
EventML: Specification, Verification, and

Implementation of Crash-Tolerant State Machine

Replication Systems

Vincent Rahli✩

SnT, University of Luxembourg, Luxembourg

David Guaspari

Mark Bickford

Cornell University, Ithaca, NY, USA

Robert L. Constable

Cornell University, Ithaca, NY, USA

Abstract

Distributed programs are known to be extremely difficult to implement, test,
verify, and maintain. This is due in part to the large number of possible unfore-
seen interactions among components, and to the difficulty of precisely specifying
what the programs should accomplish in a formal language that is intuitively
clear to the programmers. We discuss here a methodology that has proven
itself in building a state of the art implementation of Multi-Paxos and other
distributed protocols used in a deployed database system. This article focuses
on the logical foundations as well as the basic ideas of formal EventML pro-
gramming, illustrated by implementing a fault-tolerant consensus protocol and
showing how we prove its safety properties with the Nuprl proof assistant.

Keywords: Nuprl; EventML; Functional programming; Formal methods;
Formal verification; Interactive theorem proving; Distributed systems; Fault
tolerance; Event logic; Event-based programming

✩This work was partially supported by the DARPA CRASH project, award number FA8750-
10-2-0238, by the SnT, and by the National Research Fund Luxembourg (FNR), through
PEARL grant FNR/P14/8149128.

Email address: vincent.rahli@gmail.com (Vincent Rahli✩)
URL: markb@cs.cornell.edu (Mark Bickford), rc@cs.cornell.edu (Robert L.

Constable)

Preprint submitted to Elsevier May 16, 2017

1. Introduction

Protocol Specification, Verification, and Synthesis. There is good evi-
dence that appropriate formal methods can substantially improve the reliability
of distributed protocols and that such methods are especially valuable for this
kind of programming because of its intrinsic complexity. We have invested in
this line of work for several years, using constructive logic because it supports
provably correct code synthesis from proofs and because aspects of distributed
computing are essentially constructive: agents make decisions according to some
local information, and a protocol specifies how that information is acquired.
“Provably correct” here means that machine checked proofs guarantee that pro-
grams satisfy desired correctness properties.

One reason that distributed systems are especially difficult to code correctly
and maintain is that there are many intricate failure scenarios to consider. Fail-
ure scenarios can be hard to generate and testing them all is usually not possible.
Model checkers are often used to verify that distributed systems are correct [64,
3, 14, 30, 59]. However, only models of the actual code are verified correct, and
such tools may not be able to exhaustively search the space of failure scenarios.
Proof assistants allow one to provide definitive arguments.

We use the EventML language to develop protocols. EventML works syner-
gistically with the Nuprl proof assistant [21, 4], which is closely related to the
Coq [9, 22] proof assistant. Nuprl is a programing/logical environment based on
Constructive Type Theory (CTT) [21, 4], that allows one both to prove math-
ematical results, and to program and prove properties about these programs,
and do this in a single formal method tool.

EventML. EventML is a domain-specific ML-like functional programming lan-
guage for distributed protocols based on asynchronous message passing. It al-
lows developing distributed programs in an event-based style, hence the name
“EventML”. The language provides combinators to implement what can be re-
garded as event recognizers and event handlers. EventML is based on two formal
models of distributed computing implemented in Nuprl: (1) the Logic of Events
(LoE) [10, 11] to specify and reason about the information flow of distributed
program runs, (2) a General Process Model (GPM) [12] to implement these
information flows. The semantic meaning of an EventML program is expressed
both by a LoE formula and a GPM program. Because of this dualism we also
refer to EventML programs as constructive specifications.

Currently, EventML docks with Nuprl, but in principle can connect to any
prover that implements LoE and GPM. Because every EventML type is a Nuprl
type, docking means that any Nuprl expression whose type is an EventML type
can be imported into an EventML program.

The diagram below shows the interaction between EventML and Nuprl.
Once we have extracted the semantic meaning of an EventML specification
in terms of a LoE formula and a GPM program, we automatically prove that
the program satisfies the formula. It remains to interactively prove that the
LoE formula satisfies the desired correctness properties.

2

Computation Model. EventML’s computation model is based on GPM. A
process is one of two things: the “possibly” still running process run(f) where f

is a function that given an input of type A, generates a (possibly empty) bag1 of
outputs of type B, and becomes a possibly different process; or a special value
called halt, that is used to denote a terminated process. Formally, a process
that takes inputs of type A, and outputs elements of type B, is an element of
the following coinductive type (the definition of the Nuprl corec type is outside
the scope of this paper): corec(λP.(A → P × Bag(B))+Unit), where Unit is
a singleton type; × is the type of pairs; and + is the disjoint union type, i.e.,
the type of left and right injections. Therefore run(f) is defined as inl(f), and
halt is defined as inr(⋆), where ⋆ is Unit’s only inhabitant. Because GPM
is implemented in Nuprl, a process is a Nuprl program (i.e., an expression of
Nuprl’s programming language, an untyped λ-calculus) that can be executed by
interpreting it according to the rules of Nuprl’s computation system.

The Logic of Events. The Logic of Events (LoE) [10, 11], related to Lamport’s
notion of causal order [39], was developed to reason about events occurring in
the execution of a distributed system. LoE has been used among other things
to verify consensus protocols [60] and cyber-physical systems [5]. In the context
of this paper, an event is an abstract entity corresponding to the reception of
a message2. An event happens at a specific point in space/time. The space
coordinate of an event is called its location, and the time coordinate is given
by a well-founded causal ordering on events that totally orders all events at the
same location. Using LoE one can specify a system by describing how it reacts
to events.

Automation. Formally verifying distributed protocols is not trivial and can be
time consuming. However, because we are using a tactic-based proof assistant
in the style of LCF [28], there is much room for automation. We have built two
main automation tools to assist us in proving properties of distributed systems.

From an EventML specification we automatically generate an inductive log-

ical form (ILF), a first-order formula that characterizes the response to any

1In Nuprl, the bag type is the list type quotiented by the permutation relation.
2Formally events are more general than that because they might correspond to something

else than just the reception of messages.

3

Figure 1 Example of a message sequence diagram

L1 L2
`̀ echo`̀

•
e1

`̀ forward`̀
• e2

`̀ ackn`̀
•e3

event e in terms of the information computed at locally prior events (hence
the word inductive). ILFs are the heart of our verification method, providing a
powerful way to prove program properties by induction on causal order.

In addition, we have automated some patterns of reasoning on state ma-
chines, because specifications are typically composed of several small state ma-
chines.

Contributions. This paper introduces basic ideas of EventML, which is a
domain specific programming language (DSL) that implements a paradigm in
which programmers can flexibly use constructive proof assistants such as Nuprl
or Coq to develop verified distributed programs. EventML itself is implemented
in SML [47]. One characteristic of EventML is that it relies on combinators
that have well-defined semantics in both GPM and LoE, which allows us to
automate a large part of the reasoning necessary to connect the correctness
of the running code to high-level correctness arguments. First, we introduce
our Logic of Events in Sec. 2. Then, we show how EventML can be used
to define a non-trivial fault-tolerant consensus protocol in Sec. 3, prove the
safety properties of this protocol in Sec. 4 using automation tools described in
Sec. 5, and generate a verified implementation in Sec. 6, all of that in a single
formal method tool. Sec. 7 presents EventML’s syntax and static semantics.
Even though we illustrate our methodology on a simple consensus protocol,
we have successfully used this methodology to implement industrial strength
fault-tolerant distributed protocols such as Multi-Paxos [39, 57]. More material
can be found at the following address: http://nuprl.org/KB/show.php?ID=709. This
paper is based on results presented in [53, 55].

2. The Logic of Events

2.1. Event Orderings

In order to reason about a distributed system, one often reasons about its
possible runs, which are sometimes modeled as execution traces [58]. In LoE,
system runs are captured using the notion of an event ordering. An event

ordering is an abstract representation of one run of a distributed system; it
provides a formal definition of a message sequence diagram as used by systems
designers (Fig. 1 provides an example of a simple message sequence diagram).
As opposed to [58], a trace here is not just one sequence of events but instead
can be seen as a collection of local traces (one local trace for each process),

4

http://nuprl.org/KB/show.php?ID=709

where a local trace is a collection of events all happening at the same location
and ordered in time, and such that some events of different local traces are
causally ordered. For example, when interpreted as a trace, Fig. 1 shows two
local traces, one at location L1 and one at location L2. We express system
properties as predicates on event orderings. A system satisfies such a property
if every possible execution of the system satisfies the predicate.

An event ordering is formally defined as a dependent record, which can be
expressed as follows using some ML-like notation:

t ype EventOrde r i ng = {
Event : Type ;
l o c : Event → Loc ;
c a u s a l O r d e r : Event → Event → Prop ;
pred : Event → Event ;
i n f o : Event → Message

}

where Loc is the type of physical locations, which could for example be the type
of pairs of the form IP address/port number; loc is a function that associates
a physical location with each event; causalOrder is a causal ordering relation on
events [39], which we write as <; pred is a function that given an event e, either
returns its local predecessor if it has one, or returns e if it does not have one;
info associates primitive information with each event, which, in this paper, is
simply a message.

A message is a pair of a header h and a body b, such that the type of b de-
pends on h. To achieve this, each specification provides a function from headers
to types. In this paper we represent a header as a list of characters surrounded
by double back-quotes. Given a message m of the form (h, b), header(m) re-
turns h, and body(m) returns b.

We define e <loc e′ as e < e′ ∧ loc(e) = loc(e′). We sometimes write EO for
the type of event orderings. For readability our notation often suppresses event
ordering variables. Thus we write Event for the component of event ordering eo

that specifies its events, rather than writing Event(eo)—and we do the same for
the other components. We also sometimes write E instead of Event.

The components of an event ordering must satisfy the following axioms:

• The causal ordering relation < is a transitive and well-founded relation.

• Equality between events is decidable.

• The local predecessor of an event e happens at the same location as e:
loc(e)=loc(pred(e)).

• If an event e is not the initial event at its location, i.e., pred(e)=e′ such
that e 6= e′, then e′ happens causally before e, i.e., e′ < e.

• An event e is the initial event at its location, i.e., pred(e)=e iff for all event
e′ such that loc(e)=loc(e′), e < e′.

5

• The predecessor function is injective, i.e., if pred(e)=pred(e′) then e = e′.

• If e1 <loc e2 and pred(e2)=e then either e = e1 or e1 < e.

For example, the message sequence diagram presented in Fig. 1 depicts a
simple event ordering. Event e1 corresponds to the reception of a message
with header `̀ echo`̀ at location L1. Upon receipt of that `̀ echo`̀ message, L1

forwards it to L2, which causes e2. Upon receipt of that `̀ forward`̀ message, L2

sends an acknowledgment to L1, which causes e3. Events e1 and e3 have same
location, and e1 happens causally before e2, which happens causally before e3,
i.e., e1 < e2, e2 < e3, and e1 <loc e3.

2.2. Event Observers

In LoE, we specify systems by defining and combining event observers [10].
An event observer is an abstraction of a process. It is a function that assigns to
any event ordering eo and event e in the event ordering eo, an unordered bag
of outputs observed/produced at e. The type of event observers that observe
expressions of type T is formally defined as follows:

Obs(T) = eo:EO → e:E → Bag(T)

For example, the following observer of type Obs(Loc), where Loc is the type
of locations, recognizes every event and observes its location: λeo.λe.{loc(e)},
where {v} is the singleton bag containing v.

Event observers can be regarded as combinations of event recognizers and
event handlers: they effectively partition events into those they “recognize” by
associating values to those events, and those they do not. For example, the
above location observer, recognizes all events and handles them by returning
their locations. Sec. 3 below introduces several event observers. For example,
the base observer denoted vote’base recognizes the arrival of any message with
header `̀ vote`̀ and handles that event by simply returning the content of the
message3. Formally, a base observer that recognizes headers of the form h is
defined as follows:

λeo.λe.if h=header(info(e)) then {body(info(e))} else {}

where {} is the empty bag. We may define another observer, call it X, which
recognizes that, in the context of some protocol, certain `̀ vote`̀ messages signify
that the protocol has completed and will assign to such an event a value that
means “send the ‘done’ message to Y.” X will recognize some but not necessarily
all `̀ vote`̀ events; and the values that it assigns to them differ from the values
assigned by vote’base.

We specify systems in LoE and EventML by defining and combining such
event observers that appropriately classify system events. Note that an event

3It associates the event with a singleton bag whose value is the message body.

6

observer can make observations at several locations, possibly at an infinite num-
ber of locations if the location type is infinite. This is for example the case of
the location observer defined above, which observes the location of every event.

2.3. Event Observer Relation

We reason about event observers in terms of the event observer relation,
which relates events, observers, and observations: we say that the event ob-
server X observes v at event e (in an event ordering eo), and write v ∈ X(e),
if v is a member of the bag (X eo e). As mentioned above, for readability our
notation suppresses eo. X recognizes e when (X eo e) is nonempty, in which
case we also say that e is an X -event.

An EventML specification describes event observers that produce and con-
sume expressions, such as messages, and especially, it describes a main observer

that specifies the entire information flow of a system. Main observers output
directed messages represented by pairs location/message. Given a directed mes-
sage (l, m), the communication system attempts to deliver message m to loca-
tion l. This directed message can be seen as the instruction “send message m

to location l”.

