Coq as a Metatheory for Nuprl with Bar Induction

Vincent Rahli and Mark Bickford http://www.nuprl.org

October 7, 2015

Vincent Rahli

Bar Induction

< □ > < □ > < □ > < □ > < □ > < □ >
October 7, 2015

Overall Story

Luitzen Egbertus Jan Brouwer

Mark Bickford

Robert L. Constable

Bar Induction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
October 7, 2015

э

Nuprl in a Nutshell

Similar to Coq and Agda

Extensional Intuitionistic Type Theory for partial functions

Consistency proof in Coq: https://github.com/vrahli/NuprlInCoq

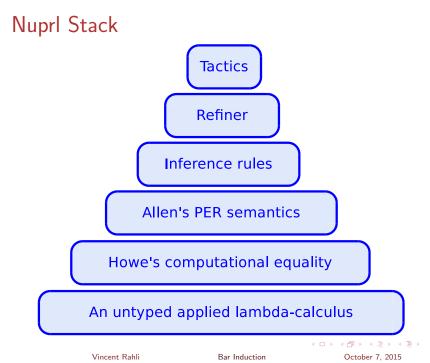
Cloud based & virtual machines: http://www.nuprl.org

JonPRL: http://www.jonprl.org

Vincent Rahli

Bar Induction

October 7, 2015



э

Howe's Computational Equality

 \leqslant is a simulation relation

Greatest fixpoint of the following relation: t [R] u if whenever t computes to a value $\theta(\overline{b})$, then u also computes to a value $\theta(\overline{b'})$ such that $\overline{b} R \overline{b'}$.

Examples: $\bot \leqslant 1$, $\langle \bot, 1 \rangle \leqslant \langle 1, 1 \rangle$

 \sim is a bisimulation relation $(a \sim b = a \leqslant b \land b \leqslant a)$

Purely by computation:

$$map(f, map(g, l)) \sim map(f \circ g, l)$$

\leq and \sim are congruences

Vincent Rahli

Bar Induction

October 7, 2015

Howe's Computational Equality

Type checking and type inference are undecidable

Proving that terms are well-formed can be cumbersome

 \sim saves us from having to prove well-formedness

It turned out that many equalities could be stated using \sim

Vincent Rahli

Bar Induction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
October 7, 2015

Based on Martin-Löf's extensional type theory

Equality:
$$a = b \in T$$

Dependent product: $a: A \rightarrow B[a]$

Dependent sum: $a:A \times B[a]$

Universe: \mathbb{U}_i

Vincent Rahli

Bar Induction

October 7, 2015

▲日▼ ▲母▼ ▲日▼ ▲日▼ ■ ろの⊙

Less "conventional types"

Partial: \overline{A} **Disjoint union**: A+B**Intersection**: $\cap a: A.B[a]$ **Union**: $\cup a: A.B[a]$ **Subset**: $\{a : A \mid B[a]\}$

Quotient: T//E

Domain: Base

Simulation: $t_1 \leq t_2$

 $(\texttt{Void}=0\leqslant 1 \texttt{ and } \texttt{Unit}=0\leqslant 0)$

Bisimulation: $t_1 \sim t_2$

Image: Img(A, f)

PER: per(R)

Bar Induction

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Image type (Nogin & Kopylov)

Subset:
$$\{a : A \mid B[a]\} \triangleq \operatorname{Img}(a:A \times B[a], \pi_1)$$

Union: $\cup a: A.B[a] \triangleq \operatorname{Img}(a: A \times B[a], \pi_2)$

Vincent Rahli

Bar Induction

October 7, 2015

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト 一回 - のへの

PER type (inspired by Allen)

$$\mathtt{Top}=\mathtt{per}(\lambda_,_.0\leqslant 0)$$

$$halts(t) = \star \leqslant (let \ x := t \ in \ \star)$$

 $A \sqcap B = \cap x$:Base. $\cap y$:halts(x).isaxiom(x, A, B)

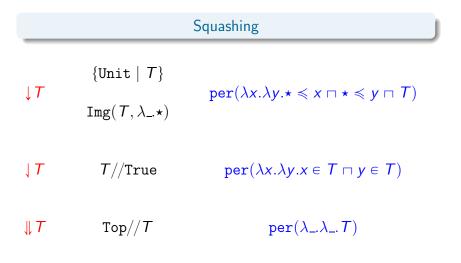
 $T/\!/E = \texttt{per}(\lambda x, y.(x \in T) \sqcap (y \in T) \sqcap (E \ x \ y))$

Vincent Rahli

Bar Induction

October 7, 2015

10/25

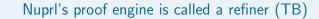


Vincent Rahli

Bar Induction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = ○ October 7, 2015

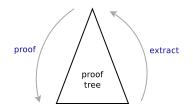
Nuprl Refinements



A generic goal directed reasoner:

C a rule interpreter

C a proof manager



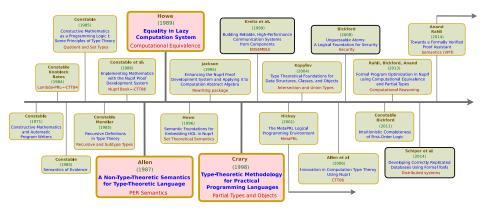
Example of a rule

$$\begin{array}{l} H \vdash a: A \rightarrow B[a] \; \lfloor \mathsf{ext} \; \lambda x. b \rfloor \\ \mathsf{BY} \; [\texttt{lambdaFormation}] \\ H, x: A \vdash B[x] \; \lfloor \mathsf{ext} \; b \rfloor \\ H \vdash A \in \mathbb{U}_i \; \lfloor \mathsf{ext} \; \star \rfloor \end{array}$$

Bar Induction

< □ > < □ > < □ > < ≡ > < ≡ >
October 7, 2015

Nuprl PER Semantics Implemented in Coq



Stuart Allen had his own meta-theory that was meant to be meaningful on its own and needs not be framed into type theory. We chose to use Coq and Agda.

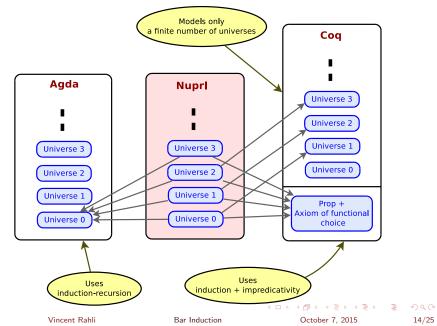
Vincent Rahli

Bar Induction

< □ > < □ > < □ > < □ > < □ > < □ >
October 7, 2015

3

Nuprl PER Semantics Implemented in Coq



14/25

The More Inference Rules the Better!

All verified

Expose more of the metatheory

Encode Mathematical knowledge

Vincent Rahli

Bar Induction

< □ > < □ > < □ > < ≡ > < ≡ >
October 7, 2015

э

Intuitionistic Type Theory

We've proved these rules correct using our Coq model:

Brouwer's Continuity Principle for numbers

$$\mathbf{\Pi} F: \mathcal{B} \to \mathbb{N}.\mathbf{\Pi} f: \mathcal{B}. \mathbf{i} \mathbf{\Sigma} n: \mathbb{N}.\mathbf{\Pi} g: \mathcal{B}. f =_{\mathbb{N}^{\mathbb{N}_n}} g \to F(f) =_{\mathbb{N}} F(g)$$

$$(\mathcal{B}=\mathbb{N}^{\mathbb{N}}=\mathbb{N} o\mathbb{N})$$

Bar induction

 ${f \supset}$ On free choice sequences of closed terms without atoms

 \bigcirc We can build indexed W types

Vincent Rahli

Bar Induction

< □ > < □ > < □ > < ≡ > < ≡ >
October 7, 2015

Weak Continuity

False in Nuprl (following Escardó and Xu)

$$\mathbf{\Pi} F: \mathcal{B} \to \mathbb{N}.\mathbf{\Pi} f: \mathcal{B}.\mathbf{\Sigma} n: \mathbb{N}.\mathbf{\Pi} g: \mathcal{B}.f =_{\mathbb{N}^{\mathbb{N}_n}} g \to F(f) =_{\mathbb{N}} F(g)$$

Easy in Coq model (almost purely by computation) because it doesn't have computational content

$$\mathbf{\Pi} F: \mathcal{B} \to \mathbb{N}. \mathbf{\Pi} f: \mathcal{B}. \mathbf{i} \Sigma n: \mathbb{N}. \mathbf{\Pi} g: \mathcal{B}. f =_{\mathbb{N}^{\mathbb{N}_n}} g \to F(f) =_{\mathbb{N}} F(g)$$

Harder in Coq because it has computational content: uses named exceptions $+ \nu$ (following Longley's method)

$$\Pi F: \mathcal{B} \to \mathbb{N}. \Pi f: \mathcal{B}. \downarrow \Sigma n: \mathbb{N}. \Pi g: \mathcal{B}. f =_{\mathbb{N}^{\mathbb{N}_n}} g \to F(f) =_{\mathbb{N}} F(g)$$

Vincent Rahli

Bar Induction

October 7, 2015

Strong Continuity

Actually what we proved in Coq is essentially

$$\begin{split} \Pi F &: \mathcal{B} \to \mathbb{N}. \\ &\downarrow \mathbf{\Sigma} \mathcal{M} : (\mathbf{\Pi} n : \mathbb{N} . \mathbb{N}^{\mathbb{N}_n} \to \mathbb{N} + \texttt{Unit}). \\ &\quad \mathbf{\Pi} f : \mathcal{B} . \mathbf{\Sigma} n : \mathbb{N}. \quad \mathcal{M} \text{ n } f =_{\mathbb{N} + \texttt{Unit}} \texttt{inl}(F(f)) \\ &\quad \wedge \mathbf{\Pi} m : \mathbb{N}.\texttt{isl}(\mathcal{M} \text{ m } f) \to m =_{\mathbb{N}} n \end{split}$$

which is equivalent to weak continuity because (standard)

$$\mathsf{AC}_{1,0\downarrow} \Rightarrow (\mathsf{WCP}_{\downarrow} \iff \mathsf{SCP}_{\downarrow})$$

