
SML-TES, a type error slicer for SML:
from constraint generation to minimisation

Vincent Rahli
supervisors: Doctor J. B. Wells and Professor Fairouz Kamareddine

ULTRA group, MACS, Heriot-Watt University

January 21, 2010

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 1/37



The SML-TES team

Current Implementation (for full SML)

◮ Joe Wells: Theory and Implementation Consulting Advice and
Emacs Interface

◮ Fairouz Kamareddine: Theory Consulting

◮ Steven Shiells: Web Interface Implementation, Emacs Interface,
packaging

◮ David Dunsmore: Testing of the effectiveness of the Slicer

◮ Vincent Rahli: Type Error Slicer Theory and Implementation

Earlier Implementation (for a tiny subset of SML)

◮ Joe Wells: Theory and Implementation Consulting Advice

◮ Christian Haack: Type Error Slicer Theory and Implementation

◮ Sébastien Carlier: Web Interface Implementation

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 2/37



The SML programming language

◮ SML is a higher-order function-oriented imperative programming
language.

◮ It has polymorphic types.

◮ It has a safe (all program behavior is guaranteed to be well defined)
type system.

◮ It has a definition.

Syntax:

fun factorial 0 = 1

| factorial 1 = 1

| factorial n = n * factorial (n - 1)

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 3/37



W algorithm

◮ Most of SML’s implementation (e.g., SML/NJ) use type inference
algorithms based on the well known W algorithm.

◮ W uses a unification algorithm to infer the type of every application
in a term. W fails when unification fails. The only node blamed by
W is the node where unification failed.

◮ Because W blames only one node when failing and because of its
traversal of the abstract syntax trees, the type error reports can
sometimes be confusing and far away from the real programming
error locations.

let

...
@

...
...

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 4/37



W algorithm

Let the expression f be let val x = 0 in 1 :: x end

The infix constructor :: is one of the two list constructors (nil and ::).

If we assume that the type of 0 is different from the type of a list then
the expression f is not typable.

W fails when trying to infer a type for 1 :: x and its implementations
blame this location but not x = 0.

Using Standard ML of New Jersey v110.52 we obtain the following error
message:

Error: operator and operand don’t agree [literal]

operator domain: int * int list

operand: int * int

in expression:

1 :: x

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 5/37



Substitutes for W (1)

To summarise, W:

◮ identifies only one location as the error

◮ often identifies a location far away from the real error location

◮ often identifies locations which do not participate in the error

Other algorithms such as M or UAE try to report different locations but
suffer from the same problems.

All these algorithms try to report different locations but all suffer from
the same problem: they report only one location when a location set
is usually involved in a type error.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 6/37



Confusing error messages
An example using the SML/NJ compiler

(1) We intended to write:
fun g x y =

let val f = if x

then fn => fn z => z

else fn z => z

val u = (f, true)

in (#1 u) y

end

(2) We wrote:
fun g x y =

let val f = if y

then fn => fn z => z

else fn z => z

val u = (f, true)

in (#1 u) y

end

(1) for example g true (fn x => x + 1) 2 evaluates to 2 and
g false (fn x => x + 1) 2 evaluates to 3.

(2) Using Standard ML of New Jersey v110.52 we obtain the following
error message:

Error: operator and operand don’t agree [tycon mismatch]

operator domain: ’Z -> ’Z

operand: bool

in expression:

((fn {1=<pat>,...} => 1) u) y

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 7/37



Confusing error messages
An example using the SML/NJ compiler

fun g x y =

let val f = if y

then fn => fn z => z

else fn z => z

val u = (f, true)

in (#1 u) y

end

Error: operator and operand don’t agree [tycon mismatch]

operator domain: ’Z -> ’Z

operand: bool

in expression:

((fn {1=<pat>,...} => 1) u) y

In this example, the programmer’s error is not too far away from the
reported location. It is not always the case: the real error location might
even be in another file.

Problems:

◮ SML/NJ reports only one location

◮ the reported location is far from the real error location

◮ ’Z -> ’Z is an internal type made up by SML/NJ

◮ the reported expression does not match the source code

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 8/37



SML/NJ: an implementation of W

We reported that SML/NJ’s inference algorithm is based on W.

We saw that SML/NJ’s reports are:

◮ Biased: it reports only one location far from the real error location.

◮ Mechanical: it reports internal type variables (’Z).

◮ Non source-based: the reported expression does not match the
source code. The code gets transformed before being reported.