2.4. Event Observer Characterization

To reason about a system, one reasons about the observations of its main
observer. Typically, a safety property of a system specified by a main event
observer X is of the form: if (l1 , m1) ∈ X(e1), . . . , (ln, mn) ∈ X(en), then
some property P holds about m1, . . . , mn. Again, typically, one proves such
a property by tracing back the outputs (l1, m1),. . . ,(ln, mm) to inputs of the
system, from which P follows. Therefore, to trace back outputs to inputs, we
have to be able to characterize the observations of an event observer in terms
of the observations made by its sub-components.

Parallel Combinator. Let us illustrate how this is done using our parallel
combinator X||Y , which, in terms of processes, runs the two processes X and Y

in parallel. This combinator is formally defined as follows:

λeo.λe.(X eo e) + (Y eo e)

i.e., it observes the outputs of both X and Y at e. The operator + is the append
operator on bags, i.e., of type Bag(T) → Bag(T) → Bag(T), and this for any
type T . The observations made by our parallel operator are characterized as
follows:

v ∈ (X||Y)(e) ⇐⇒ ↓(v ∈ X(e) ∨ v ∈ Y (e)) (1)

This says that v is produced by X||Y iff it is produced by either of its com-
ponents. The squashing operator ↓ enforces “proof erasure”. Intuitively, it is
needed because just by knowing that X||Y produced v, we cannot in general
know whether v was produced by X or Y . For example, if identical replicas
run in parallel, and receive the same inputs, then there is no way to distin-
guish between their outputs if they do not label them with different tags. More

7

precisely, because Nuprl implements a constructive logic, disjunctions are inhab-
ited by left and right injections, which are tags that tell us whether we have
a proof of either the left or the right disjunct. Therefore, if we had a proof of
v ∈ X(e) ∨ v ∈ Y (e) then this proof would either be an injection left and
we would know that v comes from X; or an injection right and we would know
that v comes from Y . Intuitively, proof erasure says that, when deducing any
consequence of v ∈ (X||Y)(e) we are not allowed to assume that we know
which.

Delegation Combinator. Let us now present another crucial event observer.
The delegation (or spawning) combinator X »= Y is used to spawn-off and
delegate tasks to sub-processes as specified by Y . This combinator is especially
useful for compositional reasoning. It is formally defined as follows:

X »= Y = λeo.λe.beforeEq(e) »=b (λe′.X eo e′ »=b (λx.Y x (eo.e′) e))

where beforeEq(e) is the causally ordered list of events that are local predeces-
sors of or equal to e, which can easily be computed using pred; given a bag B of
type Bag(T) and a function F of type T → Bag(U), B »=b F is the bind opera-
tor of the bag monad [48], which is defined as bunion(bmap(F, B)) returning a
bag of type Bag(U), where bunion is the union operation on bags, i.e., of type
Bag(Bag(T)) → Bag(T), and this for any type T , and bmap is the map operation
on bags, i.e., of type (T → U) → Bag(T) → Bag(U), and this for any type T ;
and eo.e is the event ordering restricted to the events not happening at location
loc(e) or happening at location loc(e) but not prior to e, i.e., eo.e is the event
ordering containing all the events of eo except those happening locally before e.

The delegation observer uses observations made by X to start sub-observers
as described by Y : for each observation x made by X at some event e, we start
the new observer Y (x) at event e. An observation v made by X »= Y at some
event e is then an observation made by a Y (x) at e such that x was observed
by X at some locally earlier event e′, which is when the observer Y (x) started,
i.e., assuming X ∈ Obs(T):

v ∈ X »= Y (e) ⇐⇒ ↓∃e′ <loc e. ∃x : T . x ∈ X(e′) ∧ v ∈ Y (x)(e) (2)

Again, the squashing operator ↓ is required because in general we cannot pin-
point the event at which Y (x) started.

Event Observer Monad. We use the symbol »= because the event observer
type forms a monad having »= as its bind operator, which comes from the fact
that »=’s definition relies on the bind operator of the bag monad. The return
operator of the event observer monad is:

return(v) = λeo.λe.if first(e) then {v} else {}

where first(e) is true iff e has no local predecessor, i.e., pred(e)=e. The event
observer monad satisfies the left identify law

return(v) »= Y = Y (v)

8

the right identity law
X »= λv.return(v) = X

and the associativity law

(X »= Y) »= Z = X »= (λv.(Y (v) »= Z))

If we had not used first in return’s definition, then the left identity law
for example would not be true, because return(v) »= Y would spawn-off a new
sub-process Y (v) at each event.

Parallel as Delegation. Because the delegation combinator can in fact run
several sub-processes in parallel, we can define the parallel combinator in terms
of the delegation combinator as follows:

X||Y = (returnBag({tt, ff}) »= λb.if b then X else Y)

Where tt and ff are the true and false Booleans, and returnBag(b) is the follow-
ing generalization of the return combinator: λeo.λe.if first(e) then b else {}.

2.5. Constraining Event Orderings

As mentioned above, we express system properties as predicates on event
orderings, and a system satisfies such a property if every possible execution of
the system satisfies the predicate. There are not many useful properties that
are true about all event orderings. Therefore, to prove something interesting,
we have to restrict event orderings to the ones that are possible runs of a given
system specification, i.e., of a given main event observer. We do this by defining
predicates on the causal ordering relation of event orderings that express the
possible communications between the agents of a system. Such predicates highly
depend on the system model that one wants to target. By default, LoE is
open to a wide range of system models, and one commits to a specific system
model using predicates on event orderings. For example, one can assume that
messages are never forged by stating that for any main event observer X and
event ordering eo, if e is an X-event then there is a prior event e′ such that
info(e) was produced by X at e′, i.e., the process running at loc(e′) followed
the protocol as described by X. By default, we assume that messages are
delivered asynchronously, and may be delivered more than once. To assume
a synchronous system, one would have to add a time field in the definition of
the event ordering type, that associates time to events as done by Anand and
Knepper [5].

3. A Specification of 2/3 Consensus

This section shows how EventML, which is the DSL we have built on top
of LoE, can be used to define a non-trivial fault-tolerant consensus protocol,
namely the 2/3 consensus protocol [17]. Fig. 2 and Fig. 3 provide the full

9

Figure 2 2/3 consensus—part 1/2

s p e c i f i c a t i o n two_th i rd s

(∗ ============ Parameter s ============ ∗)
(∗ Command type wi th e q u a l i t y d e c i d e r cmdeq ∗)
paramete r Cmd, cmdeq : Type ∗ Cmd Deq
(∗ max number o f f a i l u r e s ∗)
paramete r F : I n t
(∗ l o c a t i o n s o f (3 ∗ F + 1) r e p l i c a s ∗)
paramete r r e p s : Loc Bag
(∗ l o c a t i o n s o f the c l i e n t s to be n o t i f i e d ∗)
paramete r c l i e n t s : Loc Bag

(∗ ============ Imported Nupr l d e c l a r a t i o n s ============ ∗)
impor t l e n g t h pos s−maj l i s t−d i f f deq−member from−upto

(∗ ============ Type d e f i n i t i o n s ============ ∗)
type SlotNum = I n t
type RoundNum = I n t
type P r o p o s a l = SlotNum ∗ Cmd
type VotingRound = SlotNum ∗ RoundNum
type B a l l o t = VotingRound ∗ Cmd
type Vote = B a l l o t ∗ Loc

(∗ ============ I n t e r f a c e ============ ∗)
i n p u t p ropose : P r o p o s a l
output n o t i f y : P r o p o s a l
i n t e r n a l vo te : Vote
i n t e r n a l d e c i d e d : P r o p o s a l
i n t e r n a l r e t r y : B a l l o t

(∗ ============ Quorum : a s t a t e machine ============ ∗)
(∗ −− f i l t e r −− ∗)
l e t new_vote (n , r) (((n’ , r ’) , cmd) , s e n d e r) (cmds , l o c s) =

(n , r) = (n’ , r ’) & ! (deq−member (op =) s e n d e r l o c s) ; ;

(∗ −− update −− ∗)
l e t upd_quorum (n , r) l o c ((nr , c) , snd r) (cmds , l o c s) =

i f new_vote (n , r) ((nr , c) , snd r) (cmds , l o c s)
then (c . cmds , snd r . l o c s)
e l s e (cmds , l o c s) ; ;

(∗ −− output −− ∗)
l e t roundout l o c (((n , r) , cmd) , s e n d e r) (cmds , l o c s) =

i f l e n g t h cmds = 2 ∗ F then
l e t (k , cmd’) = poss−maj cmdeq (cmd . cmds) cmd i n
i f k = 2 ∗ F + 1
then d e c i d e d ’ b c a s t r e p s (n , cmd’)
e l s e { r e t r y ’ s e n d l o c ((n , r +1) , cmd’) }

e l s e {} ; ;
l e t when_quorum (n , r) l o c v t s t a t e =

i f new_vote (n , r) v t s t a t e then roundout l o c v t s t a t e e l s e {} ; ;

(∗ −− s t a t e machine −− ∗)
o b s e r v e r QuorumState (n , r) =

Memory (\ l o c . ([] , []) , upd_quorum (n , r) , v o t e ’ b a s e) ; ;
o b s e r v e r Quorum (n , r) =

(when_quorum (n , r)) o (v o t e ’ b a s e , QuorumState (n , r)) ; ;

(∗ ============ Round ============ ∗)
o b s e r v e r Round ((n , r) , c) =

Output (\ l o c . v o t e ’ b c a s t r e p s (((n , r) , c) , l o c))
| | Once (Quorum (n , r)) ; ;

10

Figure 3 2/3 consensus—part 2/2

(∗ ============ NewRounds : a s t a t e machine ============ ∗)
(∗ −− i n p u t s −− ∗)
o b s e r v e r RoundInfo =

r e t r y ’ b a s e | | ((\ (((n , r) , c) , s) . { ((n , r) , c)}) o v o t e ’ b a s e) ; ;

(∗ −− update −− ∗)
l e t upd_round n l o c ((m, r ’) , cmd) r =

i f n = m & r < r ’ then r ’ e l s e r ; ;

(∗ −− output −− ∗)
l e t when_new_round n l o c ((m, r ’) , cmd) r =

i f n = m & r < r ’ then {((m, r ’) , cmd)} e l s e {} ; ;

(∗ −− s t a t e machine −− ∗)
o b s e r v e r NewRoundsState n =

Memory (\ l o c . 0 , upd_round n , RoundInfo) ; ;
o b s e r v e r NewRounds n =

(when_new_round n) o (RoundInfo , NewRoundsState n) ; ;

(∗ ============ Voter ============ ∗)
l e t d e c i s i o n n l o c (n’ , c) =

i f n = n ’ then n o t i f y ’ b c a s t c l i e n t s (n , c) e l s e { } ; ;

o b s e r v e r N o t i f y n = Once ((d e c i s i o n n) o d e c i d e d ’ b a s e) ; ;

o b s e r v e r Rounds (n , cmd) =
Round ((n , 0) , cmd) | | (NewRounds n >>= Round) ; ;

o b s e r v e r Voter (n , cmd) =
(Rounds (n , cmd) u n t i l (N o t i f y n)) | | (N o t i f y n) ; ;

(∗ ============ NewVoters : a s t a t e machine ============ ∗)
(∗ −− i n p u t s −− ∗)
o b s e r v e r RcvProposa l =

p r o p o s e ’ b a s e | | ((\ (((n , r) , c) , s) . { (n , c)}) o v o t e ’ b a s e) ; ;

(∗ −− f i l t e r −− ∗)
l e t new_proposa l (n , cmd) (max , m i s s i n g) =

n > max or deq−member (op =) n m i s s i n g ; ;

(∗ −− update −− ∗)
l e t u p d _ r e p l i c a (n , cmd) (max , m i s s i n g) =

i f new_proposa l (n , cmd) (max , m i s s i n g) then
i f n > max
then (n , m i s s i n g ++ (from−upto (max + 1) n))
e l s e (max , l i s t−d i f f (op =) m i s s i n g [n])

e l s e (max , m i s s i n g) ; ;

(∗ −− output −− ∗)
l e t ou t_proposa l l o c (n , cmd) s t a t e =

i f new_proposa l (n , cmd) s t a t e then {(n , cmd)} e l s e { } ; ;

(∗ −− s t a t e machine −− ∗)
o b s e r v e r R e p l i c a S t a t e =

Memory (\ l o c . (0 , []) , upd_rep l i c a , RcvProposa l) ; ;
o b s e r v e r NewVoters =

out_proposa l o (RcvProposa l , R e p l i c a S t a t e) ; ;

(∗ ============ R e p l i c a & Main program ============ ∗)
o b s e r v e r R e p l i c a = NewVoters >>= Voter ; ;
main SC where SC = R e p l i c a @ r e p s

11

EventML specification, and Sec.3.1 provides a top-down description of this spec-
ification. (Note that the reader does not necessarily need to read the code pre-
sented in these figures now. They are displayed here so that the reader can
see what the full specification looks like and how the different pieces of code
presented below fit together.) The problem we consider is as follows: A system
has been replicated for fault tolerance [62]. It responds to commands identified
by values in some type Cmd, a parameter of the specification. Commands are
issued to any of the system replicas, which must come to consensus on the order
in which those commands are to be performed, so that all replicas process com-
mands in the same order. Replicas may fail. Therefore, it follows from the FLP
impossibility result [23] that consensus might never be reached. We assume that
all failures are crash failures, that is, a failed replica ceases all communication
with its surroundings. The 2/3 consensus protocol tolerates up to F failures, an-
other parameter of the specification, by using 3 ∗ F + 1 replicas. (An appealing
feature of the protocol is that with a small change, and using 5 ∗ F + 1 replicas,
it can tolerate Byzantine failures.) The parameter reps is a bag4 that denotes
the locations at which the replicas will execute. We will see below that when
proving properties about our specification, we assume that reps has size 3∗F+1.
Input events communicate proposals, which consist of slot number/command
pairs, where slot numbers are modeled by integers: (n, c) proposes that com-
mand c be the nth one performed. The protocol is intended to decide which
proposals to accept, and to broadcast those decisions to clients, whose locations
are also a parameter of the specification. Each copy of the replicated system
contains a module that carries out the consensus negotiations. This paper de-
scribes only those modules, which we continue to call Replicas. An account of
how these consensus decisions are used may be found in the description of the
Paxos protocol [39, 57].

