
Formal Program Optimization in Nuprl

Using Computational Equivalence and

Partial Types

Vincent Rahli, Mark Bickford, Abhishek Anand

July 25, 2013

Vincent Rahli Formal Optimization July 25, 2013 1/31



Goals

Long term goal: Develop provably correct code.

Current Goals:

◮ Domain specific programming.

◮ Generate efficient code.

Work done as part of the CRASH project

(Correct-by-Construction Attack-Tolerant Systems) funded by

DARPA (Defense Advanced Research Projects Agency).

Vincent Rahli Formal Optimization July 25, 2013 2/31



Motivation

{ Formal specification, verification, and
implementation of asynchronous fault-tolerant systems.

Vincent Rahli Formal Optimization July 25, 2013 3/31



Motivation

{ Formal specification, verification, and
implementation of asynchronous fault-tolerant systems.

{ How efficient is our generated code?

Vincent Rahli Formal Optimization July 25, 2013 4/31



Motivation

{ Formal specification, verification, and
implementation of asynchronous fault-tolerant systems.

{ How efficient is our generated code?

{ It was not!

Vincent Rahli Formal Optimization July 25, 2013 5/31



Motivation

{ Formal specification, verification, and
implementation of asynchronous fault-tolerant systems.

{ How efficient is our generated code?

{ It was not!

{ Formal program optimization in an untyped setting.

{ More general

{ More efficient

Vincent Rahli Formal Optimization July 25, 2013 6/31



Nuprl
Computation System

A constructive type theory: CTT13 an evolution of CTT84
closely related to ITT82 [CAB+86, Kre02, ABC+06].

Untyped, deterministic, lazy, applied λ-calculus with:
natural numbers, pairs, injections, fix operator, ⊥,
call-by-value operator,. . . .

Vincent Rahli Formal Optimization July 25, 2013 7/31



Nuprl
Computation System

2 meta-relations defined on top of the evaluation
function [How96]:

◮ approximation �

◮ computational equivalence ∼ (a congruence).
a ∼ b , a � b ∧ b � a.

Vincent Rahli Formal Optimization July 25, 2013 8/31



Nuprl
Computation System

2 meta-relations defined on top of the evaluation
function [How96]:

◮ approximation �

◮ computational equivalence ∼ (a congruence).
a ∼ b , a � b ∧ b � a.

CoInductive approx: term -> term -> Prop :=

| approxc : forall t1 t2,

(forall op terms1,

computes_to t1 (Value op terms1)

-> exists terms2,

computes_to t2 (Value op terms2)

/\ forall a b, In (a,b) (combine terms1 terms2)

-> approx a b)

-> approx t1 t2.

Vincent Rahli Formal Optimization July 25, 2013 9/31



Nuprl
Computation System

For all terms t, ⊥ � t.

〈⊥, 1〉 � 〈2, 1〉

(λx .x + 1) 2 ∼ 3.

⊥ ∼ fix(λx .x).

halts(t) , 0 � (let x := t in 0)

Vincent Rahli Formal Optimization July 25, 2013 10/31



Nuprl
Constructive evidence

Type system built on top of the untyped computation system.

A type is a partial equivalence relation on
λ-terms [All87a, All87b].

{ 2 equivalences: computational and semantic.

Computational semantics: applied λ-terms provide evidence
for the truth of propositions.

A sequent H ⊢ C ⌊ext t⌋ means that C has computational
evidence (extract) t in context H.

Vincent Rahli Formal Optimization July 25, 2013 11/31



Nuprl
Environment

Distributed.

Runs in the cloud.

Structured editor.

Shared library.

Tactic language: Classic ML.

Replay tool.

Vincent Rahli Formal Optimization July 25, 2013 12/31



Nuprl
ITT82 Types

Equality: a = b ∈ T

members: Ax.

Dependent function: a:A → B[a] �
members: f such that ∀a ∈ A, f (a) ∈ B[a]
(Extensional function equality.)

Dependent product: a : A× B[a] �
members: 〈a, b〉

Disjoint union: A + B

members: inl(a), inr(b)

Universe: Ui

A hierarchy of universes to avoid Girard’s paradox

Vincent Rahli Formal Optimization July 25, 2013 13/31



Nuprl
Types

Subtype: A ⊑ B

Quotient: T//E

Intersection: ∩a : A.B[a]

⋆Image: Img(T , f )

Subset: {a : A | B[a]} , Img(a : A× B[a], π1)

Union: ∪ a : A.B[a] , Img(a : A× B[a], π2)

Recursive type: rec(F )
where F is a monotone function on types [Men88].

Vincent Rahli Formal Optimization July 25, 2013 14/31



Nuprl
Types

Constructive domain theory:

Domain: Base
closed terms of the computation system quotiented by ∼

⋆Approximation: a � b

members: Ax

Computational equivalence: a ∼ b

members: Ax

⋆Partial types: T
contains all members of T as well as all divergent terms

Vincent Rahli Formal Optimization July 25, 2013 15/31



Nuprl
Types

True , 0 � 0

Void , False , 0 � 1

Top , ∩a : Void.Void

(Type,⊑,∩,∪, Top, Void) is a complete bounded lattice.

Vincent Rahli Formal Optimization July 25, 2013 16/31



Computational equivalence

A simple example:

let x , y = ⊥ in x ∼ ⊥?

Vincent Rahli Formal Optimization July 25, 2013 17/31



Computational equivalence

A simple example:

let x , y = ⊥ in x ∼ ⊥?

They have the same observable behavior.

How can we prove this equivalence?

