
Constructing Unprejudiced Extensional Type1

Theories with Choices via Modalities2

Liron Cohen � Â3

Ben-Gurion University, Israel4

Vincent Rahli � Â5

University of Birmingham, UK6

Abstract7

Time-progressing expressions, i.e., expressions that compute to different values over time such as8

Brouwerian choice sequences or reference cells, are a common feature in many frameworks. For type9

theories to support such elements, they usually employ sheaf models. In this paper, we provide a10

general framework in the form of an extensional type theory incorporating various time-progressing11

elements along with a general possible-worlds forcing interpretation parameterized by modalities.12

The modalities can, in turn, be instantiated with topological spaces of bars, leading to a general13

sheaf model. This parameterized construction allows us to capture a distinction between theories14

that are “agnostic”, i.e., compatible with classical reasoning in the sense that classical axioms can be15

validated, and those that are “intuitionistic”, i.e., incompatible with classical reasoning in the sense16

that classical axioms can be proven false. This distinction is made via properties of the modalities17

selected to model the theory and consequently via the space of bars instantiating the modalities.18

We further identify a class of time-progressing elements that allows deriving “intuitionistic” theories19

that include not only choice sequences but also simpler operators, namely reference cells.20

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation21

→ Constructive mathematics22

Keywords and phrases Intuitionism, Extensional Type Theory, Constructive Type Theory, Realiz-23

ability, Choice sequences, References, Classical Logic, Theorem proving, Agda24

Digital Object Identifier 10.4230/LIPIcs.FSCD.2022.1725

1 Introduction26

Time-progressing elements are a common feature in many frameworks. These are elements27

whose value can change over time. Examples include mutable reference cells which are28

pervasive in programming languages, and free-choice sequences which are key components in29

logical systems such as Brouwer’s intuitionistic logic [26; 3; 40; 41; 28; 43; 32]. A free-choice30

sequence is a primitive concept of a sequence that is never complete and can always be31

extended over time, and whose choices are allowed to be made freely, i.e., not generated by a32

predefined procedure. Capturing the non-deterministic, time-progressing behavior of such33

elements in a formal setting often relies on sheaf models, which logical formulas can interact34

with through a forcing interpretation, e.g., [21; 42].35

The inclusion of such elements in a logical system has far reaching consequences. In36

particular, many works have used the existence of choice-sequences to show incompatibility37

with classical reasoning. For example, Kripke’s Schema, which relies on the notion of choice38

sequences, is inconsistent with Church’s Thesis [18, Sec.5]. They have also been used to39

refute classical results such as “any real number different from 0 is also apart from 0” [24,40

Ch.8]. Similarly, a weak counterexample of the Law of Excluded Middle (LEM) was provided41

by defining a choice sequence of numbers in which the value 1 can only be picked once an42

undecided conjecture has been resolved (proved or disproved), and then by showing that43

one could resolve this undecided conjecture using LEM [9, Ch.1, Sec.1]. Kripke [30, Sec.1.1]44

also used choice sequences to refute other classical results, namely Kuroda’s conjecture and45

© Liron Cohen and Vincent Rahli;
licensed under Creative Commons License CC-BY 4.0

7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022).
Editor: Amy P. Felty; Article No. 17; pp. 17:1–17:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cliron@cs.bgu.ac.il
https://www.cs.bgu.ac.il/~cliron/
https://orcid.org/0000-0002-6608-3000
mailto:V.Rahli@bham.ac.uk
https://vrahli.github.io/
https://orcid.org/0000-0002-5914-8224
https://doi.org/10.4230/LIPIcs.FSCD.2022.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

Markov’s Principle (MP) in Kreisel’s FC system [27]. This technique was later generalized46

using sheaf models [21; 42] to refute classical axioms. For example, in [15] the independence47

of MP with Martin-Löf’s type theory was proven using a forcing method where the forcing48

conditions capture the unconstrained nature of free-choice sequences in Kripke’s proof.49

However, using a concrete sheaf model, it was shown in [6] that choice sequences can be made50

compatible with classical reasoning. This was however done by committing to a particular51

model, disabling the ability to derive “purely” intuitionistic theories.52

This paper goes one step further by providing a general framework in the form of an53

extensional type theory that incorporates a notion of time progression through a Kripke frame,54

as well as elements that progress over time. The framework uses a general possible-worlds55

forcing interpretation parameterized by a modality, which, in turn can be instantiated with56

topological spaces of bars, leading to a general sheaf model. Thus, our generic type theory,57

denoted by TT□C , is modeled through an abstract modality □ and is parameterized by a type58

of time-progressing choice operators C, which can both be instantiated to derive theories that59

are either compatible or incompatible with classical logic. TT□C ’s syntax and operational60

semantics are presented by first describing its time-independent core in Sec. 2.2, and then its61

time-progressing components in Sec. 3. In particular, TT□C can be instantiated with different62

choice operators described in Sec. 3.2. TT□C ’s inference rules are standard and are presented63

in Appx. A. They reflect the semantics of the types, which are given meaning through a64

forcing interpretation [11; 12; 4, Ch.15] parameterized by a modality □ presented in Sec. 4.65

We call TT□C an “unprejudiced” type theory since we can tune the parameters to obtain66

theories that are either “agnostic”, i.e., compatible with classical reasoning (in the sense67

that classical axioms can be validated), or that are “intuitionistic”, i.e., incompatible with68

classical reasoning (in the sense that classical axioms can be proven false). Concretely, we69

identify classes of choice operators and modalities that are sufficient to derive the negation70

of classical axioms, as well as classes that are sufficient to validate classical axioms in Sec. 5.71

We further show that TT□C can be validated w.r.t. standard sheaf models in Sec. 6, which72

presents classes of sheaf models over topological spaces of bars that are used to instantiate the73

modalities. We provide examples of classes of bar spaces B and choice operators C that allow74

proving the consistency of TTB
C with LEM, and classes that allow proving the consistency of75

TTB
C with the negation of classical axioms such as LEM. In particular, we show that even76

though choice sequences can be used to validate the negation of classical axioms, they are77

not necessary, and in fact much simpler choice operators, e.g. mutable references, are enough.78

2 Background79

2.1 Metatheory80

Our metatheory is Agda’s type theory [1]. The results presented in this paper have been81

formalized in Agda, and the formalization is available here: https://github.com/vrahli/opentt/.82

We use ∀,∃,∧,∨,→,¬ in place of Agda’s logical connectives in this paper. Agda provides83

an hierarchy of types annotated with universe labels which we omit for simplicity. Following84

Agda’s terminology, we refer to an Agda type as a set, and reserve the term type for TT□C ’s85

types. We use P as the type of sets that denote propositions; N for the set of natural numbers;86

and B for the set of Booleans true and false. We use induction-recursion to define the forcing87

interpretation in Sec. 4, where we use function extensionality to interpret universes. We do88

not discuss this further here and the interested reader is referred to forcing.lagda in the Agda89

code for further details. Classical reasoning is only used once in Lem. 19 to establish the90

compatibility of instances of TT□C with LEM.91

https://github.com/vrahli/opentt/
https://github.com/vrahli/opentt/blob/master/forcing.lagda

L. Cohen and V. Rahli 17:3

Figure 1 Core syntax (above) and small-step operational semantics (below)
v ∈ Value ∶∶= vt (type) ∣ λx.t (lambda) ∣ ⋆ (constant)

∣ n (number) ∣ inl(t) (left injection) ∣ δ (choice name)
∣ ⟨t1, t2⟩ (pair) ∣ inr(t) (right injection)

vt ∈ Type ∶∶= Πx∶t1.t2 (product) ∣ {x ∶ t1 ∣ t2} (set) ∣ t1+t2 (disjoint union)
∣ Σx∶t1.t2 (sum) ∣ t1=t2∈t (equality) ∣ �t (time truncation)
∣ Ui (universe) ∣ Nat (numbers)

t ∈ Term ∶∶= x (variable) ∣ t1 t2 (application)
∣ v (value) ∣ let x, y = t1 in t2 (pair destructor)
∣ fix(t) (fixpoint) ∣ case t of inl(x)⇒ t1 | inr(y)⇒ t2 (injection destructor)

(λx.t) u ↦ w t[x\u]
fix(v) ↦ w v fix(v)
δ(n)↦w choice?(w, δ, n)

let x, y = ⟨t1, t2⟩ in t ↦ w t[x\t1; y\t2]
case inl(t) of inl(x)⇒ t1 | inr(y)⇒ t2 ↦ w t1[x\t]
case inr(t) of inl(x)⇒ t1 | inr(y)⇒ t2 ↦ w t2[y\t]

2.2 TT□C ’s Core Syntax and Operational Semantics92

TT□C ’s core syntax and operational semantics are presented in Fig. 1, which for presentation93

purposes also includes the additional components introduced in Sec. 3, highlighted in blue94

boxes. Fig. 1’s upper part presents the syntax of TT□C ’s core computation system, where x95

belongs to a set of variables Var. For simplicity, numbers are considered to be primitive. The96

constant ⋆ is there for convenience, and is used in place of a term, when the particular term97

used is irrelevant. Terms are evaluated according to the operational semantics presented in98

Fig. 1’s lower part. In what follows, we use all letters as metavariables for terms. Let t[x\u]99

stand for the capture-avoiding substitution of all the free occurrences of x in t by u.100

Types are syntactic forms that are given semantics in Sec. 4 via a forcing interpretation.101

The type system contains standard types such as dependent products of the form Πx∶t1.t2102

and dependent sums of the form Σx∶t1.t2. For convenience we write t1 → t2 for the non-103

dependent Π type; True for 0=0∈Nat; False for 0=1∈Nat; ¬T for (T → False); Bool for104

True+True; tt for inl(⋆); ff for inr(⋆); and ↑(t) for t=tt∈Bool (a Bool to type coercion).105

Our computation system includes a space-squashing mechanism, which we use (among106

other things) to validate some of the axioms in Secs. 5.1 and 5.2. It erases the evidence that a107

type is inhabited by truncating it to a subsingleton type using set types: ↓T ≔ {x ∶ True ∣ T}.108

While True is a contractible type (because equality types are subsingleton types — see Sec. 4),109

↓T is either empty or inhabited by all (closed) terms in Term, and all its inhabitants are110

equal to each other. Therefore, ↓T is inhabited iff T is inhabited.111

Fig. 1’s lower part presents TT□C ’s core small-step operational semantics, where t1 ↦ t2112

expresses that the term t1 reduces to t2 in one computation step. We omit the congruence113

rules that allow computing within terms such as: if t1 ↦ t2 then t1(u)↦ t2(u). We denote114

by ⇓ the reflexive transitive closure of ↦, i.e., a ⇓ b states that a computes to b in ≥0 steps.115

3 TT□C ’s Time-Progressing Choice Operators116

In addition to the core described in Sec. 2.2, TT□C includes time-progressing notions which117

we now describe. We capture these notions via the concept of worlds (Sec. 3.1). Then, we118

provide a formal, abstract definition of choice operators and add corresponding components to119

the core system (Sec. 3.2). These time-progressing choice operators cover standard operators120

such as Brouwerian choice sequences or references (Sec. 3.2.1). We further enrich our system121

with a notion of time-truncation, used to capture time-sensitive expressions (Sec. 3.3).122

FSCD 2022

17:4 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

3.1 Worlds123

To capture the time progression notion, the core computation system presented in Sec. 2.2 is124

parameterized by a Kripke frame [31; 30] defined as follows:125

▶ Definition 1 (Kripke Frame). A Kripke frame consists of a set of worlds W equipped with126

a reflexive and transitive binary relation ⊑.127

Let w range over W . We sometimes write w ′
⊒ w for w ⊑ w ′. Let Pw be the collection of128

predicates on world extensions, i.e., functions in ∀w ′
⊒ w.P. Note that due to ⊑’s transitivity,129

if P ∈ Pw then for every w ′
⊒ w it naturally extends to a predicate in Pw′ . We further define130

the following notations for quantifiers. ∀⊑

w(P) states that P ∈ Pw is true for all extensions131

of w, i.e., P w ′ holds in all worlds w ′
⊒ w. ∃⊑w(P) states that P ∈ Pw is true at an extension132

of w, i.e., P w ′ holds for some world w ′
⊒ w. For readability, we sometime write ∀⊑

w(w ′
.P)133

(or ∃⊑w(w ′
.P)) instead of ∀⊑

w(λw ′
.P) (or ∃⊑w(λw ′

.P)), respectively.134

The operational semantics is parameterized by a frame in the sense that the relation135

t1 ↦ t2 is generalized to a ternary relation between two terms and a world, t1 ↦w t2, which136

expresses that t1 reduces to t2 in one step of computation w.r.t. the world w. Similarly,137

a ⇓w b generalizes a ⇓ b. We also write a ⤋w b if a computes to b in all extensions of w, i.e.,138

if ∀⊑

w(w ′
.a ⇓w′ b). We write ∼w for the symmetric and transitive closure of ⇓w.139

3.2 Time-Progressing Choice Operators140

This section introduces the general notion of time-progressing choices into our system. We141

rely on worlds to record choices and provide operators to access the choices stored in a world.142