3.1. A Top-Down Look at the Protocol

This section shows how EventML can organize a top-down description of the
protocol, decomposing it to a level at which our remaining task is to define a
few event observers that act like state machines. Sec. 3.2 describes one of those
state machines, which performs the key computation used to detect consensus.
Sec. 3.3 shows how EventML defines an event observer specifying that state
machine.

We begin by describing a structure common to many consensus protocols:
Each slot n of an array of commands gets filled whenever a quorum of agents
reach consensus on which command to place in n. Decisions result from holding
elections, and we spawn a separate process to conduct each one. In this case, for
each slot number n, we hold an election to decide which proposals of form (n, _)
to accept. The tally from any particular ballot may be indecisive, so additional
rounds of balloting will be spawned as needed. The crucial decisions are when
to begin a new round of balloting, what constraints participants must observe

4We could as well have used a list but we use a bag instead because replicas are not ordered.

12

in their successive votes, and how to detect that consensus has been achieved
(complicated by the fact that multiple rounds in the same election may be
occurring simultaneously).

Interface. An input event to the protocol is the arrival of a message with
header `̀ propose`̀ whose body is a proposal, i.e., a value of type (the interface
of the protocol is defined in Fig. 2):

t ype P r o p o s a l = I n t ∗ Cmd

The type of commands is a parameter of the specification:

paramete r Cmd, cmdeq : Type ∗ Cmd Deq

One subtlety: The protocol requires the ability to determine whether two val-
ues of Cmd are equal. So we require an additional parameter, an “equality
decider”—here called cmdeq—able to perform that computation. The inputs to
the protocol are messages with header `̀ propose`̀ and body of type Proposal

i n p u t p ropose : P r o p o s a l

This declaration implicitly defines the base observer propose’base that detects
these input events and observes their data.

Outputs of the protocol are directed messages with header `̀ notify`̀ . The
data component of an output contains a Proposal that has been accepted:

output n o t i f y : P r o p o s a l

This declaration does not introduce a base observer recognizing the arrival of
`̀ notify`̀ messages, because those events occur outside our system, i.e., the
processes of the system do not react to these events. However, it implicitly
declares the functions notify’send and notify’bcast for creating directed messages.
In EventML, a directed message has primitive type Interface . Internally, they are
represented as pairs of a location and a message. If m is the `̀ notify`̀ message
with body p, then the expression (notify’send l p) is a directed message, which
is represented internally by the pair (l , m) instructing that m be sent to l ; and
the expression (notify’bcast {l1,l2,. . .}p) is a bag of directed messages, which is
represented internally as the bag {(l1, m), (l2, m), . . .} of such instructions.

Typically, the complete interface of a system is defined in terms of its input,
output, and internal messages. The internal ones are those that are only meant
to be produced and consumed by the participants of the system. The internal
messages exchanged by the participants of the protocol presented in this sec-
tion are as follows: `̀ vote`̀ messages, by which the replicas cast their votes;
`̀ decided`̀ messages, which inform replicas that consensus has been detected
on a particular proposal; and `̀ retry`̀ messages, which are described below.

Replicas. To characterize top-level agents in the protocol we define the event
observer Replica. The main program, which executes the protocol, is specified
by the main event observer SC (see Fig. 3):

main SC where SC = R e p l i c a @ r e p s

13

A main observer has type (Interface Obs). As mentioned above, the reps param-
eter denotes the locations at which the replicas will execute. We may think of
the SC observer as the restriction of Replica to an observer that responds only
to events at the locations in reps, or as the result of installing an “instance” of
Replica at each of those locations. SC can be implemented by a finite number
of instances, while Replica cannot because it responds to events at all possible
locations. In LoE, (X @ locs) is defined as:

λeo.λe.if loc(e) ∈ locs then X eo e else {}

For each natural number n, the protocol conducts a separate election to vote
on proposals for the nth command. Replica spawns subprocesses that cast votes
in these elections and identify the winners. As mentioned above in Sec. 2.4,
the spawning/delegation operator “_>>=_” is a primitive which is used by
processes to start sub-processes (see Fig. 3):

o b s e r v e r R e p l i c a = NewVoters >>= Voter

The observer NewVoters decides when to spawn a new voting process. Voter is
a higher-order function; the values it returns are observers that do the voting.
When some NewVoters-event e occurs and v ∈ NewVoters(e), Replica spawns a
local instance of the observer Voter(v). By local instance we mean this: each
subprocess spawned at a NewVoters-event e at location loc acts only at loc and
can only react to messages arriving at loc at and after e. For any event e there
will be at most one v such that v ∈ NewVoters(e). So a NewVoters-event spawns
only one subprocess. (Though it is not required, we typically apply delegation
only to such “singled-valued” observers.) A note on terminology: SC requires
several higher-order functions, such as Voter, that return event observers. For
convenience we will use “a Voter observer” or “a Voter” as a shorthand for “an
event observer returned by Voter.”

State machines. Informally, we will call an event observer a state machine if
it defines a distinct state machine at each location. We will say that it reacts
to an event if it recognizes the event or if the event can cause its internal state
to change. NewVoters, which is defined as follows (see Fig. 3):

o b s e r v e r NewVoters = out_proposa l o (RcvProposa l , R e p l i c a S t a t e) ; ;

is a Mealy state machine. It reacts to RcvProposal-events, i.e., to `̀ proposal`̀
(coming from outside the system) and `̀ vote`̀ messages (from inside), and
it filters those events. At any location loc, thanks to the ReplicaState Moore
state machine, NewVoters recognizes the first time that loc has received a pro-
posal or vote about the nth command and, when it does, outputs (a singleton
bag containing) its value. If the value of such an event is (n,c), the effect of
(NewVoters >>= Voter) is therefore to spawn a local instance of the event ob-
server Voter (n,c) at location loc. The initialization data (n,c) instructs that
Voter to vote for (n,c) on the first round.

Voter. Voter observers cast votes and tally the votes they receive to determine
whether some proposal has achieved consensus. A Voter will not announce a

14

consensus for proposal (n,c) unless it has received 2 ∗ F + 1 votes for (n,c) from
2 ∗ F + 1 different replicas.

We cannot guarantee that any particular poll of the Voter observers will
achieve such a result. Accordingly, for each slot number n we allow arbitrarily
many do-over polls: Successive polls for slot number n are assigned consecutive
integers called round numbers. Voting rounds (or just rounds for short) are slot
number/round number pairs of the form (n, r). Ballots are voting round/com-
mand pairs of the form ((n, r), c). Thus, a Voter casts votes for a particular
proposal in a particular round. Votes are ballot/location pairs of the form
(((n, r), c), loc). A voter includes its location in each vote. By arranging that
replicas ignore duplicate votes, we guarantee that the protocol works even if
messages get duplicated.

A Replica spawns Voter subprocesses to conduct separate elections for each
slot number. A Rounds observer uses essentially the same idiom to spawn Round

observers that handle individual balloting rounds within a single election. A
Voter is essentially a Rounds process that runs until its election has been decided
(see Fig. 3):

o b s e r v e r Rounds (n , c) = Round ((n , 0) , c) | | (NewRounds n >>= Round)
o b s e r v e r Voter (n , c) = (Rounds (n , c) u n t i l (N o t i f y n)) | | (N o t i f y n)

where, as mentioned above in Sec. 2.4, “_||_” performs parallel composition.
For any event observers A and B, the observer (A until B) acts like A until a
B-event occurs, at which point it terminates (and is garbage collected). We use
this to terminate any voting for n once consensus has been reached on n. In
LoE (A until B) is defined as:

λeo.λe.if existsLast(eo, e, B) then {} else A eo e

where existsLast(eo, e, B) is true iff there exists a B-event in before(e), where
before(e) is the causally ordered list of events that are local and strict prede-
cessors of e. Because (A until B) does not execute B once a B-event happens,
we use the idiom (A until B) || B, to run A, stop A once a B-event happens, and
also run B.

Note that Round (defined in Fig. 2), Rounds, NewRounds, and Notify (defined
in Fig. 3) are also functions that return event observers. Let us discuss these in
further detail here.

A local instance of Round ((n,r), c) conducts the voting for round (n, r) at a
particular location. By definition it will cast its vote in round (n, r) for (n,c).
Therefore, the first component of Rounds (n,c) ensures that Voter (n,c) votes for
proposal (n,c) in round (n,0); other instances of Round, spawned by the second
component of Rounds, may cast votes for other proposals in later rounds. The
Round observer, detailed further in Sec. 3.2, inputs `̀ vote`̀ messages and out-
puts directed messages of various kinds: `̀ vote`̀ ; `̀ decided`̀ ; and `̀ retry`̀ , an
internal message calling for a new round when a poll does not achieve consensus.

The NewRounds(n) observer recognizes events that call for new rounds of
voting for the nth command. Thus (NewRounds(n) >>= Round) spawns instances
of Round as required.

15

Finally, Notify(n) handles internal `̀ decided`̀ messages with data (n,c) in-
dicating that consensus has been reached about the nth command, by sending
notifications to the clients of the system indicating that slot n has been filled
with command c.

3.2. Detecting Consensus

Round ((n,r), c) has two components (see Fig. 2):

o b s e r v e r Round ((n , r) , c) =
Output (\ l o c . v o t e ’ b c a s t r e p s (((n , r) , c) , l o c))
| | Once (Quorum (n , r))

The first component multicasts a vote for (n,c) in round (n, r) to all locations
in reps and then terminates. Output(G) is defined in LoE as

λeo.λe.G(loc(e))

The second component executes the consensus-detecting process, Quorum (n,r),
and terminates once it has either announced a consensus or called for a new
round. Once(A) is an observer that acts like A but terminates after the first A-
event. Once(A) is defined as (A until A). Because there is at most one Quorum (n,r)

event at any location the use of Once is logically redundant; but it effects an
optimization that guarantees that a process is cleaned up once it has produced
an output.

Quorum (n,r) produces an output as soon as it has received votes in round (n, r)

from 2 ∗ F + 1 distinct locations. If all of them are votes for the same proposal,
call it (n,d), it decides that (n,d) has achieved consensus and sends appropriate
`̀ decided`̀ messages, which will be handled by Notify observers, which will send
`̀ notify`̀ messages. If the received votes are not unanimous then it is possible
that, however many more votes are tallied, no proposal will receive 2 ∗ F + 1
votes on this round. (Note that if F failures have occurred, no more votes from
distinct replicas will arrive, so Quorum cannot wait for more votes or it might
become permanently stuck.) In that case it sends a `̀ retry`̀ message to call
for round (n, r+1). That `̀ retry`̀ message also tells the Voter that spawned the
Quorum how to vote in the new round. If some command d received a majority of
the 2∗F+1 votes, the Voter must vote for (n,d). (If no command gets a majority,
how it votes does not matter to the logical correctness of the protocol.)

It is possible that a round will occur in which a Quorum (n,i) at one location
detects a consensus and a Quorum (n,j) at another location calls for a new round
of voting. As a result, multiple notifications may be sent about n, in a single
round or in different rounds. Sec. 4 shows that, for any n, all notifications about
the nth command will agree on which command has been chosen.

3.3. Implementing Quorum

Quorum(n,r) is a Mealy machine: in response to inputs it may change state
and produce outputs. Let us factor its definition. We first define the Moore
machine QuorumState(n,r), whose state is the collection of votes for round (n, r)

16

that the process has received thus far. Quorum(n,r) observes QuorumState(n,r)

and issues appropriate directed messages. EventML provides primitives such as
Memory for defining Moore machines (see Fig 2):

o b s e r v e r QuorumState (n , r) =
Memory (\ l o c . ([] , []) , upd_quorum (n , r) , v o t e ’ b a s e)

A QuorumState(n,r) state is a pair of lists (cmds,locs), where cmds is a list of
commands and locs is a list of locations. The state ([c1;c2;. . .],[l1;l2;. . .]) means
that, in round (n, r), the state machine has thus far received a vote from l1 for
c1, a vote from l2 for c2, etc. By maintaining that location list in addition to
the command list, QuorumState can ignore duplicates; thus, as mentioned above,
we need not assume that messages are delivered only once. In the definition
of QuorumState, the arguments to Memory have the following meanings: (a) The
expression (\loc .([],[])) assigns the initial state to each location, i.e., a pair
of empty lists. In this case, the initial state of a replica is independent from
its location. (b) The transition function upd_quorum(n,r) computes the next
state from the location and value of the input event and the current state. If
an input vote arrives for c from l , and l is not listed in the current state, then
upd_quorum adds c and l to its state, otherwise the current state stays unchanged.
(c) vote’base recognizes input `̀ vote`̀ events and supplies their values.