As reported by Yang et al. [YWTM01], a “good” report should be:
correct (reports errors only for pieces of code that are ill-typed)
precise (reports no more than the conflicting portions of code)
succinct (short reports)
non-mechanical (no internal mechanical details)
source-based (reports only portions of source code)
unbiased (no location is privileged over the others in an error)
comprehensive (reports all the conflicting portions of code)

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 9/37



New type inference algorithms

How to obtain all the locations participating in an error?

Earlier inference algorithms use a unification algorithm during their
process.

New algorithms [HW04, PR05, SSW06], split the two processes:

◮ Generation of type constraints for a given expression.

Let us consider the following declaration d : val x = 1.
At constraint generation (where α is a type variable):

val x = 1

x = α α = int

◮ Application of a unification algorithm to the generated constraints.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 10/37



Substitutes for W (2)

New approaches to type error reporting:

◮ Haack and Wells’s type error slicer [HW04] for SML.

◮ Neubauer and Thiemann’s type error slicer [NT03] based on flow
analysis and union types.

◮ Stuckey, Sulzmann and Wazny’s type error slicer [SSW06] for
Haskell implemented in their Chameleon framework.

◮ Lerner, Flower, Grossman and Chambers’s approach [LFGC07]
consisting in using different heuristics to build a well-typed program
from an ill-typed one.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 11/37



The type error slicing project
Haack and Wells’s type error slicer

◮ The type error slicer developed by Haack and Wells [HW04] relies on
a constraint-based type inference algorithm.

◮ As for similar projects [Wan86, HJSA02, SSW06], “reasons” are
associated to the generated constraints to keep track of the
locations responsible for the type deductions.
A label is associated to (almost) each term:

1
l : α

α
{l}
= int

(1l : α means that the type α is associated to the labelled term 1
l .)

◮ A type error is identified as a (minimal) set of reasons.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 12/37



The type error slicing project
Haack and Wells’s type error slicer

◮ A slice is a program in which some nodes have been discarded (e.g.,
from 1 + true, one can generate 〈..〉 + true).

◮ A type error slice is minimal if it is untypable and any smaller slice is
typable (e.g., 〈..〉 + true is a minimal type error slice).

◮ Haack and Wells’s type error slicer computes a minimal slice from a
minimal set of reasons.

◮ They also highlight the slices in the source code.

◮ These minimal slices present all and only the information needed by
the programmer to repair its errors.

◮ Their slicer handles a small extension of the terms typable by HM.

◮ Haack and Wells’s slicer meet the criteria listed in [YWTM01].

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 13/37



The type error slicing project
The steps of Haack and Wells’s slicer

3 main steps:

◮ Generations of type constraints for a given term.

1
l2 +l1 true

l3

{α1
{l1}
= α2×α3→α4, α1

{l1}
= int×int→int, α2

{l2}
= int, α3

{l3}
= bool}

◮ Enumeration of the minimal unsatisfiable sets of constraints.

{l1, l3}

◮ Computation of a slice from each minimal set of reasons.

〈..〉 + true

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 14/37



The type error slicing project
The steps of Haack and Wells’s slicer

A label set called filters (search space) is maintained during enumeration.

When enumeration starts, the filter set is {∅}.

An enumeration step is as follows:

◮ We select a filter filter from the filter set.

◮ We unify the constraints which are not labelled by filter .
◮ If the constraint set is solvable then filter is discarded.
◮ Otherwise, we obtain a type error labelled by a label set l .

◮ We minimise this error and obtain a smaller error labelled by l
′

⊆ l .
◮ We create new filters as follows: {{l} ∪ filter | l ∈ l

′

}.
◮ We discard filter and augment our filter set with the new ones. (This

insure that the enumerated errors are disjoint from each others.)

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 15/37



The type error slicing project
The steps of our type error slicer

User interface

Constraint
generation

Piece
of code

Constraint
set

Slicing

Slice

Error

Error

Initial
filter set

Filter

Enumeration

Unification

Failure Success

Minimisation
(relies on unification)

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 16/37



The type error slicing project
Why a new type error slicer?

We aim to:

◮ Extend Haack and Wells’s type error slicer to the full SML language.

◮ Provide detailed highlighting and slices for every SML feature.

The main differences with similar approaches (e.g., Stuckey, Sulzmann
and Wazny’s approach [SSW06]) is that:

◮ We provide detailed slices where every location participating in errors
is present in our slices and highlighting. For example we highlight
parts of datatype declarations when participating in type errors.

