

G (fix(f)) is the lub of the 4 chain G (f n(⊥)) for n ∈ N

Compactness

if G (fix(f)) converges, then there exists a natural number n
such that G (f n(⊥)) converges

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 11/27

Nuprl Types

Based on Martin-Löf’s extensional type theory

Equality: a = b ∈ T

Dependent product: a:A → B[a]

Dependent sum: a:A× B[a]

Universe: Ui

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 12/27

Nuprl Types

Less “conventional types”

Partial: A

Disjoint union: A+B

Intersection: ∩a:A.B[a]

Union: ∪a:A.B[a]

Subset: {a : A | B[a]}

Quotient: T//E

Domain: Base

Simulation: t1 4 t2

Bisimulation: t1 ∼ t2

Image: Img(A, f)

PER: per(R)

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 13/27

Nuprl Types

Image type (Nogin & Kopylov)

Subset: {a : A | B[a]} , Img(a:A× B[a], π1)

Union: ∪a:A.B[a] , Img(a:A× B[a], π2)

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 14/27

Nuprl Types

PER type

Void = per(λ , .1 4 0)

Top = per(λ , .0 4 0)

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 15/27

Nuprl Types

PER type

Void = per(λ , .1 4 0)

Top = per(λ , .0 4 0)

halts(t) = Ax 4 (let x := t in Ax)

A ⊓ B = ∩x :Base. ∩ y :halts(x).isaxiom(x ,A,B)

T//E = per(λx , y .(x ∈ T) ⊓ (y ∈ T) ⊓ (E x y))

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 16/27

Nuprl Refinements

Nuprl’s proof engine is called a refiner (TB)

A generic goal directed reasoner:

{ a rule interpreter

{ a proof manager

Example of a rule

H ⊢ a:A → B[a] ⌊ext λx .b⌋
BY [lambdaFormation]

H, x : A ⊢ B[x] ⌊ext b⌋
H ⊢ A ∈ Ui ⌊ext Ax⌋

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 17/27

Nuprl PER Semantics Implemented in Coq

Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 18/27

Intuitionistic Type Theory

We’ve proved these rules correct using our Coq model:

Bar induction

{ On free choice sequences of closed terms without atoms

{ We can build indexed W types

Brouwer’s Continuity Principle for numbers

ΠF :B → N.Πf :B.↓Σn:N.Πg :B.f =NNn g → F (f) =N F (g)

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 19/27

Verification of Distributed Systems

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 20/27

Verification of Distributed Systems

A logic of events (LoE) and a general process model
(GPM) implemented in Nuprl.

Specified, verified, and generated consensus protocols
(e.g., 2/3-Consensus & Paxos) using EventML.

Aneris: a total ordered broadcast service.

ShadowDB: a replicated database with 2 parametrizable
replication protocols (PBR & SMR) built on top of Aneris.

Improved performance without introducing bugs.
We get decent performance.

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 21/27

Our Methodology

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 22/27

Combinators

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 23/27

Combinators

EventML for Paxos Synod:

. . .
agent Leade r = SpawnF i r s tScout

| | ((Leade rPropose | | Leade rAdopted) >>= Commander)
| | (Leade rPreempted >>= Scout) ; ;

main Leade r @ l d r s | | Acceptor @ ac cpt s

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 24/27

Inductive Logical Forms

We use causal induction + inductive logical forms (ILFs) +
state machine invariants

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 25/27

Inductive Logical Forms
E.g., logical explanation of why decisions are made by Paxos:

∀[Cmd:{T:Type| valueall-type(T)}]. ∀[accpts,ldrs:bag(Id)]. ∀[ldrs_uid:Id → Z]. ∀[reps:bag(Id)].

∀[es:EO’]. ∀[e:E]. ∀[i:Id]. ∀[p:Proposal].

(decision’send(Cmd) i p ∈ pax_mb_main(Cmd;accpts;ldrs;ldrs_uid;reps)(e)

⇐⇒ loc(e) ↓∈ ldrs

∧ (header(e) = ‘‘pax_mb p2b‘‘)

∧ (msgtype(e) = P2b)

∧ i ↓∈ reps

∧ (↓∃e’:{e’:E| e’ ≤loc e }

∃z:PValue

((((header(e’) = [propose])

∧ (msgtype(e’) = Proposal)

∧ ((↑ (proposal_slot (proposal_cmd LeaderStateFun(e’))))

∧ (¬↑ (in_domain (proposal_slot msgval(e’)) (proposal_cmd (proposal_cmd LeaderStateFun(e’))))))

∧ (z = (mk_pvalue (proposal_slot LeaderStateFun(e’)) msgval(e’))))

∨ ((header(e’) = ‘‘pax_mb adopted‘‘)

∧ (msgtype(e’) = pax_mb_AState(Cmd))

∧ ((astate_ballot msgval(e’)) = (proposal_slot LeaderStateFun(e’)))

∧ z ↓∈ map(λsp.(mk_pvalue (astate_ballot msgval(e’)) sp);

update_proposals (proposal_cmd (proposal_cmd LeaderStateFun(e’)))

(pmax(ldrs_uid) (astate_pvals msgval(e’))))))

∧ (no commander_output(accpts;reps) z@Loc

o (Loc,p2b’base(), CommanderState(accpts) (pval_ballot z) (proposal_slot (pval_proposal z)))

between e’ and e)

∧ ((pval_ballot z) = (bl_ballot (p2b_bl msgval(e))))

∧ ((proposal_slot (pval_proposal z)) = (p2b_slot msgval(e)))

∧ ((pval_ballot z) = (p2b_ballot msgval(e)))

∧ (#(CommanderStateFun(pval_ballot z;proposal_slot (pval_proposal z);es.e’;e)) < threshold(accpts))

∧ (p = (pval_proposal z)))))

decision of p sent to i at e

e happens at a leader location

the decision is triggered by a p2b message

the recipient of the decision message is a replica

proposal p is extracted from a pvalue z

either pvalue z is made from a proposal and current ballot

or either pvalue z received in an adopted message or in leader state

this decision is the first output of the commander

the acceptor that sent the p2b message has accepted pvalue z

the commander has received a p2b messages from a majority of acceptors

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 26/27

Inductive Logical Forms

We found bugs using our ILFS

Could be used for blame tracking

Translate to English explanations?

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 27/27