Memory is defined so that QuorumState will recognize every `̀ vote`̀ event,
update its internal state, and then return (a singleton bag containing) the value
of the internal state before performing that update. Had it been more convenient
that QuorumState return the value of the internal state after the update we would
have used the primitive combinator State instead of Memory.

We define the observer Quorum from QuorumState using the primitive composi-

tion combinator (f o (X1 ,..., Xn)), which combines the function f with the event
observers X1, . . . , Xn. This combinator behaves as follows: for all i ∈ {1, . . . , n},
if Xi observes xi at event e then the event observer (f o (X1 ,..., Xn)) observes
each value of the bag (f loc(e) x1 ... xn) at event e. This composition combi-
nator is defined in LoE as follows:

λeo.λe.X1 eo e »=b (λx1. . . . Xn eo e »=b (λxn.f loc(e) x1 · · · xn))

Quorum is defined as follows:

o b s e r v e r Quorum (n , r) =
(when_quorum (n , r)) o (v o t e ’ b a s e , QuorumState (n , r))

This observer computes the response of Quorum(n,r) to event e by applying
when_quorum(n,r) to loc(e), and to the values observed at e by vote’base and
QuorumState(n,r). Note that Quorum(n,r) observes only `̀ vote`̀ events, but not all
of them because when_quorum(n,r) sometimes returns an empty bag. If an input
vote arrives for c from l , and l is listed in the current state, then when_quorum

discards this input by not outputting anything. Otherwise, it calls roundout,
which requires the most complex definition:

17

l e t roundout l o c (((n , r) , c) , s e n d e r) (cmds , l o c s) =
i f l e n g t h cmds = 2 ∗ F then

l e t (k , c ’) = poss−maj cmdeq (c . cmds) c i n
i f k = 2 ∗ F + 1
then d e c i d e d ’ b c a s t r e p s (n , c ’)
e l s e { r e t r y ’ s e n d l o c ((n , r +1) , c ’) }

e l s e {}

The first argument loc is the location of the Quorum process calling roundout on
receipt of a vote; the second argument (((n, r), c), sender) matches the data from
the input vote; and the third argument (cmds,locs) matches the state when the
input arrives. Therefore c.cmds, where . is the cons operation on lists, is the
command list that results from processing the input.

We can now understand the outer conditional: If its condition is false then
we have not seen 2 ∗ F + 1 votes, so Quorum returns an empty bag, and the input
event is not a Quorum(n,r)-event. Suppose now that the condition is true and
consider the inner conditional.

The poss-maj function, imported from EventML’s library (a snapshot of
Nuprl’s library), implements the Boyer-Moore majority vote algorithm. The
pair (k, c’) satisfies the following property: If there is a majority entry in the
list c.cmds, c’ is its value and k is the number of times c’ occurs in that list.
The condition (k = 2 ∗ F + 1) therefore tests whether the vote is unanimous.
If so, the function returns instructions that the choice of c’ be broadcast in
appropriate `̀ decided`̀ messages; if not, it returns the instruction to send
a `̀ retry`̀ message. Recall that the declaration of `̀ retry`̀ messages intro-
duces the operation retry’send , for constructing directed messages. Therefore,
retry’send loc ((n, r+1),c’) is the instruction to send to loc a `̀ retry`̀ message
with body ((n, r+1),c’). So Quorum sends a message to itself, which will be ob-
served by NewRounds, which will spawn the round (n, r+1). The message data
directs the spawned instance of Round to vote for c’ in the new round.

This concludes the presentation of our EventML specification of the 2/3 con-
sensus protocol. We will now discuss its safety properties, which we have proved
in Nuprl.

4. The Safety Properties of 2/3 Consensus

From SC, our EventML specification of 2/3 consensus, EventML’s compiler
generates both a LoE specification and a GPM program that express SC’s se-
mantic meaning in our two models of distributed computing. We verify SC’s
correctness using the LoE specification, and we can execute it using the GPM
program. By interactive theorem proving we verify that the safety properties of
agreement and validity (described below) are logical consequences of the LoE
specification automatically generated for SC. That verification is described in
this section and Sec. 5. Sec. 6 describes the process by which we automatically
generate a GPM program and automatically verify that it implements the LoE
specification, and is therefore an implementation of SC that provably satisfies
both properties.

18

4.1. Agreement and Validity

The basic safety properties of any consensus protocol are agreement and
validity. Both these properties have been formally proved by induction on
the causal order of events in Nuprl for the 2/3 consensus protocol of Sec. 3.
We state them in terms of notifications. Recall that system properties are
predicates on event orderings; we must prove that the predicates are true of
all possible runs of the system consistent with the SC specification. The for-
mal statements of these properties contain a universally quantified event order-
ing eo that the notation suppresses. Also, we assume additional constraints
on eo and on SC’s parameters that we discuss below in Sec. 4.2. Agreement
says that notifications sent by SC never contradict ones another (the complete
formal proof of the agreement property can be viewed at the following ad-
dress: http://www.nuprl.org/LibrarySnapshots/Published/Version2/Event!ML/2!3!cons

ensus!with!signatures/new_23_sig_agreement.html):

∀e1, e2 : E. ∀l1 , l2 : Loc. ∀n : Z. ∀c1 , c2 : Cmd.
(notify′send l1 (n, c1)) ∈ SC(e1)
⇒ (notify′send l2 (n, c2)) ∈ SC(e2)
⇒ c1 = c2

Validity says that any proposal decided on must be one that was proposed (the
complete formal proof of the validity property can be viewed at the following ad-
dress: http://www.nuprl.org/LibrarySnapshots/Published/Version2/Event!ML/2!3!cons

ensus!with!signatures/new_23_sig_validity.html):

∀e : E. ∀l : Loc. ∀v : Proposal.
(notify′send l v) ∈ SC(e)
⇒ ↓∃e′ : E. e′ < e ∧ v ∈ propose′base(e′)

One subtlety: As mentioned above in Sec. 2.4, the reader can think of ↓∃ as a
classical existential. The squashing operator ↓, which enforces proof erasure, is
necessary here because generally there is no constructive way to pinpoint the
exact `̀ propose`̀ event that led to a notification being sent. For example, there
might have been two such proposals sent, and once we receive them, we have no
way to distinguish between them if the content of these messages is identical.

4.1.1. Proof of Agreement

To prove agreement we first prove several simple lemmas.
(1) In any round, each instance of Replica votes for at most one command:

This follows from the fact that a replica votes at most once per round.
(2) Two `̀ notify`̀ messages sent in the same round must be for the same

command: If at most 3 ∗ F + 1 votes can be cast (from 3 ∗ F + 1 replicas), and
two different Quorum observers receive 2 ∗ F + 1 unanimous votes from distinct
voters, then both of those unanimous votes must be for the same command.

(3) If a `̀ notify`̀ message for c and a `̀ retry`̀ message for d are sent in the
same round, then c = d: This is another counting argument. If 2 ∗ F + 1 votes

19

http://www.nuprl.org/LibrarySnapshots/Published/Version2/Event!ML/2!3!consensus!with!signatures/new_23_sig_agreement.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Event!ML/2!3!consensus!with!signatures/new_23_sig_agreement.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Event!ML/2!3!consensus!with!signatures/new_23_sig_validity.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Event!ML/2!3!consensus!with!signatures/new_23_sig_validity.html

have been cast for c, then the majority of the votes in any collection of 2 ∗ F + 1
votes (in that round) must be for c; so every `̀ retry`̀ will be for c.

(4) A vote for command d at round (n, j) such that j > 0, can always be
traced back to a `̀ retry`̀ for d at round (n, j − 1). (This is proven by induction
on the well-founded causal ordering of events.)

Lemma (2) leaves us with the interesting case: Suppose that in round (n, i)
some instance of Replica detects a consensus for proposal (n, c). We must show
that if k > i, then a consensus detected in round (n, k) must also be for (n, c).

We prove that by showing something stronger: If k > i, then every vote in
round (n, k) will be for (n, c). We prove this result by induction on k − i. If
k − i = 1, it follows from lemma (4) by appealing to lemma (3). Otherwise, it
follows from lemma (4) by appealing to the induction hypothesis on k − 1.

4.1.2. Proof of Validity

Validity is a corollary of the following lemma:

∀e : E. ∀n : Z. ∀c : Cmd. ∀r : Z. ∀l : Loc.
(

(n, c) ∈ decided’base(e)
∨ (((n, r), c), l) ∈ vote’base(e)
∨ ((n, r), c) ∈ retry’base (e)

)

⇒ ↓∃e′ : E. e′ < e ∧ (n, c) ∈ propose’base(e′)

which says that any proposal contained in either a `̀ decided`̀ , a `̀ vote`̀ , or a
`̀ retry`̀ message, was proposed at a causally prior event. We trivially prove
this lemma by tracing back these messages to SC’s inputs and outputs and
eventually to proposals. For example, for a replica R1 to receive a `̀ retry`̀
message, a replica R2 has to have sent this `̀ retry`̀ message to R1 and `̀ retry`̀
messages are only sent on receipt of a vote. To deduce this we use the assumption
described next.

4.2. Assumptions

For every distributed system we assume that every internal or output mes-
sage received must have been sent by one of the agents of the system. For-
mally, we make a separate assumption for each base observer that observes
an internal or an output message. For example, for any event ordering, if
v ∈ vote’base(e), and e occurs at location loc, there must exist some e′ < e

such that (vote’send loc v) ∈ SC(e′). Our tool does not enforce that the gen-
erated code respects such assumptions; therefore, they have to be enforced by
other means. For example, the above assumption can be enforced, e.g., by phys-
ical means or by message encryption. We also assume that reps is a bag of size
3 ∗ F + 1 without repetitions.

5. Automation

We have developed two main automation tools that help us prove properties
of distributed systems. One is a rewriting tool that uses the ILFs mentioned in
Sec. 1 in order to prove properties by induction on causal order. The other one
consists in the automation of standard patterns of reasoning on state machines.

20

Figure 4 ILF instance for `̀ vote`̀ messages
∀[Cmd:{T:Type| valueall-type(T)}]. ∀[clients,reps:bag(Id)]. ∀[cmdeq:EqDecider(Cmd)]. ∀[F:Z].

∀[f:headers_type{i:l}(Cmd)]. ∀[es:EO]. ∀[e:E]. ∀[i,sender:Id]. ∀[d,n,r:Z]. ∀[v:Cmd].

(<d, i, make-Msg(“vote“;<<<n, r>, c>, sender>)> ∈ main(Cmd;clients;cmdeq;F;reps;f)(e)

⇐⇒ loc(e) ↓∈ reps ∧ i ↓∈ reps ∧ (d = 0)

∧ (↓∃n’:Z. ∃c’:Cmd. ∃e’:{e’:E| e’ ≤loc e }.

((((header(e’) = “propose“) ∧ <n’, c’> = body(e’))

∨ (has-es-info-type(es;e’;f;Z × Z × Cmd × Id)

∧ (header(e’) = “vote“)

∧ (n’ = (fst(fst(fst(msgval(e’))))))

∧ (c’ = (snd(fst(msgval(e’)))))))

∧ (((fst(ReplicaStateFun(Cmd;f;es;e’))) < n’)

∨ (n’ ∈ snd(ReplicaStateFun(Cmd;f;es;e’))))

∧ (no Notify(Cmd;clients;f) n’ between e’ and e)

∧ (((<<<n, r>, c>, sender> = <<<n’, 0>, c’>, loc(e)>) ∧ (e = e’))

∨ (∃r’:Z. ∃c”:Cmd. ((<<<n, r>, c>, sender> = <<<n’, r’>, c”>, loc(e)>)

∧ (∃e1:{e1:E| e1 ≤loc e }

((((header(e1) = “retry“) ∧ <<n’, r’>, c”> = body(e1))

∨ (has-es-info-type(es.e’;e1;f;Z × Z × Cmd × Id)

∧ (header(e1) = “vote“)

∧ (n’ = (fst(fst(fst(msgval(e1))))))

∧ (r’ = (snd(fst(fst(msgval(e1))))))

∧ (c” = (snd(fst(msgval(e1)))))))

∧ (NewRoundsStateFun(Cmd;f;n’;es.e’;e1) < r’) ∧ (e = e1)))))))))

1

2 3

4

5

6

7

8

5.1. Inductive Logical Form

ILFs are declarative logical statements that precisely answer questions such
as: “What led the process at location l1 to send a vote to the process at location
l2 ?”, in terms of input messages’ content and state machines’ states. ILFs are
automatically generated from main observers using logical simplifications, and
characterizations of the LoE combinators as described in Sec. 2.4.

Given a main observer X , we wrote a program that starts with a formula
of the form v ∈ X(e) and repeatedly rewrites it using equivalences such as the
ones presented in Sec. 2.4 (see double equations 1 and 2), to finally generate a
formula of the form v ∈ X(e) ⇐⇒ C , where C is a complete declarative charac-
terization of X ’s outputs. In addition, our program also applies various logical
simplifications to C . Finally, we have built a proof tactic that automatically
proves such double implications.