Choices are referred to through their names. A concrete example of such choices are reference143

cells in programming languages, where a variable name pointing to a reference cell is the144

name of the corresponding reference cell. To introduce an abstract notion of such choice145

operators, we assume our computation system contains a set N of choice names, that is146

equipped with a decidable equality, and an operator that given a list of names, returns a147

name not in the list. This can be given by, e.g., nominal sets [39]. In what follows we let δ148

range over N , and take N to be N for simplicity. We introduce further abstract operators149

and properties in Defs. 2, 4, 8, 10–12, 14, 15, and 18 which our framework is parameterized150

over, and which we show how to instantiate in Exs. 5, 6, 13, 26, 27, and 29 below. Definitions151

such as Def. 2 provide axiomatizations of operators, and in addition informally indicate their152

intended use. Choices are defined abstractly as follows:153

▶ Definition 2 (Choices). Let C ⊆ Term be a set of choices,1 and let κ range over C. We154

say that a computation system contains ⟨N , C⟩-choices if there exists a partial function155

choice? ∈W → N → N→ C. Given w ∈W, δ ∈ N , n ∈ N, the returned choice, if it exists, is156

meant to be the nth choice made for δ according to w. C is said to be non-trivial if it contains157

two values κ0 and κ1, which are computationally different, i.e., such that ¬(κ0 ∼w κ1) for158

all w.159

Thus, to introduce choices into the computation system, we extend the core computation160

system with a new kind of value for a choice name δ (as shown in Fig. 1) that can be used161

to access choices from a world. To facilitate making use of choices extracted from worlds162

and computing with them, the operational semantics is also extended with the following163

1 To guarantee that C ⊆ Term, one can for example extend the syntax to include a designated constructor
for choices, or require a coercion C → Term. We opted for the latter in our formalization.

L. Cohen and V. Rahli 17:5

clause: δ(n) ↦w choice?(w, δ, n) (as shown in Fig. 1). This allows applying a choice name164

δ to a number n to get a choice from the current world w. Note that the N component in165

this definition enables providing a general notion of choice operators. In some cases, e.g. the166

case for free-choice sequences, the history is recorded and so the notion of an n’s choice is167

extracted from the history of the choice element. In simpler choice concepts, e.g. references,168

one only maintains the latest update and so the N component becomes moot.2169

We next introduce the notion of a restriction, which allows assuming that the choices170

made for a given choice name all satisfy a pre-defined constraint.171

▶ Definition 3 (Restrictions). A restriction r ∈ Res is a pair ⟨res, d⟩ consisting of a function172

res ∈ N→ C → P and a default choice d ∈ C, such that ∀(n ∶ N).(res n d) holds. Given such173

a pair r , we write r⋅d for d; (r n κ) for (res n κ); and r(κ) for ∀(n ∶ N).r n κ.174

Intuitively, res specifies a restriction on the choices that can be made at any point in175

time and d provides a default choice that meets this restriction (e.g., for reference cells,176

this default choice is used to initialize a cell). For example, the restriction ⟨λn.λκ.κ ∈ N, 0⟩177

requires choices to be numbers and provides 0 as a default value. To reason about restrictions,178

we require the existence of a “compatibility” predicate as follows.179

▶ Definition 4. We further assume the existence of a predicate compatible ∈ N → W →180

Res → P, intended to guarantee that restrictions are satisfied, and which is preserved by ⊑:181

∀(δ ∶ N)(w1,w2 ∶W)(r ∶ Res).w1 ⊑ w2 → compatible(δ,w1, r)→ compatible(δ,w2, r).182

3.2.1 Standard Examples of Choice Operators183

The abstract notion of choice operators has many concrete instances. This section provides a184

high-level description of two such instances: a theoretically-oriented one, based on the notion185

of free-choice sequences, and a programming-oriented one, based on mutable references.186

▶ Example 5 (Free-Choice Sequences). Free choices are fundamental objects introduced by187

Brouwer [10] that lay at the heart of intuitionistic mathematics. They are there described as188

“new mathematical entities. . . in the form of infinitely proceeding sequences, whose terms are189

chosen more or less freely from mathematical entities previously acquired”. Thus, free-choice190

sequences are never-finished sequences of objects created over time by continuously picking191

elements from a previously well-defined collection, e.g., the natural numbers. Even though192

free-choice sequences are ever proceeding, at any point in time the sequence of choices made193

so far is finite. Therefore, the current state of a choice sequence can be implemented as a list194

of choices. We use worlds to capture the state of all the choice sequences started so far, and195

the ⊑ relation on worlds captures the fact that an extension of a world can contain additional196

choices. In that respect, a choice sequence can be seen as a reference cell that maintains the197

complete history of values that were stored in the cell. Formally, we define choice sequences198

of terms, Fcs, as follows (see worldInstanceCS.lagda for details):199

Non-Trivial Choices Let N ≔ N and C ≔ Term, which is non-trivial, e.g., take κ0 ≔ 0 and200

κ1 ≔ 1. Other examples of Cs that would be suitable for the results presented in this201

paper are N, with κ0 ≔ 0 and κ1 ≔ 1 (which can be mapped to the terms 0 and 1); or B202

with κ0 ≔ true and κ1 ≔ false (which can be mapped to the terms tt and ff).203

2 Technically, this can be captured by instantiating C with a function type from N when records are kept.
For simplicity, we here opt to make N explicit.

FSCD 2022

https://github.com/vrahli/opentt/blob/master/worldInstanceCS.lagda

17:6 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

Worlds Worlds are instantiated as lists of entries, where an entry is either (1) a pair of a204

choice name and a restriction, indicating the creation of a choice sequence; or (2) a pair205

of a choice name δ and a choice κ indicating the extension of the choice sequence δ with206

the new choice κ. ⊑ is the reflexive transitive closure of these extension operations. Given207

an entry list w and a name δ, the state of the choice sequence δ in w is then the list208

of extensions made to δ starting from the point δ was created in w, which allows us to209

define choice? by looking up the nth choice in that list. This enables starting multiple210

choice sequences in parallel, which is crucial in the proof of Lem. 16.211

Compatibility compatible(δ,w, r) states that a choice sequence named δ with restriction r212

was started in the world w (using the first kind of entry described above), and that all213

the choices made for δ in w satisfy r .214

▶ Example 6 (References). Reference cells, which are values that allow a program to indirectly215

access a particular object, are also choice operators since they can be pointed to different216

objects over their lifetime. As opposed to a choice sequence, with a reference cell, the history217

of previous choices is not kept, and the old recorded value is discarded when a new value is218

stored in a reference cell. In this paper, we will make use of a particular class of reference219

cell, that are mutable, but can be made immutable at any given point, i.e., the reference cell220

can be “frozen” so that new values cannot be stored anymore. Formally, we define references221

to terms, Ref, as follows (see worldInstanceRef.lagda for details):222

Non-trivial Choices N and C are defined as for free-choice sequences.223

Worlds Worlds are lists of cells, where a cell is a quadruple of (1) a choice name, (2) a224

restriction, (3) a choice, and (4) a Boolean indicating whether the cell is mutable. ⊑ is225

the reflexive transitive closure of two operations that allow (1) creating a new reference226

cell, and (2) updating an existing reference cell. We define choice?(w, δ, n) so that it227

simply accesses the content of the δ cell in w, irrespective of what n is. Again, this allows228

for maintaining multiple reference cells, which is crucial in the proof of Lem. 16.229

Compatibility compatible(δ,w, r) states that a reference cell named δ with restriction r was230

created in the world w (using the first kind of operation described above), and that the231

current value of the cell satisfies r .232

3.3 Time-Truncation233

While some computations are time-invariant, in the sense that they compute to the same234

value at any point in time, others, such as references, are time-sensitive. These two kinds235

of computations have different properties, e.g., a time-invariant term t that computes to a236

number n in a world w, will compute to n in all w ′
⊒ w. However, if t is a time-sensitive237

number, t might compute to numbers different from n in extensions of w, e.g., n+1 in w ′
⊒ w238

and n+2 in w ′′
⊒ w ′. To capture this distinction at the level of types, we further enrich TT□C239

by a time-truncation operator �. The type �T contains T ’s members as well as the terms240

that behave like members of T at a particular point in time, i.e., in a particular world.241

In this paper, we make use in particular of the type �Nat, which as opposed to Nat, is not242

required to only be inhabited by time-invariant terms, and allows for terms to compute to243

different numbers in different world extensions. For example, �Nat is allowed to be inhabited244

by a term t that computes to 3 in some world w, and to 4 in w ′
⊒ w. A reference cell245

that holds numbers is then essentially of type �Nat but not of type Nat, as its content can246

change over time. This distinction between Nat and �Nat will be critical when validating the247

negation of classical axioms in Sec. 5.1, where we make use of time-sensitive references (in248

particular in Ex. 13). Note that as we only need a type with two different inhabitants, we249

https://github.com/vrahli/opentt/blob/master/worldInstanceRef.lagda

L. Cohen and V. Rahli 17:7

could have equally used �Bool, whose inhabitants compute to either tt or ff in a given world,250

but might compute to different Booleans in different extensions.251

4 The Modality-based Forcing Interpretation252

Now that we have defined TT□C ’s computation system that includes choice operators, we253

provide a semantic for it. TT□C is interpreted via a forcing interpretation in which the forcing254

conditions are worlds. This interpretation is defined using induction-recursion as follows:255

(1) the inductive relation w ⊨ T1≡T2 expresses type equality in the world w; (2) the recursive256

function w ⊨ t1≡t2∈T expresses equality in a type. We further use the following abstractions:257

w ⊨ type(T) for w ⊨ T ≡T , w ⊨ t∈T for w ⊨ t≡t∈T , and w ⊨ T for ∃(t ∶ Term).w ⊨ t∈T .258

This forcing interpretation is parameterized by a family of abstract modalities □, which259

we sometimes refer to simply as a modality, which is a function that takes a world w to260

its modality □w ∈ Pw → P. We often write □w(w ′
.P) for □wλw ′

.P . To guarantee that this261

interpretation yields a standard type system in the sense of Thm. 9, we require in Def. 8. that262

the modalities satisfy certain properties reminiscent of standard modal axiom schemata [17].263

The inductive relation w ⊨ T1≡T2 has one constructor per type plus one additional264

constructor expressing when two types are equal in a world w using the □w modality.265

Consequently, the recursive function w ⊨ t1≡t2∈T has as many cases as there are constructors266

for w ⊨ T ≡T
′, requiring a dependent version �i

w of □w to recurse over i, which is a proof267

that T is given meaning using the □w modality. Indeed, technically, □ induces two abstract268

modalities for a world w: the modality □w ∈ Pw → P, and a dependent version �i
w, where269

P ∈ Pw → P and i ∈ □wP . However, to avoid the technical details involved with the270

dependent modality �i
w, we opt here for a slightly informal presentation where we slid the271

technical details concerning the dependent modality to Appx. B.272

▶ Definition 7 (Forcing interpretation). Given modality □, the forcing interpretation of TT□C273

is given in Fig. 2. There, we write R+ for R’s transitive closure, and Famw(A1, A2, B1, B2)274

for w ⊨ A1≡A2 ∧∀
⊑

w(w ′
.∀(a1, a2 ∶ Term).w ′

⊨ a1≡a2∈A1 → w ′
⊨ B1[x\a1]≡B2[x\a2]).3275

There are some standard properties expected for a semantics such as this forcing inter-276

pretation to constitute a type system [2; 16]. These include the monotonocity and locality277

properties expected for a possible-world semantics [44; 20; 19, Sec.5.4] (here monotonicity278

refers to types, and not to computations). In order to obtain a type system satisfying such279

standard, useful properties, we must impose some conditions on the modality. Thus, we next280

identify a set of conditions for the underlying modality that is sufficient for proving these281

type system properties.282

▶ Definition 8 (Equality modality). The modality □ is called an equality modality if it283

satisfies the following properties:284

□1 (monotonicity of □): ∀(w ∶W)(P ∶ Pw).∀w ′
⊒ w. □w P → □w′P .285

□2 (K, distribution axiom): ∀(w ∶W)(P,Q ∶ Pw). □w (w ′
.P w ′

→ Q w ′)→ □wP → □wQ286

□3 (C4, i.e., □ follows from □□): ∀(w ∶W)(P ∶ Pw). □w (w ′
. □w′ P)→ □wP287

□4: ∀(w ∶W)(P ∶ Pw).∀⊑

w(P)→ □wP288

□5 (T , reflexivity axiom): ∀(w ∶W)(P ∶ P). □w (w ′
.P)→ P289

As detailed in Appx. B, we further require that the dependent modality � satisfies similar290

properties to the ones listed above, as well as properties relating the two modalities.291

3 For readability, we adopt a slightly different presentation here compared to the Agda formalization. See
Appx. B for a faithful presentation, which in addition covers universes.

