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Goals

Long term goal: Develop provably correct code.

Current Goals:

◮ Domain specific programming.

◮ Generate efficient code.

Work done as part of the CRASH project

(Correct-by-Construction Attack-Tolerant Systems) funded by

DARPA (Defense Advanced Research Projects Agency).

Vincent Rahli Formal Optimization July 25, 2013 2/31



Motivation

{ Formal specification, verification, and
implementation of asynchronous fault-tolerant systems.
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Motivation

{ Formal specification, verification, and
implementation of asynchronous fault-tolerant systems.

{ How efficient is our generated code?

{ It was not!

{ Formal program optimization in an untyped setting.

{ More general

{ More efficient
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Nuprl
Computation System

A constructive type theory: CTT13 an evolution of CTT84
closely related to ITT82 [CAB+86, Kre02, ABC+06].

Untyped, deterministic, lazy, applied λ-calculus with:
natural numbers, pairs, injections, fix operator, ⊥,
call-by-value operator,. . . .
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Nuprl
Computation System

2 meta-relations defined on top of the evaluation
function [How96]:

◮ approximation �

◮ computational equivalence ∼ (a congruence).
a ∼ b , a � b ∧ b � a.
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Nuprl
Computation System

2 meta-relations defined on top of the evaluation
function [How96]:

◮ approximation �

◮ computational equivalence ∼ (a congruence).
a ∼ b , a � b ∧ b � a.

CoInductive approx: term -> term -> Prop :=

| approxc : forall t1 t2,

(forall op terms1,

computes_to t1 (Value op terms1)

-> exists terms2,

computes_to t2 (Value op terms2)

/\ forall a b, In (a,b) (combine terms1 terms2)

-> approx a b)

-> approx t1 t2.
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Nuprl
Computation System

For all terms t, ⊥ � t.

〈⊥, 1〉 � 〈2, 1〉

(λx .x + 1) 2 ∼ 3.

⊥ ∼ fix(λx .x).

halts(t) , 0 � (let x := t in 0)
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Nuprl
Constructive evidence

Type system built on top of the untyped computation system.

A type is a partial equivalence relation on
λ-terms [All87a, All87b].

{ 2 equivalences: computational and semantic.

Computational semantics: applied λ-terms provide evidence
for the truth of propositions.

A sequent H ⊢ C ⌊ext t⌋ means that C has computational
evidence (extract) t in context H.
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Nuprl
Environment

Distributed.

Runs in the cloud.

Structured editor.

Shared library.

Tactic language: Classic ML.

Replay tool.
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Nuprl
ITT82 Types

Equality: a = b ∈ T

members: Ax.

Dependent function: a:A → B[a] �
members: f such that ∀a ∈ A, f (a) ∈ B[a]
(Extensional function equality.)

Dependent product: a : A× B[a] �
members: 〈a, b〉

Disjoint union: A + B

members: inl(a), inr(b)

Universe: Ui

A hierarchy of universes to avoid Girard’s paradox

Vincent Rahli Formal Optimization July 25, 2013 13/31



Nuprl
Types

Subtype: A ⊑ B

Quotient: T//E

Intersection: ∩a : A.B[a]

⋆Image: Img(T , f )

Subset: {a : A | B[a]} , Img(a : A× B[a], π1)

Union: ∪ a : A.B[a] , Img(a : A× B[a], π2)

Recursive type: rec(F )
where F is a monotone function on types [Men88].
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Nuprl
Types

Constructive domain theory:

Domain: Base
closed terms of the computation system quotiented by ∼

⋆Approximation: a � b

members: Ax

Computational equivalence: a ∼ b

members: Ax

⋆Partial types: T
contains all members of T as well as all divergent terms
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Nuprl
Types

True , 0 � 0

Void , False , 0 � 1

Top , ∩a : Void.Void

(Type,⊑,∩,∪, Top, Void) is a complete bounded lattice.
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Computational equivalence

A simple example:

let x , y = ⊥ in x ∼ ⊥?
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Computational equivalence

A simple example:

let x , y = ⊥ in x ∼ ⊥?

They have the same observable behavior.

How can we prove this equivalence?

We have to prove:

let x , y = ⊥ in x � ⊥

⊥ � let x , y = ⊥ in x
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Computational equivalence

⊥ � let x , y = ⊥ in x is trivial.

How about:
let x , y = ⊥ in x � ⊥

By definition of � we can assume:

halts(let x , y = ⊥ in x)

We added a rule that says:

if halts(let x , y = t in F ) then t ∼ 〈π1(t), π2(t)〉

(And similarly for all destructors.)
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Computational equivalence

{ We added rules to reason about the computation
system
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Computational equivalence

∀t : Top. map(f , map(g , t)) ∼ map(f ◦ g , t)?
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Computational equivalence

∀t : Top. map(f , map(g , t)) ∼ map(f ◦ g , t)?

map(f , t)

= fix



λR .λt.ispair





t,
let x , y = t in (f x) • R y ,
isaxiom(t, nil,⊥)







 t

List(T ) = rec(L.Unit ∪ T × L)

a list: 〈1, 〈2, 〈3, Ax〉〉〉
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Computational equivalence

{ We added the following least upper bound
property [Cra98]

H ⊢ G [fix(f )/x ] � t

BY [least-upper-bound]

H, n : N ⊢ G [f n(⊥)/x ] � t

We prove
map(f ◦ g , t) � map(f , map(g , t))

using [least-upper-bound] and then by induction on n.
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Computational equivalence
In the induction case, we end up with:

ispair





t,
let x , y = t in (f x) • R y ,
isaxiom(t, nil,⊥)



 � X

{ We added the following rule:

H ⊢ C ⌊ext ispair(t, a, b)[x\Ax]⌋
BY [ispairCases]

H ⊢ halts(t)
H ⊢ t ∈ Base

H, x : t ∼ 〈π1(t), π2(t)〉 ⊢ C ⌊ext a⌋
H, x : (∀[u, v : Base]. ispair(z , u, v ) ∼ v )[z\t] ⊢ C ⌊ext b⌋
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Computational equivalence

Process type:

corec(λP.A → P × Bag(B))

where

corec(G ) = ∩n : N.fix

(

λP.λn.if n =Z 0 then Top

else G (P (n − 1))

)

n

P = buffer((λn.λbuf .{n + buf }) o base(λm.{m}), {0})

⇓

P ′ = fix(λF .λs.λm.let x ::= m + s in 〈F x , {x}〉) 0
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Computational equivalence

{ P vs. P ′:

◮ 100/200 computation steps for P

◮ less than 10 computation steps for P ′
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Computational equivalence

{ P vs. P ′:

◮ 100/200 computation steps for P

◮ less than 10 computation steps for P ′

{ ShadowDB (replicated database implemented by Nicolas
Schiper):

◮ non-optimized code: 127 milliseconds

◮ optimized code: 60 milliseconds

◮ Lisp code: 5 milliseconds

◮ reference implementation: 1 millisecond
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Current and future work

{ Performance

◮ Identify more optimizations.

◮ Prove that our optimizations improve the runtime.

{ Nuprl

◮ Prove that our new types and rules are valid.
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