An ILF provides a characterization of all the messages sent by a system.
Because it is often useful to get these characterizations for specific kinds of mes-
sages, we also generate ILF instances for each kind of messages that the system
outputs. The ILF for `̀ vote`̀ messages in SC is shown in Fig. 4. For SC we
generate characterizations of the sending of `̀ vote`̀ , `̀ retry`̀ , `̀ decided`̀ , and
`̀ notify`̀ messages. Intuitively, an ILF instance for a given kind of message K,
provides a slice (expressed as a mathematical formula) of the LoE specification
that corresponds to the output K only. Such slices allow us to analyze speci-
fications without having to consider the entire code. For example, the Quorum

part of Round is irrelevant to reasoning about votes.
Fig. 4 shows the ILF instance for `̀ vote`̀ messages as generated by Nuprl.

(Note: <_,_> is Nuprl’s pair constructor.) The details of this formula are not

21

critical for understanding our methodology. However, let us explain how it
characterizes the sending of `̀ vote`̀ messages. This formula says that a vote of
the form <<<n,r>,c>,sender> is sent by SC at event e to location i (see box 1)
iff:

• (box 2): e happens at a replica location, which we call R here;

• (box 3): i is also a replica location;

• (box 4): there exists a proposal <n’,c’> that was received by R in a
`̀ propose`̀ or `̀ vote`̀ message at a prior event e’;

• (box 5): <n’,r’> is such that n’ has never been received by R prior to e’

(there is no important distinction between ReplicaStateFun and ReplicaState ,
which maintains the list of proposed slot numbers);

• (box 6): <n’,r’> is such that no decision has been made about n’ between
e’ and e;

• finally, (box 7): either <n,c> is <n’,c’> and is being voted for at the initial
round r=0 in response to the `̀ propose`̀ or `̀ vote`̀ message mentioned
above (see box 4) that led to a new Voting process being spawned;

• (box 8): or <n,c> comes from a `̀ retry`̀ or `̀ vote`̀ message, and r is not
the initial round, i.e., either some replica believed that consensus could
not have been reached at round r-1 (in case of a `̀ retry`̀), or R was
still working on a smaller round number when it received r (in case of a
`̀ vote`̀), and is now voting at round r.

Using such formulas we can trace back a distributed system’s outputs to
the states of its state machines, and to its inputs. For example, to prove SC’s
validity property we start from the characterization of `̀ notify`̀ messages and
trace these messages back to `̀ proposals`̀ using the various ILF instances.

5.2. State Machine Properties

As mentioned in Sec. 3.3, one can define Moore machines in EventML using
the State and Memory keywords. Reasoning about such state machines often
turns out to be a large part of the verification effort of a distributed program’s
correctness. Therefore, our system provides some automation to prove four
kinds of local properties of State and Memory state machines, called: invariant,
ordering, progress, and memory.

Informally, a state machine invariant is a unary property about all possible
states of the state machine. A state machine ordering property is a binary
property about all pairs of states ordered in time. A state machine progress

property w.r.t. some predicate P is a binary property about all pairs of states
ordered in time, such that P is true about at least one of the transitions made
between the two states, i.e., such that some progress characterized by P has
been made between the two states. A state machine memory property is a

22

ternary property between an input, the current state of the machine at the time
it received this input, and a later state. Memory properties are used to specify
that state machines keep track of some parts of their inputs in their states.

We have proven a number of general lemmas by induction on causal order
that provide simple sufficient conditions for verifying each of these kinds of
properties for both State and Memory state machines. These lemmas typically
require the user to prove that the transitions of the state machine satisfy some
invariant—and sometimes to prove, in addition, a “base case” property of its
initial state.

We have also developed an annotation language to state such properties in
EventML, as well as general Nuprl tactics that try to prove these properties
automatically (and often succeed) using logical simplifications and simple rea-
soners on datatypes such as lists, integers, etc. Let us now describe and illustrate
these four kinds of properties using the QuorumState and NewRoundsState state
machines defined in Fig. 2 and Fig. 3 respectively. The latter keeps track of the
current round number for each slot number.

5.2.1. Invariant

An invariant of a QuorumState state of the form (cmds,locs) is that locs has
no repeats and has the same length as cmds. We call that invariant quorum_inv,
which we state in EventML as follows:

impor t no_repeat s l e n g t h
i n v a r i a n t quorum_inv on (cmds , l o c s) i n (QuorumState n i)

== no_repeat s : : Loc l o c s
/\ l e n g t h (cmds) = l e n g t h (l o c s) ; ;

The Nuprl tactic we have designed tries to automatically prove this statement
by unfolding QuorumState’s definition to a Memory observer and by instantiating
the corresponding general lemma that we have already proved about Memory. It
(mainly) remains to prove that the base and induction properties are satisfied,
which are trivial to prove in this case. Because we have already proved the
general principle by induction on causal order, the tactic does not have to use
induction on causal order to prove quorum_inv. The same is true about our other
state machine properties.

An invariant of NewRoundsState is that its state is a positive integer:

i n v a r i a n t rounds_pos on round i n (NewRoundsState n) == 0 <= round ; ;

5.2.2. Ordering

Ordering properties express relations between two states. For example, if
QuorumState observes (cmds1,locs1) at e1 and (cmds2,locs2) at e2 such that e1 ≤loc

e2, then cmds1 and locs1 are final segments of cmds2 and locs2 respectively. We
call that ordering property quorum_fseg, which we state as follows:

impor t f s e g (∗ f i n a l segment p r e d i c a t e ∗)
o r d e r i n g quorum_fseg on (cmds1 , l o c s 1)

then (cmds2 , l o c s 2)
i n (QuorumState n i)

== f s e g : : Cmd cmds1 cmds2
/\ f s e g : : Loc l o c s 1 l o c s 2 ; ;

23

An ordering property of NewRoundsState is that rounds can only increase over
time. We express this property in EventML as follows:

o r d e r i n g rounds_ inc on r1 then r2 i n (NewRoundsState n) == r1 <= r2 ; ;

5.2.3. Progress

The state round observed by NewRoundsState can only increase if RoundInfo

observes a vote or a retry for a round number round’ > round. We call such a
property progress, because some progress has actually been made, i.e., the state
has been updated.

For example, if NewRoundsState(n) observes round1 at e1 and round2 at a
strictly later event e2, such that progress has been made between e1 and e2,
then round1 < round2. Progress here is characterized by the RoundInfo observer:
the property (n = n’ ∧ round < round’) has to be true at some event e between e1

and e2 such that RoundInfo observes ((n’ , round’),cmd) at e and NewRoundsState(n)

observes round at e. This property says that if at event e we receive a round
number round’ (observed by RoundInfo) greater than our current round number
round (as observed by NewRoundsState(n), then we update our round number to
round’, which means that our round number is going to increase between e1 and
e2. We state this property in EventML as follows:

p r o g r e s s r o u n d s _ s t r i c t _ i n c on round1 then round2 i n (NewRoundsState n)
w i th ((n’ , r o u n d ’) , cmd) i n RoundInfo

and c o n d i t i o n (round) . n ’ = n /\ round < r o u n d ’
== round1 < round2 ; ;

5.2.4. Memory

Memory properties say that state machines do not ignore inputs. For exam-
ple, if NewRoundsState(n) observes round1 at e1 and round2 at a strictly later event
e2, and RoundInfo observes ((n,round’),cmd) at e1 then round’ <= round2. We call
that property, rounds_mem. It says that inputs characterized by RoundInfo are
not ignored by NewRoundsState state machines.

We state rounds_mem in EventML as follows:

memory rounds_mem on round1 then round2 i n (NewRoundsState n)
w i th ((n’ , r o u n d ’) , cmd) i n RoundInfo
== (n = n ’) => r o u n d ’ <= round2 ; ;

5.3. Proof Effort

Thanks to our automation tools and to the rich library of definitions, facts,
and proof tactics about LoE and GPM that we have developed over the years,
we have specified 2/3 consensus and have proved its two safety properties in
Nuprl in merely two days. Proving these two properties involved: automatically
generating and proving 8 state machine properties; automatically generating and
proving 1 ILF and 4 instances of that ILF; and interactively proving 8 other
lemmas (3 of them being trivial, and therefore candidates for future automation).
In terms of size: the LoE specification has a size of about 850 AST nodes, and
the proof’s size is about 8200 AST nodes. We only discuss safety properties
here because we have not yet proved that 2/3 consensus is live/non-blocking.

24

6. Correct-by-Construction Program Generation

As mentioned in Sec. 1, the semantic meaning of an EventML program is
both a LoE event observer and a GPM program. Both of these are automati-
cally generated from an EventML specification. We carry out our correctness
proofs on the LoE description of the main event observer. To gain trust in
the program we run, we prove that the GPM program implements that LoE de-
scription, i.e., that it outputs exactly the same observations. Given an EventML
specification, proving that the corresponding GPM program satisfies the corre-
sponding LoE specification is trivial and done automatically in Nuprl: For each
EventML combinator C, there exists a corresponding LoE combinator LC and
a corresponding GPM combinator PC, which provably implements LC.

For example, let us consider the LoE parallel combinator defined in Sec. 2.4.
Let X1 and X2 be event observers of type T , implemented by pr1 and pr2 ,
respectively. The GPM parallel combinator pr1 ||pr2 is defined as follows (for
simplicity we use the same symbol as for the LoE parallel combinators):

λl.fix

λR.λs.let p1 , p2 = s in

if halted(p1) ∧b halted(p2) then halt

else run

(

λm. let p′

1 , out1 = p1(m) in

let p′

2 , out2 = p2 (m) in

(R (p′

1 , p′

2), out1 + out2)

)

(pr1 l, pr2 l)

This function takes a location l and returns a process that runs p1 and p2 in
parallel at l. This process maintains a state s composed of two processes: its
two components. Its initial state is (pr1 l, pr2 l). If the current state s of the
process is a pair (p1 , p2), then if both p1 and p2 have halted, i.e., they are
the special halted process halt, then the process becomes halt. Otherwise,
the process waits for an input message m, and once it has received one, then
(1) for i ∈ {1, 2}, it applies5 pi to m to obtain a new process p′

i
and a bag of

outputs outi ; (2) it outputs out1 + out2 and recursively calls itself on the new
state (p′

1
, p′

2
). We proved that pr1 ||pr2 implements X1 ||X2 . The same is true

about the other combinators.
As mentioned above, given a specification, EventML generates a GPM pro-

gram, which is a mapping M (a λ-term) from locations to processes. Given
a collection of locations L, one first applies M to each l in L to obtain all
the involved local processes. As described in Sec. 1, a local process has type
corec(λP.(A → P ×Bag(B))+Unit) and runs on a single machine. For example,
the GPM program generated by EventML from SC is a λ-expression that given
a location l in reps returns a process that implements Replica at location l , and
for all other locations not in reps returns the halted process. Therefore, once one
has generated some code, one still needs to apply the generated GPM program
to 3 ∗ F + 1 replica locations, to obtain 3 ∗ F + 1 local processes. Then, one
can either execute these GPM processes, which are Nuprl terms, using Nuprl’s

5The application of a process p to a message m is defined as follows: if halted(p) then
return (halt, {}), otherwise p is of the form run(f), and therefore, return (f m).

25

interpreter, i.e., directly using Nuprl’s computation rules (Nuprl’s computation
system is an untyped λ-calculus, and as such one of its computation rules is
the standard β-reduction rule); or one can use our Nuprl to Lisp translator and
use a Lisp compiler to execute the code. Finally, EventML provides runtime
environments to establish connections between nodes, and send and receive mes-
sages over the network. Therefore, the trusted code base of our system when
using Nuprl’s interpreter is: (1) Nuprl, (2) whichever Nuprl interpreter one de-
cides to use (the one provided by default by EventML is implemented in SML),
(3) the compiler used to compile the Nuprl interpreter, and (4) EventML’s run-
time environment to send and receive messages. When using our Nuprl to Lisp
translator, the trusted code base is then: (1) Nuprl, (2) the Nuprl to lisp trans-
lator, (3), whichever Lisp compiler one decides to use, and (4) our Lisp runtime
environment for EventML.

7. EventML Syntax and Semantics

This section defines EventML’s syntax and static semantics but not its dy-
namic semantics because to run programs, one first has to compile EventML
specifications to GPM processes and then, as mentioned above, use Nuprl’s
interpreter to execute these GPM processes.

Fig. 5 and Fig. 6 presents EventML’s syntax. Note that the symbol ǫ is not
part of the syntax but merely provides a visually convenient way of displaying
the empty sequence of external types.