Vincent Rahli Formal Optimization July 25, 2013 18/31



Computational equivalence

A simple example:

let x , y = ⊥ in x ∼ ⊥?

They have the same observable behavior.

How can we prove this equivalence?

We have to prove:

let x , y = ⊥ in x � ⊥

⊥ � let x , y = ⊥ in x

Vincent Rahli Formal Optimization July 25, 2013 19/31



Computational equivalence

⊥ � let x , y = ⊥ in x is trivial.

How about:
let x , y = ⊥ in x � ⊥

By definition of � we can assume:

halts(let x , y = ⊥ in x)

We added a rule that says:

if halts(let x , y = t in F ) then t ∼ 〈π1(t), π2(t)〉

(And similarly for all destructors.)

Vincent Rahli Formal Optimization July 25, 2013 20/31



Computational equivalence

{ We added rules to reason about the computation
system

Vincent Rahli Formal Optimization July 25, 2013 21/31



Computational equivalence

∀t : Top. map(f , map(g , t)) ∼ map(f ◦ g , t)?

Vincent Rahli Formal Optimization July 25, 2013 22/31



Computational equivalence

∀t : Top. map(f , map(g , t)) ∼ map(f ◦ g , t)?

map(f , t)

= fix



λR .λt.ispair





t,
let x , y = t in (f x) • R y ,
isaxiom(t, nil,⊥)







 t

List(T ) = rec(L.Unit ∪ T × L)

a list: 〈1, 〈2, 〈3, Ax〉〉〉

Vincent Rahli Formal Optimization July 25, 2013 23/31



Computational equivalence

{ We added the following least upper bound
property [Cra98]

H ⊢ G [fix(f )/x ] � t

BY [least-upper-bound]

H, n : N ⊢ G [f n(⊥)/x ] � t

We prove
map(f ◦ g , t) � map(f , map(g , t))

using [least-upper-bound] and then by induction on n.

Vincent Rahli Formal Optimization July 25, 2013 24/31



Computational equivalence
In the induction case, we end up with:

ispair





t,
let x , y = t in (f x) • R y ,
isaxiom(t, nil,⊥)



 � X

{ We added the following rule:

H ⊢ C ⌊ext ispair(t, a, b)[x\Ax]⌋
BY [ispairCases]

H ⊢ halts(t)
H ⊢ t ∈ Base

H, x : t ∼ 〈π1(t), π2(t)〉 ⊢ C ⌊ext a⌋
H, x : (∀[u, v : Base]. ispair(z , u, v ) ∼ v )[z\t] ⊢ C ⌊ext b⌋

Vincent Rahli Formal Optimization July 25, 2013 25/31



Computational equivalence

Process type:

corec(λP.A → P × Bag(B))

where

corec(G ) = ∩n : N.fix

(

λP.λn.if n =Z 0 then Top

else G (P (n − 1))

)

n

P = buffer((λn.λbuf .{n + buf }) o base(λm.{m}), {0})

⇓

P ′ = fix(λF .λs.λm.let x ::= m + s in 〈F x , {x}〉) 0

Vincent Rahli Formal Optimization July 25, 2013 26/31



Computational equivalence

{ P vs. P ′:

◮ 100/200 computation steps for P

◮ less than 10 computation steps for P ′

Vincent Rahli Formal Optimization July 25, 2013 27/31



Computational equivalence

{ P vs. P ′:

◮ 100/200 computation steps for P

◮ less than 10 computation steps for P ′

{ ShadowDB (replicated database implemented by Nicolas
Schiper):

◮ non-optimized code: 127 milliseconds

◮ optimized code: 60 milliseconds

◮ Lisp code: 5 milliseconds

◮ reference implementation: 1 millisecond

Vincent Rahli Formal Optimization July 25, 2013 28/31



Current and future work

{ Performance

◮ Identify more optimizations.

◮ Prove that our optimizations improve the runtime.

{ Nuprl

◮ Prove that our new types and rules are valid.

Vincent Rahli Formal Optimization July 25, 2013 29/31



References I

Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori Lorigo, and

Evan Moran.
Innovations in computational type theory using Nuprl.
J. Applied Logic, 4(4):428–469, 2006.
http://www.nuprl.org/ .

Stuart F. Allen.

A non-type-theoretic definition of martin-löf’s types.
In LICS, pages 215–221. IEEE Computer Society, 1987.

Stuart F. Allen.

A Non-Type-Theoretic Semantics for Type-Theoretic Language.
PhD thesis, Cornell University, 1987.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe,

T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
Implementing mathematics with the Nuprl proof development system.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

Karl Crary.

Type-Theoretic Methodology for Practical Programming Languages.
PhD thesis, Cornell University, Ithaca, NY, August 1998.

Douglas J. Howe.

Proving congruence of bisimulation in functional programming languages.
Inf. Comput., 124(2):103–112, 1996.

Vincent Rahli Formal Optimization July 25, 2013 30/31

http://www.nuprl.org/


References II

Christoph Kreitz.

The Nuprl Proof Development System, Version 5, Reference Manual and User’s Guide.
Cornell University, Ithaca, NY, 2002.
www.nuprl.org/html/02cucs-NuprlManual.pdf .

P.F. Mendler.

Inductive Definition in Type Theory.
PhD thesis, Cornell University, Ithaca, NY, 1988.

Vincent Rahli Formal Optimization July 25, 2013 31/31

www.nuprl.org/html/02cucs-NuprlManual.pdf

	Goals
	Nuprl
	Computational equivalence
	Conclusion

