Formal Program Optimization in Nuprl
Using Computational Equivalence and
Partial Types

Vincent Rahli, Mark Bickford, Abhishek Anand

July 25, 2013

Vincent Rahli Formal Optimization July 25, 2013 1/31

Goals

Long term goal: Develop provably correct code.

Current Goals:

» Domain specific programming.

» Generate efficient code.

Work done as part of the CRASH project
(Correct-by-Construction Attack-Tolerant Systems) funded by
DARPA (Defense Advanced Research Projects Agency).

Vincent Rahli Formal Optimization July 25, 2013

2/31

Motivation

2 Formal specification, verification, and
implementation of asynchronous fault-tolerant systems.

Vincent Rahli Formal Optimization July 25, 2013 3/31

Motivation

2 Formal specification, verification, and
implementation of asynchronous fault-tolerant systems.

2 How efficient is our generated code?

Vincent Rahli Formal Optimization July 25, 2013 4/31

Motivation

2 Formal specification, verification, and
implementation of asynchronous fault-tolerant systems.

2 How efficient is our generated code?

2 It was not!

Vincent Rahli Formal Optimization July 25, 2013 5/31

Motivation

2 Formal specification, verification, and
implementation of asynchronous fault-tolerant systems.

2 How efficient is our generated code?
2 It was not!

2 Formal program optimization in an untyped setting.

2 More general
2 More efficient

Vincent Rahli Formal Optimization July 25, 2013 6/31

Nuprl

Computation System

A constructive type theory: CTT13 an evolution of CTT84
closely related to ITT82 [CAB*86, Kre02, ABCT06].

Untyped, deterministic, lazy, applied A-calculus with:
natural numbers, pairs, injections, fix operator, 1,
call-by-value operator,. . ..

Vincent Rahli Formal Optimization July 25, 2013 7/31

Nuprl

Computation System

2 meta-relations defined on top of the evaluation
function [How96]:

» approximation =

» computational equivalence ~ (a congruence).
a~b2a<bAb=a.

Vincent Rahli Formal Optimization July 25, 2013 8/31

Nuprl

Computation System

2 meta-relations defined on top of the evaluation
function [How96]:

» approximation =

» computational equivalence ~ (a congruence).
a~b2a<bAb=a.

CoInductive approx: term -> term -> Prop :=
| approxc : forall ti1 t2,
(forall op termsli,
computes_to t1 (Value op termsil)
-> exists terms2,
computes_to t2 (Value op terms2)
/\ forall a b, In (a,b) (combine termsl terms2)
-> approx a b)
-> approx tl t2.

Vincent Rahli Formal Optimization July 25, 2013

9/31

Nuprl

Computation System

For all terms t, L < t.
(L,1) <(2,1)
(Ax.x+1)2~3.

1 ~ fix(Ax.x).

halts(t) £ 0 < (let x ;= t in 0)

Vincent Rahli Formal Optimization July 25, 2013 10/31

Nuprl

Constructive evidence

Type system built on top of the untyped computation system.

A type is a partial equivalence relation on
A-terms [All87a, All87b].

2 2 equivalences: computational and semantic.

Computational semantics: applied A-terms provide evidence
for the truth of propositions.

A sequent H - C |ext t] means that C has computational
evidence (extract) t in context H.

Vincent Rahli Formal Optimization July 25, 2013 11/31

Nuprl

Environment
Distributed.
Runs in the cloud.
Structured editor.
Shared library.

Tactic language: Classic ML.

Replay tool.

Vincent Rahli Formal Optimization July 25, 2013 12/31

Nuprl
ITT82 Types
Equality: a=be T

members: Ax.

Dependent function: a:A — Ba] @
members: f such that Va € A, f(a) € B[a]
(Extensional function equality.)

Dependent product: a: A x B|a] %
members: (a, b)

Disjoint union: A + B
members: inl(a), inr(b)

Universe: U;
A hierarchy of universes to avoid Girard's paradox

Vincent Rahli Formal Optimization July 25, 2013

13/31

Nuprl

Types

Subtype: AC B
Quotient: T//E
Intersection: Na: A.B[a]

*xlmage: Img(T,f)
Subset: {a: A | Bla]} £ Img(a: A x B[a], m)
Union: Ua: A.BJa] = Img(a: A x Bla],)

Recursive type: rec(F)
where F is a monotone function on types [Men88].

Vincent Rahli Formal Optimization July 25, 2013

14/31

Nuprl

Types

Constructive domain theory:

Domain: Base
closed terms of the computation system quotiented by ~

*Approximation: a < b
members: Ax

Computational equivalence: a ~ b
members: Ax

«Partial types: T
contains all members of T as well as all divergent terms

Vincent Rahli Formal Optimization July 25, 2013 15/31

Nuprl

Types

True 20 =<0
Void £ False 20 <1
Top = Na : Void.Void

(Type, C,N, U, Top, Void) is a complete bounded lattice.

Vincent Rahli Formal Optimization July 25, 2013 16/31

Computational equivalence

A simple example:

let X,y =1 inx~ 17

Vincent Rahli Formal Optimization July 25, 2013 17/31

Computational equivalence

A simple example:

let x,y =1L in x~ 17

They have the same observable behavior.