Next we introduce EventML’s static semantics, which is similar to SML’s
as defined by Milner et al. [47]. The only forms for which we do not provide a
semantics are (1) specification declarations of the form specification vid because
they are only used to generate convenient names when loading an EventML
specification into Nuprl; and (2) state machine properties because these are
only used to automate the verification and Nuprl is there to catch type errors.
In order to define the static semantics of the other forms, let us first define
internal types, which are similar to the external types defined in Fig. 5. We do
not distinguish between internal and external type constructor (postfix of the
form tc and infix of the form itc). Type variables are shared by the internal and
external syntax. In addition we introduce a new kind of type variable called an
equality type variable. The type variables introduced in Fig. 5 are now called
non-equality type variables. One can substitute a non-equality type variable
(in set TyVar) by any type. However, one can only substitute an equality type
variable by a type that has decidable equality, e.g., integers, Booleans, etc.,
but not functions—this is formally defined below. Internal types are defined as
follows, where −→τ is a sequence of internal types of the form 〈τ1, . . . , τn〉:

ea ∈ EqTyVar (set of equality type variables)
α ∈ ITyVar ::= a | ea

τ ∈ ITy ::= α | −→τ tc | τ1 itc τ2

Type schemes and type environments are defined as follows, where α is a set
of type variables:

26

Figure 5 EventML syntax—expressions/patterns/types

n ∈ Nat (natural numbers)
vid ∈ Vid (infinite countable set of value identifiers)
tid ∈ Tid (infinite countable set of type identifiers)
a ∈ TyVar (infinite countable set of type variables)
tc ∈ TyCon ::= tid | Int | Bool | Unit | Type | Loc | Interface

| List | Bag | Deq | Obs
itc ∈ InfTyCon ::= ∗ | → | +
opr ∈ Opr ::=+ | - | = | . | ++ | > | < | or | & | @ | || | >>= | /\ | \/ | =>
exp ∈ Exp ::= vid | n | true | false | op vid

| (exp1,. . .,exp
n

)
| exp1 opr exp2

| exp:ty
| :: ty
| exp1 exp2

| \pat.exp
| if exp1 then exp2 else exp3

| let bind in exp
| exp where bind
| [exp1,. . .,exp

n
]

|{exp1,. . .,exp
n

}
| exp o (exp1,. . .,exp

n
)

| Memory(exp1,exp2,exp3)
| State(exp1,exp2,exp3)
| Output(exp)
| Once(exp)
| exp1 until exp2

pat ∈ Pat ::= vid | _ | (pat1,. . .,pat
n

) | pat:ty
tyseq ∈ TySeq ::= ǫ | ty | (ty0,. . .,ty

n
)

ty ∈ Ty ::= a | tyseq tc | ty1 itc ty2 | (ty)

σ ∈ ITyScheme ::= ∀α. τ

e ∈ ITyEnvElt ::= vid 7→ σ | tid 7→ τ

Γ ∈ ITyEnv = { Γ ∈ P(ITyEnvElt)
| (vid 7→ σ1, vid 7→ σ2 ∈ Γ ⇒ σ1 = σ2)
∧ (tid 7→ τ1, tid 7→ τ2 ∈ Γ ⇒ τ1 = τ2)}

Therefore, type environment are sets that can also be seen as partial func-
tions. Let Γ(vid) be σ if vid 7→ σ ∈ Γ and undefined otherwise. Similarly,
let Γ(tid) be τ if tid 7→ τ ∈ Γ and undefined otherwise. Given an environment Γ
of the form {vid1 7→ σ1, . . . , vidn 7→ σn, tid1 7→ τ1, . . . , tidm 7→ τm}, let dom(Γ) =
{vid1, . . . , vidn, tid1, . . . , tidm}. Type schemes are subject to α-conversion. An
equality type variable can only be renamed into an equality type variable, and
similarly for non-equality type variables. We sometimes write τ for the type

27

Figure 6 EventML syntax—binders/declarations/programs

bind ∈ Bind ::= vid atpat1 · · · atpat
n

= exp
dec ∈ Dec ::= let bind;;

| observer bind;;
| parameter vid1, vid2 : ty1 ∗ ty2

| parameter vid : ty
| type vid = ty
| internal vid : ty
| input vid : ty
| output vid : ty
| import vid1. . .vidn

| main exp
| specification vid
| invariant vid on pat in vid0 vid1 . . . vidn == exp;;
| ordering vid on pat1 then pat2 in vid0 vid1 . . . vidn == exp;;
| progress vid on pat1 then pat2 in vid0 vid1 . . . vidn

with pat3 in vid ′

and condition (pat4) . exp1

== exp2;;
| memory vid on pat1 then pat2 in vid0 vid1 . . . vidn

with pat3 in vid ′

== exp;;
prog ∈ Prog ::= dec | dec prog

scheme ∀∅. τ , and tc for the internal type 〈〉 tc. Also, let:

Γ1 + Γ2 = Γ2 ∪
{vid 7→ σ | vid 7→ σ ∈ Γ1 ∧ vid 6∈ dom(Γ2)}
{tid 7→ τ | tid 7→ τ ∈ Γ1 ∧ tid 6∈ dom(Γ2)}

Let Γ1⊞Γ2 be Γ1 + Γ2 if dom(Γ1) ∩ dom(Γ2) = ∅ and undefined otherwise.
We define the admits equality predicate on internal type constructors, inter-

nal types, and internal type sequences as follows (where Interface is the type of
directed messages):

admitsEq(tc) ⇐⇒ tc 6∈ {Type, Interface , Obs, Deq}
admitsEq(itc) ⇐⇒ itc 6= →

admitsEq(τ) ⇐⇒
τ = ea

∨ τ = −→τ tc ∧ admitsEq(tc) ∧ admitsEq(−→τ)
∨ τ = τ1 itc τ2 ∧ admitsEq(itc) ∧ admitsEq(〈τ1, τ2〉)

admitsEq(〈τ1, . . . , τn〉) ⇐⇒ ∀i ∈ {1, . . . , n}. admitsEq(τi)

We define substitutions as follows:

sub ∈ Sub = {f ∈ ITyVar → ITy | ∀ea. admitsEq(f (ea))}

Substitutions are applied to internal types as follows:

28

α[sub] = sub(α)
(〈τ1, . . . , τn〉 tc)[sub] = 〈τ1[sub], . . . , τn[sub]〉 tc

(τ1 itc τ2)[sub] = τ1[sub] itc τn[sub]

A type τ is an instance of a type scheme ∀α. τ ′, written τ ≺ ∀α. τ ′, iff there
exists a substitution sub such that τ = τ ′[sub]. We use this relation to define
the static semantics of identifier expressions and of binary operators in Fig. 7.

We compute the set of free type variables of internal types and type environ-
ments as follows:

fv(τ) = {α | α occurs in τ}
fv(Γ) = {α | Γ(vid) = ∀α. τ ∧ α ∈ fv(τ) \ α}

∪ {α | Γ(tid) = τ ∧ α ∈ fv(τ)}

Let the closure of a type environment be defined as follows:

closΓ(Γ′) = {vid 7→ ∀(fv(τ) \ fv(Γ)). τ | Γ′(vid) = τ}

We call closure of a type environment, the transformation of the monomorphic
part of a type environment into a polymorphic one, promoting types to type
schemes. In the above definition, we close the environment Γ′ in the context of
the type environment Γ. We use this function to define the static semantics of
let expressions and let declarations in Fig. 7 and Fig. 10.

Let Γop be the following environment for binary operators:

{+ 7→ Int → Int → Int

, - 7→ Int → Int → Int

, = 7→ ∀{ea}. ea → ea → Bool

, . 7→ ∀{a}. a → a List → a List

, ++ 7→ ∀{a}. a List → a List → a List

, < 7→ Int → Int → Bool

, > 7→ Int → Int → Bool

, or 7→ Bool → Bool → Bool

, & 7→ Bool → Bool → Bool

, @ 7→ ∀{a}. a Obs → Loc Bag → a Obs

, || 7→ ∀{a}. a Obs → a Obs → a Obs

, >>= 7→ ∀{a, a′}. a Obs → (a → a′ Obs) → a′ Obs

}

The only special case in the definition of this initial environment is the = case,
where we enforce that its arguments have to “admit equality”. This prevents
from using the equality binary operator on, e.g., functions.

Finally, Fig. 7 presents the static semantics of EventML’s expressions. It de-
fines the relation (exp : 〈Γ, τ〉). Fig. 8 presents the static semantics of EventML’s
patterns. It defines the relation (pat :p 〈Γ, τ〉). Fig. 9 presents the static seman-
tics of EventML’s external types. It defines the relations (tyseq :s 〈Γ, −→τ 〉) and
(ty :t 〈Γ, τ〉). Fig. 10 presents the static semantics of EventML’s bindings and
declarations. It defines the relation (x :d 〈Γ, Γ′〉) where x can either be a bind,
or a dec, or a prog.

29

Figure 7 EventML’s static semantics—expressions

τ ≺ Γ(vid)

vid : 〈Γ, τ〉 true : 〈Γ, Bool〉 false : 〈Γ, Bool〉 n : 〈Γ, Int〉 () : 〈Γ, Unit〉

∀i ∈ {1, . . . , n}. exp
i

: 〈Γ, τi〉

(exp1,. . .,exp
n

) : 〈Γ, τ1 ∗ · · · ∗ τn〉

exp1 : 〈Γ, τ1 → τ2〉 exp2 : 〈Γ, τ1〉

exp1 exp2 : 〈Γ, τ2〉

exp : 〈Γ, τ〉 ty :t 〈Γ, τ〉

exp:ty : 〈Γ, τ〉

ty :t 〈Γ, τ〉

:: ty : 〈Γ,Type〉

pat :p 〈Γ′, τ〉 exp : 〈Γ + Γ′, τ ′〉

\pat.exp : 〈Γ, τ → τ ′〉

exp1 : 〈Γ, τ1〉 exp2 : 〈Γ, τ2〉 (τ1 → τ2 → τ3) ≺ Γ(opr)

exp1 opr exp2 : 〈Γ, τ3〉

(τ1 → τ2 → τ3) ≺ Γ(vid)

op vid : 〈Γ, τ1 → τ2 → τ3〉

∀i ∈ {1, . . . , n}. exp
i

: 〈Γ, τ〉

[exp1,. . .,exp
n

] : 〈Γ, τ List 〉

exp1 : 〈Γ, Bool〉 exp2 : 〈Γ, τ〉 exp3 : 〈Γ, τ〉

if exp1 then exp2 else exp3 : 〈Γ, τ〉

bind :d 〈Γ, Γ′〉 exp : 〈Γ + closΓ(Γ′), τ〉

let bind in exp : 〈Γ, τ〉

bind :d 〈Γ, Γ′〉 exp : 〈Γ + closΓ(Γ′), τ〉

exp where bind : 〈Γ, τ〉

∀i ∈ {1, . . . , n}. exp
i

: 〈Γ, τ〉

{exp1,. . .,exp
n

} : 〈Γ, τ Bag〉

exp : 〈Γ, Loc → τ1 → · · · → τn → τn+1〉
∀i ∈ {1, . . . , n}. exp

i
: 〈Γ, τi Obs〉

exp o (exp1,. . .,exp
n

) : 〈Γ, τn+1 Obs〉

exp1 : 〈Γ, Loc → τ2〉
exp2 : 〈Γ, Loc → τ1 → τ2 → τ2〉
exp3 : 〈Γ, τ1 Obs〉

Memory(exp1,exp2,exp3) : 〈Γ, τ2 Obs〉

exp1 : 〈Γ, Loc → τ2〉
exp2 : 〈Γ, Loc → τ1 → τ2 → τ2〉
exp3 : 〈Γ, τ1 Obs〉

State(exp1,exp2,exp3) : 〈Γ, τ2 Obs〉

exp : 〈Γ, Loc → τ Bag〉

Output(exp) : 〈Γ, τ Obs〉

exp : 〈Γ, τ Obs〉

Once(exp) : 〈Γ, τ Obs〉

exp1 : 〈Γ, τ Obs〉 exp2 : 〈Γ, τ ′ Obs〉

exp1 until exp2 : 〈Γ, τ Obs〉

Figure 8 EventML’s static semantics—patterns

vid :p 〈{vid 7→ τ}, τ〉 _ :p 〈{}, τ〉

pat :p 〈Γ, τ〉 ty :t 〈Γ, τ〉

pat:ty :p 〈Γ, τ〉 () :p 〈∅, Unit〉

∀i ∈ {1, . . . , n}. pat
i

:p 〈Γi, τi〉

(pat1,. . .,pat
n

) :p 〈Γ1⊞ · · ·⊞Γn, τ1 ∗ · · · ∗ τn〉

A piece of code prog is a valid EventML program iff there exists a type envi-
ronment Γ such that prog :d 〈Γop, Γ〉 can be derived from the rules presented in

30

Figure 9 EventML’s static semantics—types

ǫ :s 〈Γ, 〈〉〉

ty :t 〈Γ, τ〉

ty :s 〈Γ, 〈τ〉〉

∀i ∈ {0, . . . , n}. ty
i

:t 〈Γ, τi〉

(ty0, . . . , ty
n

) :s 〈Γ, 〈τ0, . . . , τn〉〉

a :t 〈Γ, a〉

tyseq :s 〈Γ, −→τ 〉

tyseq tc :t 〈Γ, −→τ tc〉

ty1 :t 〈Γ, τ1〉 ty2 :t 〈Γ, τ2〉

ty1 itc ty2 :t 〈Γ, τ1 itc τ2〉

ty :t 〈Γ, τ〉

(ty) :t 〈Γ, τ〉

Fig. 7 to Fig. 10. The environment Γ is prog’s static semantics. It corresponds to
the well-formedness lemmas generated when loading an EventML specification
into Nuprl.

8. Related Work

Much work has been done on specifying and reasoning about distributed
systems [41, 27, 16, 19, 20, 16, 18, 30, 67, 29, 68] (to only cite a few).