FSCD 2022

17:8 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

Figure 2 Forcing Interpretation
Numbers:

w ⊨ Nat≡Nat ⟺ True
w ⊨ t≡t

′
∈Nat ⟺ □w(w ′

.∃(n ∶ N).t ⤋w′ n ∧ t′ ⤋w′ n)
Products:

w ⊨ Πx∶A1.B1≡Πx∶A2.B2 ⟺ Famw(A1, A2, B1, B2)
w ⊨ f≡g∈Πx∶A.B ⟺ □w(w ′

.∀(a1, a2 ∶ Term).w ′
⊨ a1≡a2∈A→ w ′

⊨ f a1≡g a2∈B[x\a1])
Sums:

w ⊨ Σx∶A1.B1≡Σx∶A2.B2 ⟺ Famw(A1, A2, B1, B2)
w ⊨ p1≡p2∈Σx∶A.B ⟺ □w(w ′

.∃(a1, a2, b1, b2 ∶ Term).w ′
⊨ a1≡a2∈A ∧ w ′

⊨ b1≡b2∈B[x\a1] ∧
p1 ⤋w′ ⟨a1, b1⟩ ∧ p2 ⤋w′ ⟨a2, b2⟩)

Sets:
w ⊨ {x ∶ A1 ∣ B1}≡{x ∶ A2 ∣ B2} ⟺ Famw(A1, A2, B1, B2)
w ⊨ a1≡a2∈{x ∶ A ∣ B} ⟺ □w(w ′

.∃(b1, b2 ∶ Term).w ′
⊨ a1≡a2∈A ∧ w ′

⊨ b1≡b2∈B[x\a1])
Disjoint unions:

w ⊨ A1+B1≡A2+B2 ⟺ w ⊨ A1≡A2 ∧ w ⊨ B1≡B2

w ⊨ a1≡a2∈A+B ⟺ □w(w ′
.∃(u, v ∶ Term).(a1 ⤋w′ inl(u) ∧ a2 ⤋w′ inl(v) ∧ w ′

⊨ u≡v∈A) ∨
(a1 ⤋w′ inr(u) ∧ a2 ⤋w′ inr(v) ∧ w ′

⊨ u≡v∈B))
Equalities:

w ⊨ (a1=b1∈A)≡(a2=b2∈B) ⟺ w ⊨ A≡B ∧∀⊑

w(w ′
.w ′
⊨ a1≡a2∈A) ∧∀⊑

w(w ′
.w ′
⊨ b1≡b2∈B)

w ⊨ a1≡a2∈(a=b∈A) ⟺ □w(w ′
.w ′
⊨ a≡b∈A) (note that a1 and a2 can be any term here)

Time-Quotiented types:
w ⊨ �A≡�B ⟺ w ⊨ A≡B

w ⊨ a≡b∈�A ⟺ □w(w ′
.(λa, b.∃(c, d ∶ Value).a ∼w c ∧ b ∼w d ∧ w ⊨ c≡d∈A)+ a b)

Modality closure:
w ⊨ T1≡T2 ⟺ □w(w ′

.∃(T ′1, T ′2 ∶ Term).T1 ⤋w′ T
′
1 ∧ T2 ⤋w′ T

′
2 ∧ w ′

⊨ T
′
1≡T

′
2)

w ⊨ t1≡t2∈T ⟺ □w(w ′
.∃(T ′ ∶ Term).T ⤋w′ T

′ ∧ w ′
⊨ t1≡t2∈T

′)

▶ Theorem 9. Given a computation system with choices C and an equality modality □, TT□C
is a standard type system in the sense that its forcing interpretation induced by □ satisfy the
following properties (where free variables are universally quantified):

transitivity: w ⊨ T1≡T2 → w ⊨ T2≡T3 → w ⊨ T1≡T3 w ⊨ t1≡t2∈T → w ⊨ t2≡t3∈T → w ⊨ t1≡t3∈T
symmetry: w ⊨ T1≡T2 → w ⊨ T2≡T1 w ⊨ t1≡t2∈T → w ⊨ t2≡t1∈T

computation: w ⊨ T ≡T → T ⤋w T
′
→ w ⊨ T ≡T

′ w ⊨ t≡t∈T → t ⤋w t
′
→ w ⊨ t≡t

′
∈T

monotonicity: w ⊨ T1≡T2 → w ⊑ w ′
→ w ′

⊨ T1≡T2 w ⊨ t1≡t2∈T → w ⊑ w ′
→ w ′

⊨ t1≡t2∈T

locality: □w(w ′
.w ′
⊨ T1≡T2)→ w ⊨ T1≡T2 □w(w ′

.w ′
⊨ t1≡t2∈T)→ w ⊨ t1≡t2∈T

consistency: ¬w ⊨ t∈False

Proof. The proof relies on the properties of the equality modality. For example: □1 is used292

to prove monotonicity when w ⊨ T1≡T2 is derived by closing under □w; □2 and □4 are used,293

e.g., to prove the symmetry and transitivity of w ⊨ t≡t
′
∈Nat; □3 is used to prove locality;294

and □5 is used to prove consistency. See props3.lagda for further details. ◀295

5 Compatibility with Classical Axioms296

To study the compatibility of TT□C with classical reasoning, this section identifies two sub-297

classes of the family of type theories TT□C , specified through conditions on the choices and298

modalities. Sec. 5.1 provides conditions that are sufficient to derive the negation of classical299

axioms such as LEM, while Sec. 5.2 provides conditions that are sufficient to derive LEM.300

We further give concrete instantiations for such choices and modalities (the modalities are301

instantiated only in Sec. 6.2 based on the notion of bars).302

https://github.com/vrahli/opentt/blob/master/props3.lagda

L. Cohen and V. Rahli 17:9

5.1 Intuitionistic Theories303

This section identifies a set of general properties of choices and modalities that enables proving304

the negation of classical axioms such as LEM. We call theories based on such choices and305

modalities “intuitionistic”, in the sense that they are incompatible with classical reasoning.306

The proof of the negation of classical axioms provided below (Cor. 17) captures intuition-307

istic counterexamples [24; 9] abstractly. Briefly, we prove that, given a non-trivial choice308

structure, (A) if the only choice made so far is κ0, then it is not possible to decide whether309

κ1 will ever be made. More precisely, we prove that: (B) it is not the case that κ1 will be310

made because there are extensions where it won’t; and (C) it is not the case that κ1 is not311

made in all extensions because there are extensions where it is made. To capture this, we312

require some additional properties from the underlying choices and modalities. To ensure313

that (A) holds, we introduce an extendability property in Def. 10, which allows creating a314

fresh choice name δ and a world w where the only choice made for δ in w is κ0. (B) is proved315

thanks to the properties introduced in Defs. 14 and 15, which guarantee the existence of316

an extension where the nth choice made for δ is κ0, for any n ∈ N. (C) is proved using the317

immutability property in Def. 11, which allows exhibiting a world where κ1 is made.318

▶ Definition 10 (Extendability). We say that C is extendable if there exists a function319

νC ∈W → N , where νC(w) is intended to return a new choice name not present in w, and320

a function startνC ∈W → Res →W, where startνC(w, r) is intended to return an extension321

of w with the new choice name νC(w) with restriction r , satisfying the following properties:322

Starting a new choice extends the current world: ∀(w ∶W)(r ∶ Res).w ⊑ startνC(w, r)323

Initially, the only possible choice is the default value of the given restriction, i.e.:324

∀(n ∶ N)(r ∶ Res)(w ∶W)(κ ∶ C).choice?(startνC(w, r), νC(w), n) = κ→ κ = r⋅d325

A choice is initially compatible with its restriction:326

∀(w ∶W)(r ∶ Res).compatible(νC(w), startνC(w, r), r)327

If only one choice κ was made so far for a name δ, then to prove (C) above we exhibit an328

extension where another choice κ′ is made. Thus, we require a way to make a choice κ′ /= κ,329

as well as a way to make κ′ immutable in the sense that no other choice than κ′ can be made330

in the future. This is necessary because TT□C is a monotonic theory (see Lem. 16’s proof).331

Consequently, we further rely on the ability to, at any point in time, be able to constrain the332

choices to be the same forever. This does not prevent making different choice before a choice333

is made immutable, and the ability to make different choices over time is indeed necessary as334

we just highlighted. To capture this, we define the immutability property.335

▶ Definition 11 (Immutability). We say that C is immutable if there exist a function336

freeze ∈ N → C → W → W (where freeze(δ, κ,w) is intended to return a world w ′ that337

extends the world w with the choice κ for the choice name δ, and such that κ can be retrieved338

in any extension of w ′), and a predicate mutable ∈ N → W → P (intended to hold iff the339

choice name is mutable in the world, i.e., different choices can be made), satisfying the340

following properties:341

Making an immutable choice extends the current world:342

∀(δ ∶ N)(w ∶W)(κ ∶ C)(r ∶ Res).compatible(δ,w, r)→ r(κ)→ w ⊑ freeze(δ, κ,w)343

A choice is initially mutable: ∀(w ∶W)(r ∶ Res).mutable(νC(w), startνC(w, r))344

Immutable choices stay immutable: ∀(δ ∶ N)(w ∶ W)(κ ∶ C)(r ∶ Res).compatible(δ,w, r) →345

mutable(δ,w)→ ∃(n ∶ N).∀⊑

freeze(δ,κ,w)(w ′
.choice?(w ′

, δ, n) = κ)346

In addition, to state properties about non-trivial choices within TT□C , such as the fact347

that it is not always decidable whether a choice will be made in the future (see Σchoice in348

Lem. 16), we assume the existence of a term (∈ Term) denoting a type that contains the two349

distinct choices κ0 and κ1, capturing Def. 2 at the level of the theory TT□C .350

FSCD 2022

17:10 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

▶ Definition 12 (Reflection). We say that C is reflected if there exists a term TypeC ∈ Term351

such that the following hold for all worlds w:352

TypeC is a type inhabited by κ0 and κ1: w ⊨ type(TypeC), w ⊨ κ0∈TypeC, w ⊨ κ1∈TypeC.353

The choices that inhabit TypeC are related w.r.t. ∼: ∀(w ∶ W)(a, b ∶ Term).w ⊨ a≡b∈TypeC →354

□w(w ′
.∀⊑

w′(w ′′
.∀(κ1, κ2 ∶ C).a ⇓w′′ κ1 → b ⇓w′′ κ2 → κ1 ∼w′′ κ2))355

Choices obtained from worlds that compute to either κ0 or κ1 inhabit TypeC: ∀(w ∶ W)(n ∶356

N)(δ ∶ N). □w (w ′
.(choice?(w ′

, δ, n) ⇓w′ κ0 ∨ choice?(w ′
, δ, n) ⇓w′ κ1))→ w ⊨ (δ(n))∈TypeC357

Crucially, these properties allow TypeC’s inhabitants to be time-sensitive, i.e., to compute358

to different choices in different extensions, which allows implementing choices with either359

references or choice sequences. As shown in Ex. 13, we can then instantiate TypeC with360