◮ Another example is white spaces, such as the white spaces between
the two terms of an application when the first term is not a function.

◮ We deal with SML so, as with any programming language, we have
to deal with its particularities: non-lexical distinction between
datatype constructors and value variables or value polymorphism
restriction.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 17/37



Extension of Haack and Wells’s type error slicer
Example

Example of a datatype declaration:
datatype Nat = Z | S of Nat

and LC = VAR of Nat

| ABS of LC

| APP of (LC * LC)

val term = APP (VAR Z) (VAR Z)

Two explanations:

The datatype constructor APP is
applied to two arguments but takes
only one.

datatype Nat = Z | S of Nat

and LC = VAR of Nat

| ABS of LC

| APP of (LC * LC)

val term = APP (VAR Z) (VAR Z)

The datatype constructor VAR is a LC

constructor and not a tuple
constructor.

datatype Nat = Z | S of Nat

and LC = VAR of Nat

| ABS of LC

| APP of (LC * LC)

val term = APP (VAR Z) (VAR Z)

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 18/37



Extension of Haack and Wells’s type error slicer
Example

Example of a datatype declaration:
datatype Nat = Z | S of Nat

and LC = VAR of Nat

| ABS of LC

| APP of (LC * LC)

val term = APP (VAR Z) (VAR Z)

Two explanations:

The datatype constructor APP is
applied to two arguments but takes
only one.

datatype Nat = Z | S of Nat

and LC = VAR of Nat

| ABS of LC

| APP of (LC * LC)

val term = APP (VAR Z) (VAR Z)

The datatype constructor VAR is a LC

constructor and not a tuple
constructor.

datatype Nat = Z | S of Nat

and LC = VAR of Nat

| ABS of LC

| APP of (LC * LC)

val term = APP (VAR Z) (VAR Z)

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 19/37



Extension of Haack and Wells’s type error slicer
Old constraint generation

Let us consider the following function:
fun f x =

let val g = fn h => x h

in (g 1, g true)

end

Let us assume that the constraint generator generates:

◮ 〈env 1, α1, c1〉 for val g = fn h => x h

◮ 〈env ∪ {g
{l}
= α, g

{l′}
= α

′}, α0, c〉 for (g 1, g true),

The environments are for free identifiers, e.g., env1 contains a constraint

of the form x
{l2}
= α4.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 20/37



Extension of Haack and Wells’s type error slicer
Old constraint generation

fun f x =

let val g = fn h => x h

in (g 1, g true)

end

The old approach to constraint generation would duplicate and rename
the type variables of c1 twice for the two occurrences of g in g’s scope.

〈env1, α1, c1〉

〈env 2, α2, c2〉 〈env3, α3, c3〉

〈env ⊔ env2 ⊔ env3, α0, {α2
{l1}
= α, α3

{l1}
= α

′} ∪ c ∪ c2 ∪ c3〉

〈env ∪ {g
{l}
= α, g

{l′}
= α

′}, α0, c〉

rena
ming renaming

Combinatorial explosion of the number of constraints.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 21/37



Extension of Haack and Wells’s type error slicer
New constraint generation

fun f x =

let val g = fn h => x h

in (g 1, g true)

end

We want to do better.

We introduce binders (bind) of the form: 〈α1, α2, l〉 and new constraints:
bind bind(c1) in c2 (where bind is a binding set).

For the piece of code above, we generate two binders: 〈α, α1, l1〉 and
〈α′

, α1, l1〉 because g’s first occurrence binds its two other occurrences.

The constraint set generated for the let-expression would then be:

{bind {〈α, α1, l1〉, 〈α
′
, α1, l1〉}(c1) in c}

We do not duplicate constraints at constraint generation but we duplicate
types when unifying the generated constraints. It is more cost-effective.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 22/37



Extension of Haack and Wells’s type error slicer
Any inconvenience?

fun f x =

let val g = fn h => x h

in (g 1, g true)

end

Back to the old approach...

We keep track of the free identifiers’ types in type environments.

◮ When generating the constraint set for the let-expression we have in

our type environment before duplication: x
{l2}
= α4

◮ After duplication: x
{l2}
= α5, x

{l2}
= α6

◮ The type variables α5 and α6 are then constrained to be equal.

Old approach: ordinary constraints used to handle the monomorphism.
New approach: not enough anymore.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 23/37



Extension of Haack and Wells’s type error slicer
Inconvenience in our new approach during unification

fun f x =

let val g = fn h => x h

in (g 1, g true)

end

In our new approach, when solving:

bind {〈α, α1, l1〉, 〈α
′
, α1, l1〉}(c1) in c

◮ We first solve c1.