Event-B. Event-B [1] is a set-theory-based language for modeling reactive sys-
tems and deriving low-level (concrete, i.e. referring to implementation details)
specifications from high-level (abstract) specifications—this is usually known as
refinement. Event-B is supported by the Rodin platform [2], which provides sup-
port for refinement as well as both automated and interactive theorem proving.
It has been used to verify a wide variety of systems and supports code gener-
ation [46, 24]. For example, Bryans [16] used Event-B to verify the key prop-
erties of a synchronous crash-tolerant consensus algorithm called Floodset [44].
His refinement method allows him to prove invariants “at the earliest possible
stage, before the introduction of distracting detail.” Bryans proved that Flood-
set satisfies agreement and validity, and in addition he showed using ProB—a
model-checker for Event-B—that the algorithm terminates. Event-B has also
been used to model and verify safety and liveness properties of self-⋆ systems [6]
(including self-healing, self-stabilizing, self-organizing, etc.). The authors illus-
trate their methodology using a P2P-based self-healing protocol. Using the
refinement method supported by Event-B, they produced models that are close
to running code, and left “generating applications from the resulting model” for
future work. As opposed to this work, we focus here on a crash-fault model of
distributed systems and on producing running code. Moreover, as opposed to
the standard refinement method, in our methodology we rely on the fact that
our DSL is based on a small core of combinators for which we know that they
can be interpreted (in a single formal method tool) both by logical forms to per-
form the verification and by running code that provably implement the logical
forms.

IOA. IOA [26, 13, 25, 63, 27] is a programming/specification language for
describing asynchronous distributed systems as I/O automata [45] (labeled state
transition systems) and stating their properties. IOA can interact with a large
range of tools such as type checkers, simulators, model checkers, theorem provers,

31

Figure 10 EventML’s static semantics—bindings and declarations

∀i ∈ {1, . . . , n}. atpat
i

:p 〈Γi, τi〉 exp : 〈Γ + (Γ1⊞ · · ·⊞Γn), τ〉

vid atpat1 · · · atpat
n

= exp :d 〈Γ, {vid 7→ τ1 → · · · → τn → τ}〉

bind :d 〈Γ, Γ′〉

let bind;; :d 〈Γ, closΓ(Γ′)〉

bind :d 〈Γ, {vid 7→ τ1 → · · · → τn → τ Obs}〉

observer bind;; :d 〈Γ, closΓ({vid 7→ τ1 → · · · → τn → τ Obs})〉

ty :t 〈Γ, τ〉 fv(τ) = ∅

parameter vid : ty :d 〈Γ, {vid 7→ τ}〉

ty1 :t 〈Γ, τ1〉 ty2 :t 〈Γ, τ2〉 fv(τ1) ∪ fv(τ2) = ∅

parameter vid1, vid2 : ty1 ∗ ty2 :d 〈Γ, {vid1 7→ τ1, vid2 7→ τ2}〉

ty :t 〈Γ, τ〉

type vid = ty :d 〈Γ, {vid 7→ τ}〉

ty :t 〈Γ, τ〉 Γ′ =

{

vid ’send 7→ Loc → τ → Interface ,
vid ’bcast 7→ Loc → τ → Interface Bag,
vid ’base 7→ τ Obs

}

internal vid : ty :d 〈Γ, Γ′〉

ty :t 〈Γ, τ〉 Γ′ = {vid ’base 7→ τ Obs}

input vid : ty :d 〈Γ, Γ′〉

ty :t 〈Γ, τ〉 Γ′ =

{

vid ’send 7→ Loc → τ → Interface ,
vid ’bcast 7→ Loc → τ → Interface Bag

}

output vid : ty :d 〈Γ, Γ′〉

∀i ∈ {1, . . . , n}. Γ(vidi) = σi

import vid1. . .vidn :d 〈Γ, {vid1 7→ σ1} + · · · + {vidn 7→ σn}〉

exp : 〈Γ, Interface Obs〉

main exp :d 〈Γ,∅〉

dec :d 〈Γ, Γ′〉 pprog :d 〈Γ + Γ′, Γ′′〉q

dec pprogq :d 〈Γ, Γ′
p+Γ′′

q〉

and there is support for synthesis of Java code [63]. Both I/O automata and
event observers can specify I/O observations of distributed systems. While
IOA is state-based, LoE is event-based (states are implicitly maintained by
recursive combinators). Also, our methodology allows us to both prove protocol
properties and generate code within Nuprl, and does not require any translation
to another language.

32

TLA+. TLA+ [36, 20] is a language for specifying and reasoning about sys-
tems, that combines (1) TLA [38], which is a temporal logic that “provides a
mathematical foundation for describing systems” [36], and (2) set theory, which
is used there to specify data structures. TLAPS “is a platform for the devel-
opment and mechanical verification of TLA+ proofs” [20]. To validate proofs,
TLAPS uses a collection of theorem provers, proof assistants, SMT solvers, and
decision procedures. One can use a model checker to help catch errors before
attempting any proof. TLA+ has been used in a large number of projects such
as [43, 31, 15, 50, 51, 8, 7] to cite only a few. At its current stage, TLAPS
allows one to prove safety properties (the safety property of a variant of Paxos
has been verified using TLAPS) but not liveness/non-blocking properties (we
have not yet proved such properties either). TLA+ does not perform program
synthesis.

Orc. Orc [33, 34, 32] is a programming language for structured concurrent
programming. It is based on a small set of combinators to “orchestrate the con-
current invocations of sites” [33] that perform basic services (such as timers).
Expressions in Orc are similar to our event observers. Among other things,
Orc has similar parallel and delegation combinators and allows recursive defini-
tions. However, to the best of our knowledge, Orc does not support program
verification.

seL4. Our approach is similar to the one taken by Klein et al. to verify the
seL4 microkernel [35]. They use Haskell as their specification language, which
roughly corresponds to the level of abstraction of EventML in our framework.
Then, they translate this code to an Isabelle/HOL version. They prove that
this executable specification refines an abstract one, which corresponds to LoE’s
level. Finally, they generate by hand a C implementation of the specification,
which they translate into Isabelle/HOL, in which they defined a model of C, and
manually prove that this implementation refines their executable specification.
This corresponds to GPM’s level. Among other things, our paper shows that a
similar methodology can be used to design and implement correct fault-tolerant
distributed systems.

FVN. Another similar approach to ours is the one taken by the FVN frame-
work [66]; their system and ours have the same general structure. They use the
NDlog declarative networking language as the bridge between high-level logical
specifications and low level programs. NDlog corresponds to EventML in our
framework. NDlog programs can be translated to logical statements expressed
in PVS [65]. This would correspond to the LoE part of our framework. Us-
ing P2 [42], NDlog programs can also be compiled to dataflow programs. This
would correspond to GPM’s level.

Verdi. More recently, Wilcox et al. developed Verdi [67], which is a framework,
similar to ours, to develop and reason about distributed systems using Coq. As
in our framework they do not have gaps between the code they verify and the
code they run: they run OCaml code that they extract from Coq. Verdi provides
a compositional way of specifying distributed systems. This is done by applying
verified system transformers. For example, Raft [52]—an alternative of Paxos—

33

transforms a distributed system into a crash-tolerant distributed system. One
difference between our respective methods is that they verify systems by reason-
ing about the evolution of the state of the world, while our approach relies on
the notion of causal order. In [68], the authors report that they have completely
verified Raft’s safety. They also present their methodology to deal with proof
maintenance, such as using interface lemmas in order to hide definitions [68,
Sec.4].

IronFleet. IronFleet [29] is a framework to build and reason about distributed
systems using Dafny [40], which is a programming and verification framework
that relies on the Z3 theorem prover [49]. Because systems are both implemented
in and verified using Dafny, IronFleet also does not have a gap between the code
that is verified and the code that runs. The authors use a combination of TLA-
style state-machine refinements [36] to reason about the distributed aspects of
protocols, and Floyd-Hoare-style imperative verification techniques to reason
about the local behavior of state machines. The authors have implemented and
verified, among other things, IronRSL, which is a Paxos-based state machine
replication library, of which they have proved both its safety and liveness.

9. Conclusion, Current and Future Work

Our methodology scales to more complicated and subtle distributed proto-
cols: we have specified the Multi-Paxos protocol [37, 57] in EventML and proved
its safety properties to be correct in Nuprl. We have also built an ordered broad-
cast service that can switch between various consensus protocols [61, 56, 60]. To
get efficient code, we have built in Nuprl a formal tool tuned to automatically
optimize GPM programs and prove that the optimized and non-optimized pro-
grams are bisimilar [54]. We are also experimenting with compilers to Lisp and
Scala. We are now building support in EventML and Nuprl to: (1) abstract
away from implementation details such as specific data structures, (2) automat-
ically prove simple properties such as validity properties, (3) replay large proofs
in order to support modifications to specifications. This paper only discussed
safety properties. We have started proving progress and non-blocking properties
of 2/3 consensus (similar proofs have been carried out by Charron-Bost, Merz
and Debrat [19, 18]). However, it turns out that these proofs are tedious. Next,
we want to build automation tools to assist us in proving such properties.

References

[1] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

[2] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. “Rodin: an open toolset for modelling and
reasoning in Event-B”. In: International Journal on Software Tools for Technol-
ogy Transfer (STTT) 12.6 (2010), pp. 447–466.

34

[3] Francesco Alberti, Silvio Ghilardi, Elena Pagani, Silvio Ranise, and Gian Paolo
Rossi. “Automated Support for the Design and Validation of Fault Tolerant
Parameterized Systems: a case study”. In: ECEASST 35 (2010).

[4] Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph
Kreitz, Lori Lorigo, and Evan Moran. “Innovations in computational type theory
using Nuprl”. In: J. Applied Logic 4.4 (2006). http://www.nuprl.org/, pp. 428–
469.

[5] Abhishek Anand and Ross A. Knepper. “ROSCoq: Robots Powered by Con-
structive Reals”. In: Interactive Theorem Proving - 6th Int’l Conf., ITP 2015,
Nanjing, China, August 24-27, 2015, Proceedings. Vol. 9236. Lecture Notes in
Computer Science. Springer, 2015, pp. 34–50.

[6] Manamiary Bruno Andriamiarina, Dominique Méry, and Neeraj Kumar Singh.
“Analysis of Self-⋆ and P2P Systems Using Refinement”. In: Abstract State Ma-
chines, Alloy, B, TLA, VDM, and Z - 4th Int’l Conf., ABZ 2014, Toulouse,
France, June 2-6, 2014. Proceedings. Vol. 8477. Lecture Notes in Computer Sci-
ence. Springer, 2014, pp. 117–123.

[7] Selma Azaiez, Damien Doligez, Matthieu Lemerre, Tomer Libal, and Stephan
Merz. “Proving Determinacy of the PharOS Real-Time Operating System”. In:
5th Int’l Conf. Abstract State Machines, Alloy, B, TLA, VDM, and Z (ABZ
2016). Vol. 9675. Lecture Notes in Computer Science. Springer, 2016, pp. 70–85.

[8] Noran Azmy, Stephan Merz, and Christoph Weidenbach. “A Rigorous Correct-
ness Proof for Pastry”. In: 5th Int’l Conf. Abstract State Machines, Alloy, B,
TLA, VDM, and Z (ABZ 2016). Vol. 9675. Lecture Notes in Computer Science.
Springer, 2016, pp. 86–101.

[9] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program
Development. http://www.labri.fr/perso/casteran/CoqArt. SpringerVerlag,
2004.

[10] Mark Bickford. “Component Specification Using Event Classes”. In: Component-
Based Software Engineering, 12th Int’l Symp. Vol. 5582. Lecture Notes in Com-
puter Science. Springer, 2009, pp. 140–155.

[11] Mark Bickford, Robert L. Constable, and Vincent Rahli. “Logic of Events, a
framework to reason about distributed systems”. Presented at the Languages
for Distributed Algorithms Workshop, Philadelphia, PA. 2012.

[12] Mark Bickford, Robert Constable, and David Guaspari. Generating Event Logics
with Higher-Order Processes as Realizers. Tech. rep. Cornell University, 2010.

[13] Andrej Bogdanov. “Formal verification of simulations between I/O automata”.
MA thesis. Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA, 2001.

[14] Péter Bokor, Johannes Kinder, Marco Serafini, and Neeraj Suri. “Efficient model
checking of fault-tolerant distributed protocols”. In: Proceedings of the 2011
IEEE/IFIP Int’l Conf. on Dependable Systems and Networks, DSN 2011, Hong
Kong, China, June 27-30 2011. IEEE Compute Society, 2011, pp. 73–84.

[15] William J. Bolosky, John R. Douceur, and Jon Howell. “The Farsite project: a
retrospective”. In: Operating Systems Review 41.2 (2007), pp. 17–26.

35

http://www.nuprl.org/
http://www.labri.fr/perso/casteran/CoqArt

[16] Jeremy W. Bryans. “Developing a Consensus Algorithm Using Stepwise Refine-
ment”. In: Formal Methods and Software Engineering - 13th Int’l Conf. on For-
mal Engineering Methods, ICFEM 2011, Durham, UK, October 26-28, 2011.
Proceedings. Vol. 6991. Lecture Notes in Computer Science. Springer, 2011, pp. 553–
568.

[17] B. Charron-Bost and A. Schiper. “The Heard-Of model: computing in distributed
systems with benign failures”. In: Distributed Computing 22.1 (2009), pp. 49–71.