�-truncated types, which references inhabit.361

Building up on the examples of choice operators presented in Exs. 5 and 6, we next362

provide examples for the aforementioned properties of choices.363

▶ Example 13. Both free-choice sequences, Fcs, and references, Ref, are extendable, im-364

mutable and reflected choices.365

Extendable νC(w) returns a choice name not occurring in w. For Fcs, startνC(w, r) adds a366

new entry to w that creates a choice sequence with name νC(w) and restriction r (using367

the first kind of entry mentioned in Ex. 5). For Ref, startνC(w, r) adds a new reference368

cell to w with name νC(w) and restriction r (using the first kind of operation mentioned369

in Ex. 6). In both cases, the properties are straightforward.370

Immutable For Fcs, freeze(δ, κ,w) extends w with a new entry (of the second kind from Ex. 5)371

that adds a new choice κ to the choice sequence δ. mutable(δ,w) is always true since it372

is always possible to extend choice sequences with new choices. For Ref, freeze(δ, κ,w)373

updates w by changing the content of the reference cell δ to κ if it is mutable and marking374

it as immutable; and mutable(δ,w) checks that δ is still mutable in w.375

reflected TypeC is �Nat in both cases, which is inhabited by κ0 ≔ 0 and κ1 ≔ 1. The other376

properties follow from the semantics of �Nat. The use of � is crucial because without it377

we would not be able to prove that choices obtained from worlds that compute to either378

κ0 or κ1 inhabit TypeC, as reference cells can change value over time.379

Next, we define the following two properties, which among other things allow proving (B)380

above. Sec. 6.2.1 shows how those properties can be proved for concrete instances of □ with381

Beth bars. The first property requires that the choices corresponding to a name on which a382

restriction r is imposed, can always eventually be retrieved and that they satisfy r .383

▶ Definition 14 (Retrieving). The modality □ is called retrieving if:384

∀(w ∶W)(δ ∶ N)(n ∶ N)(r ∶ Res).compatible(δ,w, r)→ □w(w ′
.r n choice?(w ′

, δ, n))385

The second property states that if □wP then P is true in an extension of w, and this for386

a specific class of worlds, namely those where only one choice has been made so far (possibly387

multiple times) and is still mutable. This property allows following a sequence of worlds388

where the same choice is picked for a given choice name.389

▶ Definition 15 (Choice-following). The modality □ is called choice-following if:390

∀(δ ∶ N)(w ∶W)(P ∶ Pw)(r ∶ Res).Sat(w, δ, r)→ □wP → ∃⊑w(w ′
.P w ′ ∧ Sat(w ′

, δ, r))391

where Sat(w, δ, r) ≔ compatible(δ,w, r) ∧mutable(δ,w) ∧ OnlyChoice(w, δ, r⋅d)392

and OnlyChoice(w, δ, κ) ≔ ∀(n ∶ N)(κ′ ∶ C).choice?(w, δ, n) = κ′ → κ
′
= κ.393

Before we prove the negation of classical axioms, we first prove the following general394

result. Note the use of ↓ in Lem. 16, where ↓(T+U) captures a classical reading of “or”.395

L. Cohen and V. Rahli 17:11

▶ Lemma 16. Let TT□C be a type system where C is a non-trivial, extendable, immutable396

and reflected set of choices and □ is a retrieving, choice-following equality modality. Then,397

the followings hold (see not_lem.lagda for details):398

∀(w ∶W).¬ □startνC(w,r) (w ′
.(w ′

⊨ ΣC(w)) ∨∀⊑

w′(w ′′
.¬w ′′

⊨ ΣC(w)))399

∀(w ∶W).¬startνC(r ,w) ⊨ ↓(ΣC(w)+¬ΣC(w))400

where (1) Σchoice(δ, κ) ≔ Σk∶Nat.((δ(k))=κ∈TypeC); (2) ΣC(w) ≔ Σchoice(νC(w),κ1);401

and (3) r ≔ ⟨res, d⟩ is the restriction where res ≔ λn, κ.(κ = κ0 ∨ κ = κ1) and d ≔ κ0.402

Proof. As the second statement is a straightforward consequence of the first, we only sketch403

a proof of the first. Let w ∈W. By extendability, we derive a new choice name δ, namely404

νC(w), and an extension startνC(w, r) of w, where the only choice made so far for δ is κ0,405

and such that mutable(δ, startνC(w, r)), by immutability. We assume □startνC(w,r)(w ′
.(w ′

⊨406

ΣC(w)) ∨ ∀⊑

w′(w ′′
.¬w ′′

⊨ ΣC(w))), and by the choice-following property we can derive407

a world w ′
⊒ startνC(w, r), where the only choice made so far for δ is κ0, and such that408

w ′
⊨ ΣC(w) or ∀⊑

w′(w ′′
.¬w ′′

⊨ ΣC(w)). We now derive a contradiction in both cases:409

w ′
⊨ ΣC(w): By the choice-following property and the meaning of ΣC(w), we derive that410

there exists k ∈ N such that δ(k) and κ1 are equal members of the type TypeC in some411

world w ′′
⊒ w ′, where the only choice so far associated with δ is κ0. Since the modality412

is retrieving and choice-following, we can further derive a world w ′′′
⊒ w ′′ where δ(k)413

computes to a choice κ satisfying r (therefore, either κ = κ0 or κ = κ1), and again where414

the only choice so far associated with δ is κ0. We derive that δ(k) computes to κ0, which415

cannot be equal to κ1, from which we obtain a contradiction.416

∀⊑

w′(w ′′
.¬w ′′

⊨ ΣC(w)): By immutability, we build the world w ′′
= freeze(δ,κ1,w

′) ⊒ w ′,417

and get to assume ¬w ′′
⊨ Σchoice(δ,κ1). The reflected choice and retrieving modality418

entail w ′′
⊨ Σchoice(δ,κ1), from which we conclude a contradiction. Let us comment on419

the use of freeze. Assume that when “freezing” κ1, it is the n
th choice being made for δ420

in w ′′. Then, (δ n) computes to κ1 in w ′′. To derive w ′′
⊨ Σchoice(δ,κ1) we must prove421

that (δ n) computes to κ1, which using □3, we must do in a w ′′′
⊒ w ′′. Now, as some422

computations are time-sensitive (such as those involving references), without immutability423

it might not be that (δ n) computes to κ1 in w ′′′.424 ◀425

Using Lem. 16, we can derive the negation of classical axioms such as LEM, or the Limited426

Principle of Omniscience (LPO) [7, p.9] (the above examples showed how to prove some of427

the assumptions in this lemma for instances of C and □, and the others are described in428

Sec. 6.2.1, as they rely on a concrete instance of □ with Beth bars).429

▶ Corollary 17 (Incompatibility with Classical Principles). Let TT□C be a type system where430

C is a non-trivial, extendable, immutable and reflected set of choices and □ is a retrieving,431

choice-following modality. Then, the following hold (see not_lem.lagda and not_lpo.lagda):432

¬LEM: ∀(w ∶W).¬w ⊨ ΠP ∶Ui.↓(P+¬P)433

¬LPO: ∀(w ∶W).¬w ⊨ Πf ∶Nat→ Bool.↓Σn∶Nat.↑(f n)+Πn∶Nat.¬↑(f n)434

For LPO, we further assume that choices are Booleans, i.e., that TypeC from Def. 12 is Bool,435

that κ0 is tt and that κ1 is ff (see Appx. D for further details).436

5.2 Agnostic Theories437

This section introduces the following general property of modalities that enables proving LEM,438

leading to “agnostic” instances of TT□C , in the sense that they support classical reasoning.439

FSCD 2022

https://github.com/vrahli/opentt/blob/master/not_lem.lagda
https://github.com/vrahli/opentt/blob/master/not_lem.lagda
https://github.com/vrahli/opentt/blob/master/not_lpo.lagda

17:12 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

▶ Definition 18 (Jumping). The modality □w is called jumping if:440

∀(w ∶W)(P ∶ Pw).∀⊑

w(w1.∃
⊑

w1(w2. □w2 P))→ □wP441

Note that, classically, the negation of the choice-following property can be read as:442

∃(δ ∶ N)(w ∶ W)(P ∶ Pw)(r ∶ Res).Sat(w, δ, r) ∧ □wP ∧ ∀
⊑

w(w ′
.Sat(w ′

, δ, r) → ¬(P w ′)).443

Reading □ as “always eventually” this says that there exists a property P , which is always444

eventually true but there is no extension of the current world that satisfies Sat where P is445

true. Thus, not all possible futures have to be covered for a property to be “always eventually”446

true. The jumping property captures a similar behavior only requiring to prove that for all447

w1 ⊒ w it is enough to exhibit one world w2 ⊒ w1 where P is “always eventually” true, to448

derive that P is “always eventually” true. We now prove that TT□C is compatible with LEM449

when instantiated with jumping modalities.450

▶ Lemma 19 (Compatibility with LEM). Let TT□C be a type system where □w is a jumping451

equality modality. Then, the following holds (classically): ∀(w ∶W).w ⊨ ΠP ∶Ui.↓(P+¬P).452

Proof. By the semantics of the ΠP ∶Ui.↓(P+¬P), it is enough to prove that for all w ∈W453

and p ∈ Term such that w ⊨ p∈Ui, then □w(w ′
.w ′
⊨ p∨∀⊑

w′(w ′′
.¬w ′′

⊨ p)). By the jumping454

property, it is enough to prove ∀⊑

w(w1.∃
⊑

w1(w2. □w2 (w3.w3 ⊨ p ∨∀⊑

w3(w4.¬w4 ⊨ p)))). Let455

w1 ⊒ w, and we prove ∃⊑w1(w2. □w2 (w3.w3 ⊨ p ∨∀⊑

w3(w4.¬w4 ⊨ p))). Using classical logic,456

we can then prove this by cases (see lem.lagda for further details):457

∃⊑w1(w2.w2 ⊨ p): We obtain a w2 ⊒ w1 such that w2 ⊨ p. We instantiate our conclusion458

using w2, and must prove □w2(w3.w3 ⊨ p ∨∀⊑

w3(w4.¬w4 ⊨ p)). Using □4 it is enough to459

prove ∀⊑

w2(w3.w3 ⊨ p ∨∀⊑

w3(w4.¬w4 ⊨ p)), which we prove by monotonicity of w2 ⊨ p.460

¬∃⊑w1(w2.w2 ⊨ p): We instantiate our conclusion using w1, and show that □w1(w3.w3 ⊨ p∨461

∀⊑

w3(w4.¬w4 ⊨ p)). Using □4, it is enough to prove ∀⊑

w1(w3.w3 ⊨ p ∨∀⊑

w3(w4.¬w4 ⊨ p)).462

Therefore, assuming w3 ⊒ w1, it remains to show w3 ⊨ p ∨∀⊑

w3(w4.¬w4 ⊨ p), and since463

the right disjunct is provable, this contradicts our assumption.464 ◀465

6 Bars466

The notion of topological spaces of bars is typically used in possible worlds semantics467

to capture the intuitive notion of time progression and provide a forcing interpretation.468

Therefore, this section provides an abstract definition of this notion and establishes the469

connection to the aforementioned equality modalities. Concretely, we offer a notion of470

monotone bars that we then use to instantiate the equality modalities with.471

6.1 Bar Spaces472

The opens of a topological bar space are collections of worlds. To define a topological space473

of bars, one needs to describe the “shape” of the opens in the space through a predicate,474

which specifies when an open belongs to the space. Given a bar space, a bar in that space is475

an open (a collection of worlds) that satisfies the predicate specifying the space.476