How can we prove this equivalence?

Vincent Rahli Formal Optimization July 25, 2013

18/31

Computational equivalence

A simple example:

let x,y =1L in x~ 17

They have the same observable behavior.
How can we prove this equivalence?

We have to prove:

let x,y=1inx =X L
1 <let x,y=1 in x

Vincent Rahli Formal Optimization July 25, 2013

19/31

Computational equivalence

1 < let x,y = | in xis trivial.

How about:
let x,y =1 inx <X L

By definition of < we can assume:

halts(let x,y = L in x)

We added a rule that says:
if halts(let x,y =t in F) then t ~ (m(t), mo(t))

(And similarly for all destructors.)

Vincent Rahli Formal Optimization July 25, 2013

20/31

Computational equivalence

2 We added rules to reason about the computation
system

Vincent Rahli Formal Optimization July 25, 2013 21/31

Computational equivalence

Vt : Top. map(f,map(g, t)) ~ map(f o g, t)?

Vincent Rahli Formal Optimization July 25, 2013 22/31

Computational equivalence
Vt : Top. map(f,map(g,t)) ~ map(f o g, t)?
map(f, t)
£,

= fix | AR At.ispair | let x,y =t in (f x)e R y, t
isaxiom(t,nil, 1)

List(T) =rec(L.Unit U T x L)
alist: (1,(2,(3,Ax)))

Vincent Rahli Formal Optimization July 25, 2013 23/31

Computational equivalence

2 We added the following least upper bound
property [Cra98]

HE G[fix(f)/x] <t
BY [least-upper-bound]
H,n:NF G[f"(L)/x] <t

We prove
map(f o g, t) < map(f,map(g,t))

using [least-upper-bound] and then by induction on n.

Vincent Rahli Formal Optimization July 25, 2013 24/31

Computational equivalence
In the induction case, we end up with:

£,
ispair [let x,y=tin (f x)e Ry, | <X
isaxiom(t,nil, 1)

2 We added the following rule:

HF C |ext ispair(t, a, b)[x\Ax]]
BY [ispairCases]
H F halts(t)
H -t € Base
H,x it ~ (mi(t), ma(t)) F C |ext a]
H,x : (V[u, v : Base]. ispair(z,u,v) ~ v)[z\t] F C |ext b]

Vincent Rahli Formal Optimization July 25, 2013 25/31

Computational equivalence
Process type:
corec(AP.A — P x Bag(B))

where

o . (AP.An.if n =7z 0 then Top
corec(G)—ﬂn.N.flx(else G (P (n—l)))
P = buffer((An.Abuf .{n+ buf}) o base(Am.{m}), {0})

U
P' = fix(AF.As.Am.let x == m+s in (F x,{x})) 0

Vincent Rahli Formal Optimization July 25, 2013 26/31

Computational equivalence

2 Pus. P
» 100/200 computation steps for P
» less than 10 computation steps for P’

Vincent Rahli Formal Optimization July 25, 2013 27/31

Computational equivalence

2 Pus. P
» 100/200 computation steps for P
» less than 10 computation steps for P’

> ShadowDB (replicated database implemented by Nicolas
Schiper):

» non-optimized code: 127 milliseconds

» optimized code: 60 milliseconds

» Lisp code: 5 milliseconds

» reference implementation: 1 millisecond

Vincent Rahli Formal Optimization July 25, 2013 28/31

Current and future work

2 Performance

» ldentify more optimizations.

» Prove that our optimizations improve the runtime.

> Nuprl

» Prove that our new types and rules are valid.

Vincent Rahli Formal Optimization July 25, 2013 29/31

References |

@ Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori Lorigo, and
Evan Moran.
Innovations in computational type theory using Nuprl.
J. Applied Logic, 4(4):428-469, 2006
http://www.nuprl.org/

@ Stuart F. Allen.

A non-type-theoretic definition of martin-15f's types.
In LICS, pages 215-221. IEEE Computer Society, 1987.

@ Stuart F. Allen.

A Non-Type-Theoretic Semantics for Type-Theoretic Language.
PhD thesis, Cornell University, 1987

@ R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe,

T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
Implementing mathematics with the Nuprl proof development system.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986

@ Karl Crary.

Type-Theoretic Methodology for Practical Programming Languages.
PhD thesis, Cornell University, Ithaca, NY, August 1998.

@ Douglas J. Howe.
Proving congruence of bisimulation in functional programming languages.
Inf. Comput., 124(2):103-112, 1996

Vincent Rahli Formal Optimization July 25, 2013 30/31

http://www.nuprl.org/

References ||

ﬁ Christoph Kreitz.
The Nuprl Proof Development System, Version 5, Reference Manual and User’s Guide.
Cornell University, Ithaca, NY, 2002.
www.nuprl.org/html/02cucs-NuprlManual.pdf.

@ P.F. Mendler.

Inductive Definition in Type Theory.
PhD thesis, Cornell University, Ithaca, NY, 1988

Vincent Rahli Formal Optimization July 25, 2013 31/31

www.nuprl.org/html/02cucs-NuprlManual.pdf

	Goals
	Nuprl
	Computational equivalence
	Conclusion