[18] Bernadette Charron-Bost, Henri Debrat, and Stephan Merz. “Formal Verifica-
tion of Consensus Algorithms Tolerating Malicious Faults”. In: Stabilization,
Safety, and Security of Distributed Systems - 13th Int’l Symp., SSS 2011, Greno-
ble, France, October 10-12, 2011. Proceedings. Vol. 6976. Lecture Notes in Com-
puter Science. Springer, 2011, pp. 120–134.

[19] Bernadette Charron-Bost and Stephan Merz. “Formal Verification of a Consen-
sus Algorithm in the Heard-Of Model”. In: Int. J. Software and Informatics
3.2-3 (2009), pp. 273–303.

[20] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. “Veri-
fying Safety Properties with the TLA+ Proof System”. In: Automated Reasoning,
5th Int’l Joint Conf., IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceed-
ings. Vol. 6173. Lecture Notes in Computer Science. Springer, 2010, pp. 142–
148.

[21] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W.
Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P.Panangaden, J.T. Sasaki,
and S.F. Smith. Implementing mathematics with the Nuprl proof development
system. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1986.

[22] The Coq Proof Assistant. http://coq.inria.fr/.

[23] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. “Impossibility of Dis-
tributed Consensus with One Faulty Process”. In: J. ACM 32.2 (1985), pp. 374–
382.

[24] Andreas Fürst, Thai Son Hoang, David A. Basin, Krishnaji Desai, Naoto Sato,
and Kunihiko Miyazaki. “Code Generation for Event-B”. In: Integrated For-
mal Methods - 11th Int’l Conf., IFM 2014, Bertinoro, Italy, September 9-11,
2014, Proceedings. Vol. 8739. Lecture Notes in Computer Science. Springer, 2014,
pp. 323–338.

[25] S. Garland, N. Lynch, J. Tauber, and M. Vaziri. IOA user guide and reference
manual. Tech. rep. MIT/LCS/TR-961. Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA, 2004.

[26] Stephen J. Garland and Nancy Lynch. “Using I/O automata for developing
distributed systems”. In: Foundations of component-based systems. New York,
NY, USA: Cambridge University Press, 2000, pp. 285–312.

[27] Chryssis Georgiou, Nancy Lynch, Panayiotis Mavrommatis, and Joshua A. Tauber.
“Automated implementation of complex distributed algorithms specified in the
IOA language”. In: Int. J. Softw. Tools Technol. Transf. 11 (2 Feb. 2009), pp. 153–
171.

[28] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh
LCF: A Mechanised Logic of Computation. Vol. 78. Lecture Notes in Computer
Science. Springer-Verlag, 1979.

36

http://coq.inria.fr/

[29] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. “IronFleet: proving
practical distributed systems correct”. In: Proceedings of the 25th Symp. on
Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7,
2015. ACM, 2015, pp. 1–17.

[30] Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder. “Pa-
rameterized model checking of fault-tolerant distributed algorithms by abstrac-
tion”. In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland,
OR, USA, October 20-23, 2013. IEEE, 2013, pp. 201–209.

[31] Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran, Mark R. Tuttle,

and Yuan Yu. “Checking Cache-Coherence Protocols with TLA+”. In: Formal
Methods in System Design 22.2 (2003), pp. 125–131.

[32] David Kitchin. “Orchestration and Atomicity”. PhD thesis. The University of
Texas at Austin, Aug. 2013.

[33] David Kitchin, William R. Cook, and Jayadev Misra. “A Language for Task Or-
chestration and Its Semantic Properties”. In: CONCUR 2006 - Concurrency The-
ory, 17th Int’l Conf., Bonn, Germany, August 27-30, 2006, Proceedings. Vol. 4137.
Lecture Notes in Computer Science. Springer, 2006, pp. 477–491.

[34] David Kitchin, Adrian Quark, William R. Cook, and Jayadev Misra. “The
Orc Programming Language”. In: Formal Techniques for Distributed Systems.
Vol. 5522. Lecture Notes in Computer Science. Springer, 2009, pp. 1–25.

[35] Gerwin Klein et al. “seL4: Formal Verification of an OS Kernel”. In: Proceedings
of the 22nd ACM Symp. on Operating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009. ACM, 2009, pp. 207–220.

[36] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, 2004.

[37] Leslie Lamport. “The Part-Time Parliament”. In: ACM Trans. Comput. Syst.
16.2 (1998), pp. 133–169.

[38] Leslie Lamport. “The Temporal Logic of Actions”. In: ACM Trans. Program.
Lang. Syst. 16.3 (1994), pp. 872–923.

[39] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Commun. ACM 21.7 (1978), pp. 558–565.

[40] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional
Correctness”. In: Logic for Programming, Artificial Intelligence, and Reasoning
- 16th Int’l Conf., LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised
Selected Papers. Vol. 6355. Lecture Notes in Computer Science. Springer, 2010,
pp. 348–370.

[41] Patrick Lincoln and John M. Rushby. “A Formally Verified Algorithm for Inter-
active Consistency Under a Hybrid Fault Model”. In: Digest of Papers: FTCS-23,
The Twenty-Third Annual Int’l Symp. on Fault-Tolerant Computing, Toulouse,
France, June 22-24, 1993. IEEE Computer Society, 1993, pp. 402–411.

[42] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy
Roscoe, and Ion Stoica. “Implementing declarative overlays”. In: Proceedings
of the 20th ACM Symp. on Operating Systems Principles 2005, SOSP 2005,
Brighton, UK, October 23-26, 2005. ACM, 2005, pp. 75–90.

37

[43] Tianxiang Lu, Stephan Merz, and Christoph Weidenbach. “Towards Verification

of the Pastry Protocol Using TLA + ”. In: Formal Techniques for Distributed
Systems - Joint 13th IFIP WG 6.1 Int’l Conf., FMOODS 2011, and 31st IFIP
WG 6.1 Int’l Conf., FORTE 2011, Reykjavik, Iceland, June 6-9, 2011. Proceed-
ings. Vol. 6722. Lecture Notes in Computer Science. Springer, 2011, pp. 244–
258.

[44] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[45] Nancy A. Lynch and Mark R. Tuttle. “Hierarchical Correctness Proofs for Dis-
tributed Algorithms”. In: Proceedings of the Sixth Annual ACM Symp. on Prin-
ciples of Distributed Computing, Vancouver, British Columbia, Canada, August
10-12, 1987. ACM, 1987, pp. 137–151.

[46] Dominique Méry and Neeraj Kumar Singh. “Automatic code generation from
event-B models”. In: Proceedings of the 2011 Symp. on Information and Com-
munication Technology, SoICT 2011, Hanoi, Viet Nam, October 13-14, 2011.
ACM, 2011, pp. 179–188.

[47] Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. The Definition
of Standard ML (Revised). Cambridge, MA, USA: MIT Press, 1997.

[48] Eugenio Moggi. “Computational Lambda-Calculus and Monads”. In: Proceed-
ings, Fourth Annual Symp. on Logic in Computer Science, 5-8 June, 1989, Asilo-
mar Conference Center, Pacific Grove, California, USA. IEEE Computer Soci-
ety, 1989, pp. 14–23.

[49] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT
Solver”. In: Tools and Algorithms for the Construction and Analysis of Systems,
14th Int’l Conf., TACAS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings. Vol. 4963. Lecture Notes in Computer Science.
Springer, 2008, pp. 337–340.

[50] Chris Newcombe. “Why Amazon Chose TLA +”. In: Abstract State Machines,
Alloy, B, TLA, VDM, and Z - 4th Int’l Conf., ABZ 2014, Toulouse, France, June
2-6, 2014. Proceedings. Vol. 8477. Lecture Notes in Computer Science. Springer,
2014, pp. 25–39.

[51] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and
Michael Deardeuff. “How Amazon web services uses formal methods”. In: Com-
mun. ACM 58.4 (2015), pp. 66–73.

[52] Diego Ongaro and John K. Ousterhout. “In Search of an Understandable Con-
sensus Algorithm”. In: 2014 USENIX Annual Technical Conference, USENIX
ATC ’14, Philadelphia, PA, USA, June 19-20, 2014. USENIX Association, 2014,
pp. 305–319.

[53] Vincent Rahli. “Interfacing with Proof Assistants for Domain Specific Program-
ming Using EventML”. Presented at the 10th International Workshop on User
Interfaces for Theorem Provers. 2012.

[54] Vincent Rahli, Mark Bickford, and Abhishek Anand. “Formal Program Opti-
mization in Nuprl Using Computational Equivalence and Partial Types”. In: In-
teractive Theorem Proving - 4th Int’l Conf., ITP 2013, Rennes, France, July 22-
26, 2013. Proceedings. Vol. 7998. Lecture Notes in Computer Science. Springer,
2013, pp. 261–278.

38

[55] Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. “For-
mal Specification, Verification, and Implementation of Fault-Tolerant Systems
using EventML”. In: ECEASST 72 (2015). Presented at AVoCS 2015.

[56] Vincent Rahli, Nicolas Schiper, Robbert van Renesse, Mark Bickford, and Robert
L. Constable. “A diversified and correct-by-construction broadcast service”. In:
20th IEEE International Conference on Network Protocols, ICNP 2012, Austin,
TX, USA, October 30 - Nov. 2, 2012. IEEE Computer Society, 2012, pp. 1–6.

[57] Robbert van Renesse and Deniz Altinbuken. “Paxos Made Moderately Complex”.
In: ACM Comput. Surv. 47.3 (2015), 5:1–5:36.

[58] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of
Concurrency. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1997.

[59] Habib Saissi, Péter Bokor, Can Arda Muftuoglu, Neeraj Suri, and Marco Serafini.
“Efficient Verification of Distributed Protocols Using Stateful Model Checking”.
In: IEEE 32nd Symp. on Reliable Distributed Systems, SRDS 2013, Braga, Por-
tugal, 1-3 October 2013. IEEE Computer Society, 2013, pp. 133–142.

[60] Nicolas Schiper, Vincent Rahli, Robbert van Renesse, Mark Bickford, and Robert
L. Constable. “Developing Correctly Replicated Databases Using Formal Tools”.
In: 44th Annual IEEE/IFIP Int’l Conf. on Dependable Systems and Networks,
DSN 2014, Atlanta, GA, USA, June 23-26, 2014. IEEE, 2014, pp. 395–406.

[61] Nicolas Schiper, Vincent Rahli, Robbert van Renesse, Mark Bickford, and Robert
L. Constable. “ShadowDB: A Replicated Database on a Synthesized Consen-
sus Core”. In: Proceedings of the Eighth Workshop on Hot Topics in System
Dependability, HotDep 2012, Hollywood, CA, USA, October 7, 2012. USENIX
Association, 2012.

[62] Fred B. Schneider. “Implementing Fault-Tolerant Services Using the State Ma-
chine Approach: A Tutorial”. In: ACM Comput. Surv. 22.4 (1990), pp. 299–319.

[63] Joshua A. Tauber. “Verifiable Compilation of I/O Automata without Global
Synchronization”. PhD thesis. Departement of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, Cambridge, MA, 2004.

[64] Tatsuhiro Tsuchiya and André Schiper. “Using Bounded Model Checking to Ver-
ify Consensus Algorithms”. In: Distributed Computing, 22nd Int’l Symp., DISC
2008, Arcachon, France, September 22-24, 2008. Proceedings. Vol. 5218. Lecture
Notes in Computer Science. Springer, 2008, pp. 466–480.

[65] Anduo Wang, Prithwish Basu, Boon Thau Loo, and Oleg Sokolsky. “Declara-
tive Network Verification”. In: Practical Aspects of Declarative Languages, 11th
International Symposium, PADL 2009, Savannah, GA, USA, January 19-20,
2009. Proceedings. Vol. 5418. Lecture Notes in Computer Science. Springer, 2009,
pp. 61–75.

[66] Anduo Wang, Limin Jia, Changbin Liu, Boon Thau Loo, Oleg Sokolsky, and
Prithwish Basu. “Formally Verifiable Networking”. In: Eight ACM Workshop on
Hot Topics in Networks (HotNets-VIII), HOTNETS ’09, New York City, NY,
USA, October 22-23, 2009. ACM SIGCOMM, 2009.

39

[67] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas E. Anderson. “Verdi: a framework for imple-
menting and formally verifying distributed systems”. In: Proceedings of the 36th
ACM SIGPLAN Conf. on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015. ACM, 2015, pp. 357–368.

[68] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst,
and Thomas E. Anderson. “Planning for change in a formal verification of the
raft consensus protocol”. In: Proceedings of the 5th ACM SIGPLAN Conf. on
Certified Programs and Proofs, Saint Petersburg, FL, USA, January 20-22, 2016.
ACM, 2016, pp. 154–165.

40

	Introduction
	The Logic of Events
	Event Orderings
	Event Observers
	Event Observer Relation
	Event Observer Characterization
	Constraining Event Orderings

	A Specification of 2/3 Consensus
	A Top-Down Look at the Protocol
	Detecting Consensus
	Implementing Quorum

	The Safety Properties of 2/3 Consensus
	Agreement and Validity
	Proof of Agreement
	Proof of Validity

	Assumptions

	Automation
	Inductive Logical Form
	State Machine Properties
	Invariant
	Ordering
	Progress
	Memory

	Proof Effort

	Correct-by-Construction Program Generation
	EventML Syntax and Semantics
	Related Work
	Conclusion, Current and Future Work