▶ Definition 20 (Bars). Let O ≔W → P be the set of predicates on worlds, which we call477

opens, and let BarProp ≔W → O → P be the set of predicates on opens. An open o is said478

to be a bar in B ∈ BarProp w.r.t. a world w if: (1) it satisfies (B w o), (2) all its elements479

extend w, and (3) it is upward closed w.r.t. ⊑ (i.e., if w1 ⊑ w2 and (o w1) then (o w2)). We480

denote the set of all bars in B w.r.t. w by Bw
B.481

https://github.com/vrahli/opentt/blob/master/lem.lagda

L. Cohen and V. Rahli 17:13

Intuitively, given B ∈ BarProp, (B w o) specifies whether o “bars” the world w. We write482

w⊲o∈B for (B w o), and w ′
∈ o for (o w ′).483

▶ Definition 21 (Bar Spaces). B ∈ BarProp is called a bar space if it satisfies the followings:484

isect(B) ≔ ∀(w ∶W)(o1, o2 ∶ O).w⊲o1∈B → w⊲o2∈B → w⊲(o1∩o2)∈B,485

where o1∩o1 ∈ O ≔ λw0.∃(w1,w2 ∶W).w1 ∈ o1 ∧ w2 ∈ o2 ∧ w1 ⊑ w0 ∧ w2 ⊑ w0.486

union(B) ≔ ∀(w ∶W)(b ∶ Bw
B)(i ∶ ∀w ′

⊒ w.w ′
∈ b → Bw′

B).w⊲(∪(i))∈B,487

where ∪(i) ∈ O ≔ λw0.∃w1 ⊒ w.∃(j ∶ w1 ∈ b).w0 ∈ (i w1 j), given i ∈ ∀w ′
⊒ w.w ′

∈ b → Bw′

B .488

top(B) ≔ ∀(w ∶W).w⊲(⊤(w))∈B, where ⊤(w) ∈ O ≔ λw0.w ⊑ w0.489

non∅(B) ≔ ∀(w ∶W)(b ∶ Bw
B).∃⊑w(w ′

.w ′
∈ b).490

sub(B) ≔ ∀(w1,w2 ∶W)(o ∶ O).w1 ⊑ w2 → w1⊲o∈B → w2⊲(o⇂w2)∈B,491

where o⇂w ∈ O ≔ λw0.∃(w1 ∶W).w1 ∈ o ∧ w1 ⊑ w0 ∧ w ⊑ w0.492

We denote by BarSpace the set of all bar spaces.493

That is, a bar space B is a set of opens that is closed under binary intersections (i.e.,494

isect(B)) and arbitrary unions (i.e., union(B)), contains a top element (i.e., top(B)), all its495

elements are non-empty (i.e., non∅(B)), and is closed under subsets (i.e., sub(B)).496

For w ∈ W, P ∈ Pw, B ∈ BarSpace, and b ∈ Bw
B, we write P ∈ b for ∀w ′

⊒ w.w ′
∈ b →497

P w
′, i.e., P holds at the bar b, i.e., for all elements in b. Let ∃Bw

B ∈ Pw → P be defined as498

λP.(∃(b ∶ Bw
B).P ∈ b), i.e., that P holds in some bar of the space B. Using this definition,499

we next show that any bar space B induces an equality modality.500

▶ Proposition 22. If B ∈ BarSpace and w ∈W, then ∃Bw
B is an equality modality.501

Proof. Given the properties of a bar space, we derive corresponding properties for bars in502

Bw
B, and in turn, the properties of an equality modality. In particular, sub(B) allows deriving503

□1, isect(B) allows deriving □2, union(B) allows deriving □3, non∅(B) allows deriving □5,504

and top(B) allows deriving □4. See Appx. C and bar.lagda for further details. ◀505

Let TTB
C be the theory TT□C , where □ is derived from B ∈ BarSpace using Prop. 22.506

▶ Corollary 23. For any choice operator C and B ∈ BarSpace, TTB
C is a type system in the507

sense of Thm. 9.508

6.2 Examples of Bar Spaces509

We next present two examples of bar spaces, namely Beth bars in Def. 25 and open bars510

in Def. 28, and use them to provide concrete instances for intuitionistic and agnostic «««<511

HEAD theories. ======= theories. »»»> e5e99da5628a63d71b0915560173a98d94cb6bb0512

In particular, we show that the choice-following property, which is key in proving compatibility513

with LEM, is satisfied by Beth bars but not by open bars.514

6.2.1 Beth Bars515

As presented below, a Beth bar is defined so that for any infinite sequence of worlds ordered by516

⊑, there exists a world in that sequence belonging to the bar. However, for Beth bars to satisfy517

the retrieving property presented in Def. 14, we must also ensure that for any choice name δ518

occurring in a world w in a chain, there is a w ′
⊒ w in that chain such that choice?(w ′

, δ, n)519

is defined. To this end we introduce a predicate progress ∈ N → W → W → P, which we520

show how to instantiate in Exs. 26 and 27, as well as the concept of (progressing) chains:521

FSCD 2022

https://github.com/vrahli/opentt/blob/master/bar.lagda

17:14 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

▶ Definition 24 (Chains & Barred Chains). Let chain(w) be the set of sequences of worlds522

in N → W such that c ∈ chain(w) iff (1) w ⊑ c 0, (2) for all i ∈ N, c i ⊑ c (i + 1);523

and (3) c is progressing, i.e., ∀(δ ∶ N)(n ∶ N)(r ∶ Res).compatible(δ, (c n), r) → ∃m >524

n.progress(δ, (c n), (c m)). We say that a chain c ∈ chain(w) is barred by an o ∈ O, denoted525

barredChain(o, c), if there exists a world w ′
⊑ (c n) for some n ∈ N such that w ′

∈ o.526

Using chains, we define Beth bars as follows:527

▶ Definition 25 (Beth Bars). Beth bars are defined by the following bar predicate Beth ≔528

λw.λo.∀(c ∶ chain(w)).barredChain(o, c), which is a bar space due to the properties of chains.4529

We now show through the following two examples how to define Beth bars, and how they530

induce a retrieving (Def. 14) and choice-following (Def. 15) modality, as required by Cor. 17.531

▶ Example 26 (Beth Bars & Free-Choice Sequences). Building up on Ex. 13, we present532

here an example where choices are free-choice sequences and bars are Beth bars, yielding533

an intuitionistic theory TTBeth
Fcs (see worldInstanceCS.lagda and modInstanceCS.lagda for details).534

This is the theory presented in [5].535

Progress For Fcs, progress(δ,w1,w2) states that the state of the choice sequence δ in w1 is a536

strict initial segment of the state of the choice sequence δ in w2.537

Retrieving We prove this property by exhibiting a bar that given a choice name δ and a538

n ∈ N, requires its nth choice to exist. We can prove that this forms a Beth bar thanks539

to the fact that chains are required to always eventually make progress.540

Choice-following This property is true about Beth bars because they require all possible541

chains of worlds extending a given world w to be “barred” by the bar. Given a choice542

name δ that satisfies Sat(w, δ, r), we can therefore pick a chain that repeatedly makes543

the same choice for δ, and obtain a world along that chain, which is at the bar.544

▶ Example 27 (Beth Bars & References). Building up on Ex. 13, we present here an example545

where choices are references and bars as Beth bars, yielding an intuitionistic theory TTBeth
Ref546

(see worldInstanceRef.lagda and modInstanceRef.lagda for details).547

Progress For Ref, progress(δ,w1,w2) states that if a reference cell named δ holds t in w1,548

then it must also hold t′ in w2, such that t = t′ if the cell is not mutable in w1.549

Retrieving This property is trivial to prove for references because we need to exhibit a bar,550

which given δ ∈ N and n ∈ N, requires δ’s nth choice to exist, which necessarily does551

because choice?(w, δ, n) disregards its argument n and returns δ’s current content in w.552

Choice-following This property is proved as for free-choice sequences.553

6.2.2 Open Bars554

Open bars [6] are more straightforwardly defined and do not require the concept of chains.555

▶ Definition 28 (Open Bars). Open bars are defined by the following bar predicate: Open ≔556

λw.λo.∀⊑

w(w1.∃
⊑

w1(w2.w2 ∈ o)), which forms a bar space.557

The choice-following property does not hold for open bars due to the existential quantifi-558

cation in their definition, which allows different choices to be made. In fact, we can prove the559

negation of the choice-following property for open bars. Given w0 ∈W , ∃(δ ∶ N)(w ∶W)(P ∶560

4 To be precise, to prove that Beth bars satisfy the non∅ property, we further require a function ChofW
from w ∈W to chain(w).

https://github.com/vrahli/opentt/blob/master/worldInstanceCS.lagda
https://github.com/vrahli/opentt/blob/master/modInstanceCS.lagda
https://github.com/vrahli/opentt/blob/master/worldInstanceRef.lagda
https://github.com/vrahli/opentt/blob/master/modInstanceRef.lagda

L. Cohen and V. Rahli 17:15

Pw)(r ∶ Res).Sat(w, δ, r) ∧ □wP ∧ ∀
⊑

w(w ′
.Sat(w ′

, δ, r) → ¬(P w ′)) holds by instantiating δ561

with νC(w0), w with startνC(w0, r), and P with λw ′
.¬mutable(δ,w ′), where r restricts the562

choices to be either κ0 or κ1. Next we show that open bars induce a jumping modality,563

which is required to prove Lem. 19.564

▶ Example 29 (Open bars). The agnostic theory TTOpen
C , built upon open bars and an565

arbitrary choice operator C, is compatible with classical logic (see lem.lagda). In [6] this566

theory was presented specifically for Fcs. As choices are irrelevant to prove Lem. 19, we can567

instantiate them with any suitable type, such as Ref or Fcs, and W can be any poset. It568

remains to show that Open satisfies the jumping property, which follows from the definition569

of open bars in terms of the existence of extensions of all extensions of the current world.570

7 Conclusions and Related Works571

This paper provides a generic extensional type theory incorporating various time-progressing572

elements along with a possible-worlds forcing interpretation parameterized by modalities,573

which when instantiated with topological spaces of bars leads to a general sheaf model. We574

have opted for a general framework, both in terms of the choice operators it can embed575

and its modality-based semantics. This is so that our system is abstract enough to capture576

other general models from the literature, as well as for it to contain a wide class of theories,577

allowing us to reason collectively about their (in)compatibility with classical reasoning. Much578

remains to be explored to fully utilize our general framework to study the relation with579

classical reasoning. For one, the choice and modality properties presented in Sec. 5 provide580

sufficient conditions for determining the relation of the corresponding theories to classical581

reasoning. Further work is required to establish whether they are also necessary.582

Other sheaf models for choice-like concepts have been proposed in the literature. We583

mention a few concrete examples that are most closely related to our general framework.584

In [21], the author provides a sheaf model of predicate logic extended with non-constructive585

objects such as choice sequences, where formulas are interpreted w.r.t. a forcing interpretation586

parameterized by a site. In [42], the authors provide sheaf models for the intuitionistic587

theories LS [41] and CS [29] featuring choice sequences, where formulas are essentially588

interpreted w.r.t. a forcing interpretation over the Baire space. In [14; 13], the authors prove589

the uniform continuity of a Martin-Löf-like intensional type theory using forcing, and extract590

an algorithm that computes a uniform modulus of continuity. In [25] the authors introduce591

a forcing translation for the Calculus of Inductive Constructions (CIC) [33] extended with592

effects, which crucially preserves definitional equality. In [15], the independence of MP with593

Martin-Löf’s type theory is established through a forcing interpretation, with sequences of594

Booleans as forcing conditions, by following Brouwer’s argument that it is not decidable595

whether a choice sequence of Booleans will remain true for ever or become eventually false.596

Related to our work is also the line of work, starting from [35], on building syntactic models597

of CIC, by translating CIC extended with logical principles and effects into itself. Using this598

technique, in [8], the authors present syntactic models through which properties can be added599

to negative types, allowing them to prove independent results, e.g., the independence of600

function extensionality in intentional type theory. In [36], the authors present a translation,601

where the resulting type theory features exceptions, which is consistent if the target theory602

is when exceptions are required to be caught locally. The authors use this translation to603

exhibit syntactic models of CIC which validate the independence of premise axiom, but604

not MP. In [38], the authors solve the problem of the restriction on exceptions in [36] by605

introducing a layered type theory with exceptions, which separates the consistency and606

FSCD 2022

https://github.com/vrahli/opentt/blob/master/lem.lagda

17:16 REFERENCES

effectful programming concerns. In [34] the authors present a syntactic presheaf model of607

CIC, which solves issues with dependent elimination present in [25], and allows extending608

CIC with MP. In [37], the authors go back to these dependent elimination issues and present609

a new version of call-by-push-value which allows combining effects and dependent types.610