Vincent Rahli

Bar Induction

October 7, 2015

Axiom of Choice

Trivial

 $\Pi a: A. \Sigma b: B. P \ a \ b \ \Rightarrow \ \Sigma f: B^{A}. \Pi a: A. P \ a \ f(a)$

Harder to prove $(AC_{0,0})$ in Coq: uses the axiom of choice and free choice sequences

 $\Pi a: \mathbb{N} \downarrow \Sigma b: \mathbb{N} P \ a \ b \ \Rightarrow \ \downarrow \Sigma f: \mathbb{N}^{\mathbb{N}} . \Pi a: \mathbb{N} . P \ a \ f(a)$

Non-trivial to prove $(AC_{0,n} \text{ and } AC_{1,n})$ in Nuprl

 $\Pi a:\mathbb{N}, |\Sigma b:B.P \ a \ b \Rightarrow |\Sigma f:B^{\mathbb{N}}, \Pi a:\mathbb{N}, P \ a \ f(a)$

 $\Pi_a:\mathcal{B}, \mathbf{\Sigma}b:\mathcal{B}.\mathcal{P} \ a \ b \ \Rightarrow \ \mathbf{\Sigma}f:\mathcal{B}^{\mathcal{B}}.\Pi_a:\mathcal{B}.\mathcal{P} \ a \ f(a)$

Vincent Rahli

Bar Induction

October 7, 2015

3.5 3

Uniform Continuity

Follows from the Fan Theorem (every decidable bar is uniform) and Weak Continuity (standard)

$$\mathbf{\Pi} F: \mathcal{C} \to \mathbb{N}. \mathbf{\sum} n: \mathbb{N}. \mathbf{\Pi} f, g: \mathcal{C}. f =_{\mathbb{N}^n} g \to F(f) =_{\mathbb{N}} F(g)$$

$$(\mathcal{C} = 2^{\mathbb{N}})$$

Following Escardó and Xu:

$$\mathbf{\Pi} F: \mathcal{C} \to \mathbb{N}. \mathbf{\Sigma} n: \mathbb{N}. \mathbf{\Pi} f, g: \mathcal{C}. f =_{2^{\mathbb{N}_n}} g \to F(f) =_{\mathbb{N}} F(g)$$

Vincent Rahli

Bar Induction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
October 7, 2015

3

Bar Induction

Fan Theorem follows from Bar Induction on Decidable Bars (BID)

$$\begin{array}{ll} H \vdash \downarrow (X \ 0 \ c) \\ & \text{BY [BID]} \\ (\text{dec}) & H, n : \mathbb{N}, s : \mathbb{N}^{\mathbb{N}_n} \vdash B \ n \ s \ \lor \ \neg B \ n \ s \\ (\text{bar}) & H, s : \mathbb{N}^{\mathbb{N}} \vdash \downarrow \exists n : \mathbb{N}. \ B \ n \ s \\ (\text{imp}) & H, n : \mathbb{N}, s : \mathbb{N}^{\mathbb{N}_n}, m : B \ n \ s \vdash X \ n \ s \\ (\text{ind}) & H, n : \mathbb{N}, s : \mathbb{N}^{\mathbb{N}_n}, x : (\forall m : \mathbb{N}. \ X \ (n+1) \ \text{ext}(s, n, m)) \\ & \vdash X \ n \ s \end{array}$$

Vincent Rahli

Bar Induction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
October 7, 2015

Ξ

Bar Induction

We proved BID for free choice sequences of numbers in Coq following Dummett's "standard" classical proof (easy)

We added free choice sequences of numbers to Nuprl's model: all Coq functions from $\mathbb N$ to $\mathbb N$

What about sequences of terms?

Vincent Rahli

Bar Induction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
October 7, 2015

Bar Induction

We proved BID for free choice sequences of closed terms without names (in Coq following Dummett's "standard" classical proof)

Harder because we had to turn our terms into a big W type: a function from \mathbb{N} to terms is now a term!

Why without names?

u picks fresh names and we can't compute the collection of all names anymore (still doable I think)

Vincent Rahli

Bar Induction

October 7, 2015

Law of Excluded Middle

LEM is false in Nuprl (Anand)

 $\mathbf{\Pi} P: \mathbb{P}.P \lor \neg P$

Follows from: $\neg \Pi t$:Base. $t \Downarrow \lor \neg t \Downarrow$ (call the function magic) We can prove: if $magic(\bot)$ then \bot else $\star \leq if magic(\star)$ then \bot else \star We get: $\star \leq \bot$

Squashed version is true in Coq (using LEM in Coq)

$$\mathbf{\Pi} P: \mathbb{P}. \downarrow (P \lor \neg P)$$

Bar Induction

イロト 不得 トイヨト イヨト ヨー シタの

Questions

Can we prove continuity for sequences of terms instead of \mathcal{B} ?

Can we prove BID/BIM on sequences of terms with atoms?

What does that give us? + proof-theoretic strength?

Can I hope to be able to prove BID in Coq/Agda without LEM/AC?

Vincent Rahli

Bar Induction

< □ > < □ > < □ > < □ > < □ > < □ >
October 7, 2015