◮ Using the generated unifier we build up a type equivalent to α1.
In our example it would be a type τ of the form: α7→α8.
It also happens that x’s type is equivalent to α7→α8.

◮ We generalise g’s type τ twice, to get two types τ1 and τ2 and we

generate two constraints from our two bindings: α
l
= τ1 and α

′ l
= τ2

(where l is generated along with τ).

◮ And we continue the process by solving c .

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 24/37



Extension of Haack and Wells’s type error slicer
Inconvenience in our new approach during unification

fun f x =

let val g = fn h => x h

in (g 1, g true)

end

◮ The problem is that when generalising τ we now have to take care
not to generalise monomorphic type variables.

◮ In our example we have to mark x’s type as being not generalisable
when unifying the bind-constraint, but we also have to mark α7 and
α8 has being not generalisable because x’s type depends on both of
them. g’s type is monomorphic because equivalent to x’s type

◮ We have to have some mechanism to keep track of the non
generalisable type variables.

In our approach α7 and α8 are computed as non generalisable and
marked as so before generalising τ and unmarked after generalisation.
Didier Rémy [DR92] uses ranks to distinguish generalisable and non
generalisable type variables. We might want to adopt this solution.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 25/37



Extension of Haack and Wells’s type error slicer
Old minimisation

The old minimisation algorithm consists in building up a unifier along
with a smaller error.

It takes as inputs:

◮ an error (label set) l and

◮ a constraint set c .

Because l is an error, the constraint set from c labelled by l only is
unsolvable.

We start with an empty unifier uni and an empty l0.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 26/37



Extension of Haack and Wells’s type error slicer
Old minimisation

The old minimisation algorithm works as follows.

◮ Using uni , we run the unification algorithm on the constraint set
labelled by l \ l0 and we single out the label l of the last constraint
unified before failure. (When generated constraints are labelled by a
unique label.)

◮ This label has the particularity to be in all the errors smaller than
the error returned by the unification.

◮ Using uni , if the unification of the constraints labelled by l only
leads to a failure then we have our new error: {l} ∪ l0. Otherwise, it
is a success and the unification algorithm returns a unifier. We then
start again from the first step with this new unifier. We also move l

from l to l0.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 27/37



Extension of Haack and Wells’s type error slicer
Problem with old minimisation/new constraints?

Let us consider the following piece of code:
val x = true

val y = x + 1

The old minimisation algorithm would:

◮ single out the label associated to x’s second occurrence and update
the unifier,

◮ single out the label associated to + and update the unifier,

◮ single out the label associated to x’s first occurrence and update the
unifier.

At this point x’s type has been generalised and because it is not yet
related to true, it is a new type variable which is not related to any type
variable in the initial constraint set.

The algorithm would then fail because at the next step the constraint set
would be typable given the current unifier.

Unsuitable minimisation algorithm.
Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 28/37



Extension of Haack and Wells’s type error slicer
New minimisation

We then designed a new minimisation algorithm.

Instead of building up a new error by adding labels to an empty label set
as in the old algorithm, we minimise the current error by removing labels
from it.

The algorithm works in two phases:

◮ The unbind phase which consists in removing labels at binding
position.

◮ The reduce phase which consists in removing labels at any position.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 29/37



Extension of Haack and Wells’s type error slicer
New minimisation

Let us consider the following piece of code:
fun not true = false

| not false = true

fun toTrue = true

fun f bool g = if g bool

then not bool

else toTrue bool

val = f true (fn x => x + 1)

The enumeration algorithm enumerates:

〈..fun 〈..〉 〈..〈..toTrue 〈..〉 = true..〉..〉
..fun 〈..〉 〈..〈..f bool g = if g bool

then 〈..〉
else toTrue 〈..〉..〉..〉

..f true (fn 〈..x => 〈..x + 〈..〉..〉..〉)..〉

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 30/37



Extension of Haack and Wells’s type error slicer
New minimisation

The enumeration algorithm enumerates:

〈..fun 〈..〉 〈..〈..toTrue 〈..〉 = true..〉..〉
..fun 〈..〉 〈..〈..f bool g = if g bool

then 〈..〉
else toTrue 〈..〉..〉..〉

..f true (fn 〈..x => 〈..x + 〈..〉..〉..〉)..〉

toTrue’s declaration is discarded at unbind phase:

〈..fun 〈..〉 〈..〈..f bool g = if g bool

then 〈..〉
else 〈..〉..〉..〉

..f true (fn 〈..x => 〈..x + 〈..〉..〉..〉)..〉

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 31/37



Extension of Haack and Wells’s type error slicer
New minimisation

toTrue’s declaration is discarded at unbind phase:

〈..fun 〈..〉 〈..〈..f bool g = if g bool

then 〈..〉
else 〈..〉..〉..〉

..f true (fn 〈..x => 〈..x + 〈..〉..〉..〉)..〉

The conditional is discarded at reduce phase:

〈..fun 〈..〉 〈..〈..f bool g..= 〈..g bool..〉..〉..〉
..f true (fn 〈..x => 〈..x + 〈..〉..〉..〉)..〉

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 32/37



Extension of Haack and Wells’s type error slicer
New minimisation

Initial piece of code:
fun not true = false

| not false = true

fun toTrue = true

fun f bool g = if g bool

then not bool

else toTrue bool

val = f true (fn x => x + 1)

Final slice:

〈..fun 〈..〉 〈..〈..f bool g..= 〈..g bool..〉..〉..〉
..f true (fn 〈..x => 〈..x + 〈..〉..〉..〉)..〉

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 33/37



Extension of Haack and Wells’s type error slicer
Minimality

Aim: provide minimal slices for untypable pieces of code.

A slice is minimal if it is untypable and if every smaller slice is typable.

A slice is smaller than another slice if it contains less nodes and if the
bindings are not changed. For example

fn x => (〈..x..〉, x)

is smaller than
fn x => (x, x)

but is not smaller than

fn x => (fn x => x, x)

Issues:
◮ We need constraint generation rules for dot terms (〈..x..〉) as well.
◮ We do not prove that our slices are actually minimal.
◮ We do not actually check this condition in our slicer.
◮ Minimality does not always seems to be the correct answer.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 34/37



Extension of Haack and Wells’s type error slicer
Minimality: merging, free identifiers

Merging of slices for field record clashes.
We want:

val {foo,bar} = {fool=0,bar=1}

and not:

val {foo,bar} = {fool=0,bar=1}
val {foo,bar} = {fool=0,bar=1}

Free identifiers.
We prefer:

type t = int

val y : t = 1

val x = z + y

instead of something like:

type t = int

val y : t = 1

val x = z + y

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 35/37



Conclusion

We saw:

◮ SML-TES’s steps

◮ A challenge w.r.t. constraint generation.

◮ A challenge w.r.t. unification.

◮ A challenge w.r.t. minimisation.

◮ Challenges w.r.t. minimality.

What’s next:

◮ Tests on real users.

◮ Implement support for important features of SML such as open.

◮ Develop a faster minimisation algorithm.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 36/37



Didier Remy.

Extension of ML type system with a sorted equation theory on types.
Technical Report RR-1766, INRIA, 1992.
Projet FORMEL.

Bastiaan Heeren, Johan Jeuring, Doaitse Swierstra, and Pablo Azero Alcocer.

Improving type-error messages in functional languages.
Technical report, Utrecht University, 2002.

Christian Haack and J. B. Wells.

Type error slicing in implicitly typed higher-order languages.
Science of Computer Programming, 50(1-3):189–224, 2004.

Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers.

Searching for type-error messages.
In ACM SIGPLAN 2007 Conference PLDI. ACM, 2007.

Matthias Neubauer and Peter Thiemann.

Discriminative sum types locate the source of type errors.
In 8th ACM SIGPLAN Int’l Conference, ICFP 2003, pages 15–26. ACM, 2003.

Franois Pottier and Didier Rémy.

The essence of ML type inference.
In Benjamin C. Pierce, editor, Advanced Topics in Types and Programming Languages, chapter 10, pages 389–489. MIT Press,
2005.

Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny.

Type processing by constraint reasoning.
In 4th Asian Symp., APLAS 2006, volume 4279 of LNCS, pages 1–25. Springer, 2006.

Mitchell Wand.

Finding the source of type errors.
In 13th ACM SIGACT-SIGPLAN Symp., POPL’86, pages 38–43, New York, NY, USA, 1986. ACM.

J. Yang, J. Wells, P. Trinder, and G. Michaelson.

Improved type error reporting.
In 12th Int’l Workshop, IFL 2000, volume 2011 of LNCS, pages 71–86. Springer, 2001.

Vincent Rahli SML-TES, a type error slicer for SML January 21, 2010 37/37