Also connected to our work are the generic modal theories recently introduced in [23;611

22]. In [23] presents a Martin-Löf type theory extended with an S4-style necessity modality,612

and prove that the resulting theory satisfies normalization and decidability of type checking613

properties. To guarantee that the modality is an S4 necessity modality, this theory imposes614

restrictions on the terms that inhabit modalities, which are enforced through a “locking”615

mechanism. While this paper focuses on normalization on particular, our main focus is616

on deriving a modal type theory, which in particular satisfies monotonicity and locality to617

capture properties of choice operators. The generic modal type theory MTT presented in [22]618

goes one step further by supporting multiple interacting modalities. Both theories share the619

same goal of generically capturing hand-crafted modal theories, while we in particular focus620

on modalities “compatible” with choice operators.621

References622

[1] Agda Wiki. http://wiki.portal.chalmers.se/agda/pmwiki.php.623

[2] Stuart F. Allen. “A Non-Type-Theoretic Definition of Martin-Löf’s Types”. In: LICS. IEEE624

Computer Society, 1987, pp. 215–221.625

[3] Mark van Atten and Dirk van Dalen. “Arguments for the continuity principle”. In: Bulletin of626

Symbolic Logic 8.3 (2002), pp. 329–347.627

[4] Michael J. Beeson. Foundations of Constructive Mathematics. Springer, 1985.628

[5] Mark Bickford, Liron Cohen, Robert L. Constable and Vincent Rahli. “Computability Beyond629

Church-Turing via Choice Sequences”. In: LICS 2018. ACM, 2018, pp. 245–254. doi: 10.1145/630

3209108.3209200.631

[6] Mark Bickford, Liron Cohen, Robert L. Constable and Vincent Rahli. “Open Bar - a Brouwerian632

Intuitionistic Logic with a Pinch of Excluded Middle”. In: CSL. Vol. 183. LIPIcs. Schloss633

Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 11:1–11:23. doi: 10.4230/LIPIcs.CSL.2021.634

11.635

[7] E. Bishop. Foundations of constructive analysis. Vol. 60. McGraw-Hill New York, 1967.636

[8] Simon Boulier, Pierre-Marie Pédrot and Nicolas Tabareau. “The next 700 syntactical models637

of type theory”. In: CPP 2017. ACM, 2017, pp. 182–194. doi: 10.1145/3018610.3018620.638

[9] Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. London Mathe-639

matical Society Lecture Notes Series. Cambridge University Press, 1987.640

[10] L. E. J Brouwer. “Begründung der mengenlehre unabhängig vom logischen satz vom aus-641

geschlossen dritten. zweiter teil: Theorie der punkmengen”. In: Koninklijke Nederlandse642

Akademie van Wetenschappen te Amsterdam 12.7 (1919).643

[11] Paul J. Cohen. “The independence of the continuum hypothesis”. In: the National Academy644

of Sciences of the United States of America 50.6 (Dec. 1963), pp. 1143–1148.645

[12] Paul J. Cohen. “The independence of the continuum hypothesis II”. In: the National Academy646

of Sciences of the United States of America 51.1 (Jan. 1964), pp. 105–110.647

[13] Thierry Coquand and Guilhem Jaber. “A Computational Interpretation of Forcing in Type648

Theory”. In: Epistemology versus Ontology. Vol. 27. Logic, Epistemology, and the Unity of649

Science. Springer, 2012, pp. 203–213. doi: 10.1007/978-94-007-4435-6_10.650

[14] Thierry Coquand and Guilhem Jaber. “A Note on Forcing and Type Theory”. In: Fundam.651

Inform. 100.1-4 (2010), pp. 43–52. doi: 10.3233/FI-2010-262.652

[15] Thierry Coquand and Bassel Mannaa. “The Independence of Markov’s Principle in Type653

Theory”. In: FSCD 2016. Vol. 52. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,654

2016, 17:1–17:18. doi: 10.4230/LIPIcs.FSCD.2016.17.655

http://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1145/3209108.3209200
https://doi.org/10.1145/3209108.3209200
https://doi.org/10.1145/3209108.3209200
https://doi.org/10.4230/LIPIcs.CSL.2021.11
https://doi.org/10.4230/LIPIcs.CSL.2021.11
https://doi.org/10.4230/LIPIcs.CSL.2021.11
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1007/978-94-007-4435-6_10
https://doi.org/10.3233/FI-2010-262
https://doi.org/10.4230/LIPIcs.FSCD.2016.17

REFERENCES 17:17

[16] Karl Crary. “Type-Theoretic Methodology for Practical Programming Languages”. PhD thesis.656

Ithaca, NY: Cornell University, Aug. 1998.657

[17] M. J. Cresswell and G. E. Hughes. A New Introduction to Modal Logic. Routledge, 1996.658

[18] Dirk van Dalen. “An interpretation of intuitionistic analysis”. In: Annals of mathematical logic659

13.1 (1978), pp. 1–43.660

[19] Michael A. E. Dummett. Elements of Intuitionism. Second. Clarendon Press, 2000.661

[20] VH Dyson and Georg Kreisel. Analysis of Beth’s semantic construction of intuitionistic logic.662

Stanford University. Applied Mathematics and Statistics Laboratories, 1961.663

[21] Michael P. Fourman. “Notions of Choice Sequence”. In: The L. E. J. Brouwer Centenary664

Symposium. Vol. 110. Studies in Logic and the Foundations of Mathematics. Elsevier, 1982,665

pp. 91–105. doi: https://doi.org/10.1016/S0049-237X(09)70125-9.666

[22] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts and Lars Birkedal. “Multimodal Dependent667

Type Theory”. In: LICS. ACM, 2020, pp. 492–506. doi: 10.1145/3373718.3394736.668

[23] Daniel Gratzer, Jonathan Sterling and Lars Birkedal. “Implementing a modal dependent type669

theory”. In: Proc. ACM Program. Lang. 3.ICFP (2019), 107:1–107:29. doi: 10.1145/3341711.670

[24] Arend Heyting. Intuitionism: an introduction. North-Holland Pub. Co., 1956.671

[25] Guilhem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot, Matthieu Sozeau and Nicolas672

Tabareau. “The Definitional Side of the Forcing”. In: LICS ’16. ACM, 2016, pp. 367–376. doi:673

10.1145/2933575.2935320.674

[26] Stephen C. Kleene and Richard E. Vesley. The Foundations of Intuitionistic Mathematics,675

especially in relation to recursive functions. North-Holland Publishing Company, 1965.676

[27] Georg Kreisel. “A Remark on Free Choice Sequences and the Topological Completeness Proofs”.677

In: J. Symb. Log. 23.4 (1958), pp. 369–388. doi: 10.2307/2964012.678

[28] Georg Kreisel and Anne S. Troelstra. “Formal systems for some branches of intuitionistic679

analysis”. In: Annals of Mathematical Logic 1.3 (1970), pp. 229–387. doi: http://dx.doi.680

org/10.1016/0003-4843(70)90001-X.681

[29] Georg Kreisel and Anne S. Troelstra. “Formal systems for some branches of intuitionistic682

analysis”. In: Annals of mathematical logic 1.3 (1970), pp. 229–387.683

[30] Saul A. Kripke. “Semantical Analysis of Intuitionistic Logic I”. In: Formal Systems and684

Recursive Functions. Vol. 40. Studies in Logic and the Foundations of Mathematics. Elsevier,685

1965, pp. 92–130. doi: https://doi.org/10.1016/S0049-237X(08)71685-9.686

[31] Saul A. Kripke. “Semantical Analysis of Modal Logic I. Normal Propositional Calculi”. In:687

Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 9.5-6 (1963), pp. 67–96.688

doi: 10.1002/malq.19630090502.689

[32] Joan R. Moschovakis. “An intuitionistic theory of lawlike, choice and lawless sequences”. In:690

Logic Colloquium’90: ASL Summer Meeting in Helsinki. Association for Symbolic Logic. 1993,691

pp. 191–209.692

[33] Christine Paulin-Mohring. “Introduction to the Calculus of Inductive Constructions”. In: All693

about Proofs, Proofs for All. Vol. 55. Studies in Logic (Mathematical logic and foundations).694

College Publications, Jan. 2015.695

[34] Pierre-Marie Pédrot. “Russian Constructivism in a Prefascist Theory”. In: LICS. ACM, 2020,696

pp. 782–794. doi: 10.1145/3373718.3394740.697

[35] Pierre-Marie Pédrot and Nicolas Tabareau. “An effectful way to eliminate addiction to698

dependence”. In: LICS 2017. IEEE Computer Society, 2017, pp. 1–12. doi: 10.1109/LICS.699

2017.8005113.700

[36] Pierre-Marie Pédrot and Nicolas Tabareau. “Failure is Not an Option - An Exceptional Type701

Theory”. In: ESOP 2018. Vol. 10801. LNCS. Springer, 2018, pp. 245–271. doi: 10.1007/978-702

3-319-89884-1_9.703

[37] Pierre-Marie Pédrot and Nicolas Tabareau. “The fire triangle: how to mix substitution,704

dependent elimination, and effects”. In: Proc. ACM Program. Lang. 4.POPL (2020), 58:1–705

58:28. doi: 10.1145/3371126.706

[38] Pierre-Marie Pédrot, Nicolas Tabareau, Hans Jacob Fehrmann and Éric Tanter. “A reasonably707

exceptional type theory”. In: Proc. ACM Program. Lang. 3.ICFP (2019), 108:1–108:29. doi:708

10.1145/3341712.709

FSCD 2022

https://doi.org/https://doi.org/10.1016/S0049-237X(09)70125-9
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3341711
https://doi.org/10.1145/2933575.2935320
https://doi.org/10.2307/2964012
https://doi.org/http://dx.doi.org/10.1016/0003-4843(70)90001-X
https://doi.org/http://dx.doi.org/10.1016/0003-4843(70)90001-X
https://doi.org/http://dx.doi.org/10.1016/0003-4843(70)90001-X
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71685-9
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1145/3373718.3394740
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/10.1145/3371126
https://doi.org/10.1145/3341712

17:18 REFERENCES

[39] Andrew M Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of710

Cambridge Tracts in Theoretical Computer Science. 2013.711

[40] Anne S. Troelstra. “Choice Sequences and Informal Rigour”. In: Synthese 62.2 (1985), pp. 217–712

227.713

[41] Anne S. Troelstra. Choice sequences: a chapter of intuitionistic mathematics. Clarendon Press714

Oxford, 1977.715

[42] Gerrit Van Der Hoeven and Ieke Moerdijk. “Sheaf models for choice sequences”. In: Annals716

of Pure and Applied Logic 27.1 (1984), pp. 63–107. doi: https://doi.org/10.1016/0168-717

0072(84)90035-6.718

[43] Wim Veldman. “Understanding and Using Brouwer’s Continuity Principle”. In: Reuniting719

the Antipodes — Constructive and Nonstandard Views of the Continuum. Vol. 306. Synthese720

Library. Springer Netherlands, 2001, pp. 285–302. doi: 10.1007/978-94-015-9757-9_24.721

[44] Beth E. W. “Semantic Construction of Intuitionistic Logic”. In: Journal of Symbolic Logic722

22.4 (1957), pp. 363–365.723

https://doi.org/https://doi.org/10.1016/0168-0072(84)90035-6
https://doi.org/https://doi.org/10.1016/0168-0072(84)90035-6
https://doi.org/https://doi.org/10.1016/0168-0072(84)90035-6
https://doi.org/10.1007/978-94-015-9757-9_24

REFERENCES 17:19

A TT□C ’s Inference Rules724

In TT□C , sequents are of the form h1, . . . , hn ⊢ t ∶ T . Such a sequent denotes that, assuming725

h1, . . . , hn, the term t is a member of the type T , and that therefore T is a type. The term t726

in this context is called the extract of T . Extracts are sometimes omitted when irrelevant to727

the discussion. An hypothesis h is of the form x ∶ A, where the variable x stands for the728

name of the hypothesis and A its type. A rule is a pair of a conclusion sequent S and a list729

of premise sequents, S1,⋯, Sn (written as usual using a fraction notation, with the premises730

on top). Let us now provide a sample of TT□C ’s key inference rules for some of its types not731

discussed above. In what follows, we write a∈A for a=a∈A.732

A.1 Products733

The following rules are the standard Π-elimination rule, Π-introduction rule, type equality734

for Π types, and λ-introduction rule, respectively.735

H , f ∶ Πx∶A.B,J ⊢ a∈A H , f ∶ Πx∶A.B,J, z ∶ f(a)∈B[x\a] ⊢ e ∶ C
H , f ∶ Πx∶A.B,J ⊢ e[z\⋆] ∶ C

H , z ∶ A ⊢ b ∶ B[x\z] H ⊢ A∈Ui

H ⊢ λz.b ∶ Πx∶A.B

H ⊢ A1=A2∈Ui H , y ∶ A1 ⊢ B1[x1\y]=B2[x2\y]∈Ui

H ⊢Πx1∶A1.B1=Πx2∶A2.B2∈Ui

H , z ∶ A ⊢ t1[x1\z]=t2[x2\z]∈B[x\z] H ⊢ A∈Ui

H ⊢ λx1.t1=λx2.t2∈Πx∶A.B

Note that the last rule requires to prove that A is a type because the conclusion requires to736

prove that Πx∶A.B is a type, and the first hypothesis only states that B is a type family737

over A, but does not ensures that A is a type.738

The following rule is the standard function extensionality rule:
H , z ∶ A ⊢ f1(z)=f2(z)∈B[x\z] H ⊢ A∈Ui

H ⊢ f1=f2∈Πx∶A.B

739

The following captures that equalities are closed under β-reductions:
H ⊢ t[x\s]=u∈T

H ⊢ (λx.t) s=u∈T

740

A.2 Sums741

The following rules are the standard Σ-elimination rule, Σ-introduction rule, type equality742

for the Σ type, and pair-introduction rule, respectively.743

H , p ∶ Σx∶A.B,a ∶ A, b ∶ B[x\a],J[p\⟨a, b⟩] ⊢ e ∶ C[p\⟨a, b⟩]
H , p ∶ Σx∶A.B,J ⊢ let a, b = p in e ∶ C

H ⊢ a∈A H ⊢ b∈B[x\a] H , z ∶ A ⊢ B[x\z]∈Ui

H ⊢ ⟨a, b⟩ ∶ Σx∶A.B

H ⊢ A1=A2∈Ui H , y ∶ A1 ⊢ B1[x1\y]=B2[x2\y]∈Ui

H ⊢Σx1∶A1.B1=Σx2∶A2.B2∈Ui

H , z ∶ A ⊢ B[x\z]∈Ui H ⊢ a1=a2∈A H ⊢ b1=b2∈B[x\a1]
H ⊢ ⟨a1, b1⟩=⟨a2, b2⟩∈Σx∶A.B

744

The following rule states that equalities are closed under spread-reductions:
H ⊢ u[x\s; y\t]=t2∈T

H ⊢ let x, y = ⟨s, t⟩ in u=t2∈T

745

FSCD 2022

17:20 REFERENCES

A.3 Equality746

The following rules are the standard equality-introduction rule:, equality-elimination rule,
hypothesis rule, symmetry and transitivity rules, respectively.

H ⊢ A=B∈Ui H ⊢ a1=b1∈A H ⊢ a2=b2∈B

H ⊢ (a1=a2∈A)=(b1=b2∈B)∈Ui
H , z ∶ a=b∈A, J[z\⋆] ⊢ e ∶ C[z\⋆]

H , z ∶ a=b∈A, J ⊢ e ∶ C

H , x ∶ A, J ⊢ x∈A
H ⊢ b=a∈T
H ⊢ a=b∈T

H ⊢ a=c∈T H ⊢ c=b∈T
H ⊢ a=b∈T

747

The following rule allows fixing the extract of a sequent:
H ⊢ t ∶ T
H ⊢ t∈T

748

The following rule allows rewriting with an equality in an hypothesis:
H , x ∶ B, J ⊢ t ∶ C H ⊢ A=B∈Ui

H , x ∶ A, J ⊢ t ∶ C

749

A.4 Universes750

Let i be a lower universe than j. The following rules are the standard universe-introduction
rule and the universe cumulativity rule, respectively.

H ⊢ Ui=Ui∈Uj
H ⊢ T∈Uj
H ⊢ T∈Ui

A.5 Sets751

The following rule is the standard set-elimination rule:

H , z ∶ {x ∶ A ∣ B}, a ∶ A, b ∶ B[x\a] , J[z\a] ⊢ e ∶ C[z\a]
H , z ∶ {x ∶ A ∣ B}, J ⊢ e[a\z] ∶ C

Note that we have used a new construct in the above rule, namely the hypothesis b ∶ B[x\a] ,
which is called a hidden hypothesis. The main feature of hidden hypotheses is that their
names cannot occur in extracts (which is why we “box” those hypotheses). Intuitively, this
is because the proof that B is true is discarded in the proof that the set type {x ∶ A ∣ B} is
true and therefore cannot occur in computations. Hidden hypotheses can be unhidden using
the following rule:

H , x ∶ T, J ⊢ ⋆ ∶ a=b∈A
H , x ∶ T , J ⊢ ⋆ ∶ a=b∈A

which is valid since the extract is ⋆ and therefore does not make use of x.752

The following rules are the standard set-introduction rule, type equality for the set type,
and introduction rule for members of set types, respectively.

H ⊢ a∈A H ⊢ B[x\a] H , z ∶ A ⊢ B[x\z]∈Ui
H ⊢ a ∶ {x ∶ A ∣ B}

753 H ⊢ A1=A2∈Ui H , y ∶ A1 ⊢ B1[x1\y]=B2[x2\y]∈Ui
H ⊢ {x1 ∶ A1 ∣ B1}={x2 ∶ A2 ∣ B2}∈Ui

754 H , z ∶ A ⊢ B[x\z]∈Ui H ⊢ a=b∈A H ⊢ B[x\a]
H ⊢ a=b∈{x ∶ A ∣ B}

REFERENCES 17:21

A.6 Disjoint Unions755

The following rules are the standard disjoint union-elimination rule, disjoint union-introduction
rules, type equality for the disjoint union type, and injection-introduction rules, respectively.

H , d ∶ A+B, x ∶ A, J[d\inl(x)] ⊢ t ∶ C[d\inl(x)]
H , d ∶ A+B, y ∶ B, J[d\inr(y)] ⊢ u ∶ C[d\inr(y)]

H , d ∶ A+B, J ⊢ case d of inl(x)⇒ t | inr(y)⇒ u ∶ C

756 H ⊢ a ∶ A H ⊢ B∈Ui
H ⊢ inl(a) ∶ A+B

H ⊢ b ∶ B H ⊢ A∈Ui
H ⊢ inr(b) ∶ A+B

H ⊢ A1=A2∈Ui H ⊢ B1=B2∈Ui
H ⊢ A1+B1=A2+B2∈Ui

757 H ⊢ a1=a2∈A H ⊢ B∈Ui
H ⊢ inl(a1)=inl(a2)∈A+B

H ⊢ b1=b2∈B H ⊢ A∈Ui
H ⊢ inr(b1)=inr(b2)∈A+B

The following rules state that PERs are closed under decide-reductions:

H ⊢ t[x\s]=t2∈T
H ⊢ (case inl(s) of inl(x)⇒ t | inr(y)⇒ u)=t2∈T

H ⊢ u[y\s]=t2∈T
H ⊢ (case inr(s) of inl(x)⇒ t | inr(y)⇒ u)=t2∈T

A.7 Time-Quotients758

The following rules are the introduction and type equality rules for the time-quotienting759

type. Due to their nature, we do not provide an elimination rule. Note that in practice more760

terms that the ones in A can be shown to be in �A. For example, given a choice name δ761

with a restriction that constrains its choices to be elements of A, we can prove that (δ n),762

for n ∈ N is in �A, even though (δ n) might change over time. Devising such rules is left for763

future work.764

H ⊢ a ∶ A
H ⊢ a ∶ �A

H ⊢ A=B∈Ui
H ⊢ �A=�B∈Ui

H ⊢ a=b∈A
H ⊢ a=b∈�A

B Equality Modalities765

As mentioned in Sec. 4, our forcing interpretation relies on a pair of a modality □ and a766

dependent modality �. The version of this interpretation presented there is a consequence of767

the formal definition, which involves both modalities. Let us now describe this definition768

in this section (see forcing.lagda for further details). We define in Fig. 3 an w ⊨l T1≡T2 set,769

which compared to the one presented in Sec. 4, contains a universe level annotation l, which770

is simply here a N. In addition, that figure defines a recursive function w ⊨l a≡b∈e, which771

recurses over e ∈ w ⊨l T1≡T2, and again contains a universe level annotation compared772

to the one presented in Sec. 4. This inductive-recursive definition is defined recursively773

over universe levels. The function w ⊨ a≡b∈T presented in Sec. 4 can then be defined as774

∃(l ∶ N)(e ∶ w ⊨l T ≡T).w ⊨ a≡b∈e.775

Let us now formally introduce the dependent modality �i
w, along with its properties.776

First, we introduce a dependent version of the set Pw as follows: the collection of predicates777

FSCD 2022

https://github.com/vrahli/opentt/blob/master/forcing.lagda

17:22 REFERENCES

Figure 3 Inductive-Recursive Forcing Interpretation
Inductive definition:

w ⊨l T1≡T2 ∶∶= NAT≡(T1 ⤋w Nat ∧ T2 ⤋w Nat)

∣ PI≡
⎛
⎜⎜⎜
⎝

∃(x ∶ Var)(A1, A2, B1, B2 ∶ Term)(e ∶ ∀⊑

w(w ′
.w ′
⊨l A1≡A2)).

T1 ⤋w Πx∶A1.B1 ∧ T2 ⤋w Πx∶A2.B2

∧ ∀⊑

w(w ′
.∀(a, b ∶ Term).w ′

⊨l a≡b∈(e w ′)→ w ′
⊨l B1[x\a]≡B2[x\b])

⎞
⎟⎟⎟
⎠

∣ SUM≡
⎛
⎜⎜⎜
⎝

∃(A1, A2, B1, B2 ∶ Term)(e ∶ ∀⊑

w(w ′
.w ′
⊨l A1≡A2)).

T1 ⤋w Πx∶A1.B1 ∧ T2 ⤋w Πx∶A2.B2

∧ ∀⊑

w(w ′
.∀(a, b ∶ Term).w ′

⊨l a≡b∈(e w ′)→ w ′
⊨l B1[x\a]≡B2[x\b])

⎞
⎟⎟⎟
⎠

∣ SET≡
⎛
⎜⎜⎜
⎝

∃(A1, A2, B1, B2 ∶ Term)(e ∶ ∀⊑

w(w ′
.w ′
⊨l A1≡A2)).

T1 ⤋w Πx∶A1.B1 ∧ T2 ⤋w Πx∶A2.B2

∧ ∀⊑

w(w ′
.∀(a, b ∶ Term).w ′

⊨l a≡b∈(e w ′)→ w ′
⊨l B1[x\a]≡B2[x\b])

⎞
⎟⎟⎟
⎠

∣ UNION≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∃(A1, A2, B1, B2 ∶ Term).
T1 ⤋w A1+B1 ∧ T2 ⤋w A2+B2

∧ ∀⊑

w(w ′
.w ′
⊨l A1≡A2) ∧ ∀⊑

w(w ′
.w ′
⊨l B1≡B2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∣ EQ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∃(a1, a2, b1, b2, A,B ∶ Term)(e ∶ ∀⊑

w(w ′
.w ′
⊨l A≡B)).

T1 ⤋w a1=a2∈A ∧ T2 ⤋w b1=b2∈B

∧ ∀⊑

w(w ′
.w ′
⊨l a1≡b1∈(e w ′)) ∧ ∀⊑

w(w ′
.w ′
⊨l a2≡b2∈(e w ′))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∣ QTIME≡(∃(A,B ∶ Term).T1 ⤋w �A ∧ T2 ⤋w �B ∧∀
⊑

w(w ′
.w ′
⊨l A≡B))

∣ MOD≡(□w(w ′
.w ′
⊨l T1≡T2))

∣ UNIV≡(∃(j < l).T1 ⤋w Uj ∧ T2 ⤋w Uj)

Recursive function:

w ⊨l t≡t
′
∈NAT≡(c1, c2)

≔ □w(w ′
.∃(n ∶ N).t ⤋w′ n ∧ t′ ⤋w′ n)

w ⊨l t≡t
′
∈PI≡(x,A1, A2, B1, B2, e, c1, c2, f)

≔ □w(w ′
.∀(a1, a2 ∶ Term)(i ∶ w ′

⊨l a1≡a2∈(e w ′)).w ′
⊨l (t a1)≡(t′ a2)∈(f w ′

a1 a2 i))
w ⊨l t≡t

′
∈SUM≡(x,A1, A2, B1, B2, e, c1, c2, f)

≔ □w (w ′
.
∃(a1, a2, b1, b2 ∶ Term)(i ∶ w ′

⊨l a1≡a2∈(e w ′)).
w ′
⊨l b1≡b2∈(f w ′

a1 a2 i) ∧ t ⤋w′ ⟨a1, b1⟩ ∧ t′ ⤋w′ ⟨a2, b2⟩
)

w ⊨l t≡t
′
∈SET≡(x,A1, A2, B1, B2, e, c1, c2, f)

≔ □w(w ′
.∃(b1, b2 ∶ Term)(i ∶ w ′

⊨l t≡t
′
∈(e w ′)).w ′

⊨l b1≡b2∈(f w ′
t t

′
i))

w ⊨l t≡t
′
∈UNION≡(A1, A2, B1, B2, c1, c2, e, f)

≔ □w (w ′
.∃(u, v ∶ Term). (t ⤋w′ inl(u) ∧ t′ ⤋w′ inl(v) ∧ w ′

⊨l u≡v∈(e w ′))
∨ (t ⤋w′ inr(u) ∧ t′ ⤋w′ inr(v) ∧ w ′

⊨l u≡v∈(f w ′)))

w ⊨l t≡t
′
∈EQ≡(a1, a2, b1, b2, A,B, e, c1, c2, i1, i2)

≔ □w(w ′
.w ′
⊨l a1≡a2∈(e w ′))

w ⊨l t≡t
′
∈QTIME≡(A,B, c1, c2, e)

≔ □w(w ′
.(λa, b.∃(c, d ∶ Value).a ∼w c ∧ b ∼w d ∧ w ⊨l c≡d∈(e w ′))+ t t′)

w ⊨l t≡t
′
∈MOD≡(i)

≔ �i
w(w ′

.λ(j ∶ w ′
⊨l T1≡T2).w ′

⊨l t≡t
′
∈j),where i is a proof of □w(w ′

.w ′
⊨l T1≡T2)

w ⊨l t≡t
′
∈UNIV≡(j, c1, c2)

≔ w ⊨j t≡t
′
,where j < l

in ∀w ′
⊒ w.P w ′

→ P for P ∈ Pw, is denoted PPw . The dependent modality �i
w ∈ PPw → P,778

where P ∈ Pw → P and i ∈ □wP , is called a dependent equality modality779

REFERENCES 17:23

Note that as for members of Pw, due to ⊑’s transitivity, if Q ∈ PPw , where P ∈ Pw, then780

for every w ′
⊒ w, it naturally extends to a predicate in PPw′ . Also, note that property □1 in781

Def. 8 can be viewed as defining a lifting operator ↑w′i, which returns a □w′P , given a w ′
⊒ w782

and i ∈ □wP as specified there. This lifting operator will be used to state �i
w’s properties.783

We can now state �i
w’s properties, which are counterparts of properties □1,□2,□3:784

�1: monotonicity of �:

∀(w ∶W)(P ∶ Pw)(Q ∶ PPw)(i ∶ □wP).∀w ′
⊒ w.�i

w Q→ �↑w′ i

w′ Q

This property defines a lifting operator ↑w′j, which returns a �↑w′ i

w′ Q, given a w ′
⊒ w and785

j ∈ �i
wQ as specified above.786

�2: A version of the distribution axiom:

∀(w ∶W)(P1, P2, P3 ∶ Pw)(Q1 ∶ P
P1
w)(Q2 ∶ P

P2
w)(Q3 ∶ P

P3
w)(i1 ∶ □wP1)(i2 ∶ □wP2)(i3 ∶ □wP3).

(∀⊑

w(w ′)∀(p1 ∶ P1 w ′)(p2 ∶ P2 w ′)(p3 ∶ P3 w ′).Q1 w ′
p1 → Q2 w ′

p2 → Q3 w ′
p3)

→ �i1
w Q1 → �i2

w Q2 → �i3
w Q3

�3: � follows from □�, i.e., a dependent version of C4:

∀(w ∶W)(P ∶ Pw)(Q ∶ PPw)(i ∶ □wP). □w (w ′
.�↑w′ i

w′ Q)→ �i
wQ

In addition, the two modalities □ and � are required to satisfy the following properties787

that allow deriving one from other in some contexts:788

� follows from □:

∀(w ∶W)(P ∶ Pw)(Q ∶ PPw). □w (w ′
.∀(p ∶ P w ′).Q w ′

p)→ ∀(i ∶ □wP).�i
w Q

□ follows from �:

∀(w ∶W)(P,R ∶ Pw)(Q ∶ PPw)(i ∶ □wP).∀⊑

w(w ′)∀(p ∶ P w ′).Q w ′
p→ R w ′

→ �i
wQ→ □wR

C Properties of the Bar Space789

The properties of bar spaces presented in Def. 21 allow deriving corresponding bars as follows:790

Intersection of bars: Given a bar predicate B ∈ BarProp such that isect(B), and two bars791

b1, b2 ∈ Bw
B for some world w, then b1∩b2 ∈ Bw

B.792

w⊲(b1∩b2)∈B follows from isect(B)793

the two other properties of bars follow from the definition of b1∩b2.794

Union of bars: Given a bar predicate B ∈ BarProp such that union(B), and a family of795

bars i ∈ ∀w ′
⊒ w.w ′

∈ b → Bw′

B for some world w, then ∪(i) ∈ Bw
B.796

w⊲(∪(i))∈B follows from union(B)797

the two other properties of bars follow from the definition of ∪(i).798

Top bar: Given a bar predicate B ∈ BarProp, such that top(B), then ⊤(w) ∈ Bw
B.799

w⊲(⊤(w))∈B follows from top(B)800

the two other properties of bars follow from the definition of ⊤(w).801

Sub-bar: Given a bar predicate B ∈ BarProp such that sub(B), and a bar b ∈ Bw
B for some802

world w, then b⇂w′ ∈ Bw′

B for any w ′
⊒ w.803

FSCD 2022

17:24 REFERENCES

w⊲(b⇂w′)∈B follows from sub(B)804

the two other properties of bars follow from the definition of b⇂w′ .805

As mentioned in Prop. 22, ∃Bw
B, where B ∈ BarSpace and w ∈W , is an equality modality.806

We can derive the properties (see Def. 8) of this modality as follows:807

To prove □1, we need to derive ∃Bw′

B (P) from ∃Bw
B(P), where w ′

⊒ w. As ∃Bw
B(P) gives808

us a bar b ∈ Bw
B, we can instantiate our conclusion with b⇂w′ .809

To prove □2, we need to derive ∃Bw
B(Q) from ∃Bw

B(λw ′
.P w ′

→ Q w ′) and ∃Bw
B(P). Our810

first assumption gives us a bar b1 ∈ Bw
B and our second assumption gives us a bar b2 ∈ Bw

B.811

We can then instantiate our conclusion with b1∩b2.812

To prove □3, we need to derive ∃Bw
B(P) from ∃Bw

B(λw ′
.∃Bw′

B (P)). This assumption gives813

us a bar b ∈ Bw
B along with a function i ∈ (λw ′

.∃Bw′

B (P)) ∈ b. We can then instantiate814

our conclusion with ∪(i).815

To prove □4, we need to derive ∃Bw
B(P) from ∀⊑

w(P). We can then instantiate our816

conclusion using ⊤(w), and have to prove P ∈ ⊤(w), which trivially follows from ∀⊑

w(P).817

To prove □5, we need to derive P from ∃Bw
B(λw ′

.P). This assumption gives us a bar b818

such that (λw ′
.P) ∈ b. From non∅(B), we obtain a w ′

⊒ w such that w ′
∈ b. We can then819

instantiate (λw ′
.P) ∈ b with w ′, and we obtain P since it does not depend on a world.820

D Classical Axioms821

As mentioned in Cor. 17, we can prove the negation of LEM and LPO assuming a non-
trivial, extendable, immutable and reflected set of choices C and a retrieving, choice-following
equality modality □w. For LPO, we further assume that choices are Booleans, i.e., that
TypeC from Def. 12 is Bool, that κ0 is tt and that κ1 is ff. This is due to the fact that
LPO is stated in terms of a function in Nat → Bool, which we instantiate with a choice
sequence whose choice are restricted to Booleans to prove its negation. A consequence of this
is that choices can be instantiated using free-choice sequences but not using references. A
free choices sequence name δ occurring in world with a restriction constraining its choices to
be Booleans will be of type Nat→ Bool because choices do not change over time. However, a
reference name δ occurring in world with a restriction constraining its choices to be Booleans
will be of type Nat→ �Bool because its choices can change over time. However, we can prove
the following alternative version of the negation of LPO (see not_lpo_qtbool.lagda for details):

∀(w ∶W).¬w ⊨ Πf ∶Nat→ �Bool.↓Σn∶Nat.�(f n)+Πn∶Nat.¬�(f n)

where �(T) ≔ T=tt∈�Bool.822

Furthermore, using similar than the ones presented in Lem. 16, we can prove the negation
of Markov’s Principles (see not_mp.lagda for details):

∀(w ∶W).¬w ⊨ Πf ∶Nat→ Bool.(¬Πn∶Nat.¬↑(f n))→ ↓Σn∶Nat.↑(f n)

In addition to requiring that choices are Booleans as for LPO, the proof also requires that823

mutable is always true (even if we had used �Bool instead of Bool), which only holds about824

free-choice sequences but not references.825

E Further Bars & Modalities826

Let us present here another bar space, which allows capturing traditional Kripke semantics.827

Let Kripke ≔ λw.λo.∀⊑

w(w ′
.w ′

∈ o), be the predicate that given a world w requires opens to828

https://github.com/vrahli/opentt/blob/master/not_lem_qtbool.lagda
https://github.com/vrahli/opentt/blob/master/not_mp.lagda

REFERENCES 17:25

contain all extensions of w. This also form a bar space as proved in barKripke.lagda. According829

to Prop. 22, this space leads in turn to an equality modality, which captures traditional830

a Kripke semantics. However, as proved in kripkeCsNotRetrieving.lagda, this modality is not831

retrieving when choices are free-choice sequences, and therefore does not allow deriving832

the negation of classical axioms using Cor. 17. It is however retrieving when choices are833

references because reference cells are always filled with a value. We can then prove that the834

resulting equality modality along with references as choices satisfy all the properties required835

for Cor. 17 (see modInstanceKripkeRefBool.lagda).836

FSCD 2022

https://github.com/vrahli/opentt/blob/bar/barKripke.lagda
https://github.com/vrahli/opentt/blob/bar/kripkeCsNotRetrieving.lagda
https://github.com/vrahli/opentt/blob/bar/modInstanceKripkeRefBool.lagda

	1 Introduction
	2 Background
	2.1 Metatheory
	2.2 TTC 's Core Syntax and Operational Semantics

	3 TTC 's Time-Progressing Choice Operators
	3.1 Worlds
	3.2 Time-Progressing Choice Operators
	3.2.1 Standard Examples of Choice Operators

	3.3 Time-Truncation

	4 The Modality-based Forcing Interpretation
	5 Compatibility with Classical Axioms
	5.1 Intuitionistic Theories
	5.2 Agnostic Theories

	6 Bars
	6.1 Bar Spaces
	6.2 Examples of Bar Spaces
	6.2.1 Beth Bars
	6.2.2 Open Bars

	7 Conclusions and Related Works
	A TTC 's Inference Rules
	A.1 Products
	A.2 Sums
	A.3 Equality
	A.4 Universes
	A.5 Sets
	A.6 Disjoint Unions
	A.7 Time-Quotients

	B Equality Modalities
	C Properties of the Bar Space
	D Classical Axioms
	E Further Bars & Modalities

